PERFORMANCE OF UPDATE ALGORITHMS FOR REPLICATED DATA
IN A DISTRIBUTED DATABASE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Hector Garcia-Molina
June 1979

-

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree oi Doctor of Philosophy.

C\,‘o (JJC%(AMJ\

(Principal Adviser)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
" a dissertation for the degree cf Doctor of Philosophy.

(Electrical Engineering)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
« dissertation for the degree of Doctor of Philosophy.

90;
(Xerox P.A.R.C.)

Approved for the University Committee
on Graduate Studies:’

W T3 oo o

Dean of Graduate Studies

il

A mis padres.

111

Acknowledgments

Many individuals have helped make this thesis a reality.

I would especially like to thank my principal advisor, Gio Wiederhold, for
introducing me to the area of distributed databases, as well as for his advice and
paticnce. I also want to thank the other two members of my reading committee,
Susan Owicki and Clarence Ellis, for their invaluable help.

In addition to Gio, Susan and Skip, many uscful suggestions and ideas were
provided by Peter Bishop, Ramez ElMasri, Jim Gray, Kjell Knutsen, Bruce
Lindsay, Maurice Maybury, Tochimi Minoura, Daniel Rics, Tom Rogers, Pat
Selinger, John Shoch, Reid Smith, Liba Svobodova, and others.

The rescarch described in this thesis received financial support from various
sources. Partial support was received from the Advanced Research Projects
Agency under the KBMS project, from the IBM Corporation, from Loving Grace
Cybernetics, from the National Institutes of Health under the SUMEX project, and
from the SLLAC Computation Rescarch Group of the Stanford Linear Accelerator
Center.

I am also greately indebted to a large number of fricnds who gave me moral
support and encouragement. Without their help, this thesis would have never
been completed. This list of fricnds (which by the way includes all the individuals
mentioned so far) is too long to write here. But there are a few names that
must be mentioned. Special thanks to Alicia, Voy, Laura, and Fernando for their
friendship, patience ans support. -

iv

Table of Contents

Acknowledgments ¢ ¢ v v v v v o v e e e e e e e e e e e e iv
Table of Contents e v
List of Tables « ¢ ¢ ¢« ¢« v ¢« v o o o o s s s o s o s s s s 0 s 0w x
Listof Fligures .« « v v« v v v v v v v v v e e e e e e e e e e e e xi
Ch. I: Introduction« . v v v v .. e e e e e R |
1. Definitions e e e e e e e e e e e e e e e e s 1
2. Advantages of Distributed Databases . « « « « o v ¢ o o o o o 2
3. Disadvantages of Distributed Databases « . « + « . . 4
4, Current Areasof Research . « « v v ¢« v ¢ o o v v v v 0 o 0 o o 4
5. Thesis Objective and Outline e e e e e e e e 6 -
Ch. 2: The Distributed Database Model o . . 10
1. A Single DatabaseModelo o0 o L 10
1.1 Consistency Constraints . . .« « « « « ¢ v o v v v o o . 12
1.2 Transachions « v v v ¢ v v b 0 b s e e e e e e e e e 12
1.3 Conflicts Among Transacbions . « « « « « v v v ¢« ¢ ¢ . 13
1.4 Concurrency Control Mcechanisms « « « o v ¢« ¢« o v o 14
2. A Distributed Database Model« v v v o v v 0 0oL 15
2.1 Consistency Constraints . . « . v v v v v v o v 0 0 0 16
2.2 Transactions ¢ v v v v v v b et e e e e e e 16
2.3 Conflicts Among Transactions . . . « « . « v v o o o . 17
2.4 Local Concurrency Control Mechanisms .+ . « . . « . . 17
2.5 Global Concurrency Control Mechanisms+ . . . 18
3. Assumptions e h e e e e e e e e e e e 20
3.1 Implicit Assumptions « . .« . e e e e e e e 21
3.2 Some More Assumptions . .+ . o 00 v 0 00w e . 23
Ch. 3: The Algorithms o v v v v o oo 24
1. The Centralized Control Algorithms 25
1.1 The Complcte Centralization Algorithm With .
Acknowledgments, CCAA 25
1.2 Potential disadvantages of the Centralized '
Control Algorithms v ¢ v ¢ v v v v v v v W . 26
1.3 The Complete Centralization Algorithm (With
No Acknowledgments), CCA 27
1.4 The Centralized Locking Algorithm With
Acknowledgments, CLAA ¢ . o .. 28
1.5 The Centralized Locking Algorithm (With
No Acknowledgments), CLA« . . 29
1.6 Sequence Numbers Produce Unnecessary Delays 31

v

Ch.

Ch.

N

4:
. The Performance Model . . . « + ¢« v ¢ v ¢ ¢« ¢ ¢ v v v ¢ o W

W O

A

1.7 The Centralized Locking Algorithm With

“Wait For" Lists, WCLA C e e e e e
1.8 The Centralized Locking Algorithm With .

HoleLists, MCLA . « . v v v v ¢ v 0 v v 0 v v o v s
1.9 Limited Hole Lists . . « « « « v ¢ v o v e e e e e e
1.10 The Centralized Locking Algorithm Wlth

“Total Wait For” Lists, TWCLA

. The Distributed Control Algorithms . . . « « . « « + + .+ . .

2.1 The Distributed Voting Algorithm, DVA ~
2.2 The Ellis Ring Algorithm,OEA
2.3 Advantages and Disadvantages of the Ellis Ring Algorithm .
2.4 The Modificd Ellis Ring Algorithm, MEAS
2.5 The Modified Algorithm With Paralled Updates, MEAP . . .
Performance Analysis e e e e e e e e e e e e

1.1 The Parameters « « « « = + & e e e e e e e e
1.2 The Performance Meassures « « o « ¢ o « o o o o o o o &
1.3UsingtheModel v v v v v v i v o ‘

COVERVIEW 0 i f ot e ke e e e e e e e e e e e e e e e e
.Useful Results e e e e e e e e e e e e e e e

3.1 IndependenceofNodes v o v o v v v v o,
32 The M/Gf/1Queve« .. e e e e
33TheIOServer « v v v v ¢ v v v v ¢ v v v e e
3.4 TheBaseSct
35 TheWriteSet . . « . « v v v v v v v v v

. The MCLLA Algorithm v v v v v v o v o o v e

41NoConflictsCase v v v v v v v v 0 0 v v o :
4.2 The MCLA Algorithm-Conflicts e e e e e

. The Distributed Voting Algorithm « . . v o o . v . .

51 NoConflictsCase e e e e e e
5.2 The DVA Algorithm—Conflicts

: Comparison of the Analysis and Simulation Techniques
. Comparison of the MCLA Results o ..

1.1 Comparison of the Results When No Conflicts Occur
1.2 Comparison of Results When Conflicts Occur . . .« o 4, .

. Conflict Analysis Revisited-The MCL:A Algorithm

2.1 Probability of Conflict e e e e e e e e
2.2 Size of the Basc Set Given Conflict . . « . « « ¢« v o
2.3 Other Improvements to the Conflict Analysis

. Comparison of New Results for Centralized Algorithm

vi

Ch.

Ch.

Ut W DN = DD UT W

R R

. Simulation Results vs Anaiybic Results e e e .
. Comparison of New Results for the DVA Algorithm
. Advantages of Each Technique v o o . o . .
: The Performance Results . . v v v v v v v v 0 0 v 0 0 v 0 o
. How the Results arePlotted
. Performance Results for the MCLA and DVA Algorithms

2.1Some Conclusions . + + ¢« ¢ « + o s o o o . . e e e e e

. Performance Results for the Ellis Type Algorithms -

3.1SomeMorcConclusions + » v » v v « « ¢ s v st o o o o »

. Performance Results for the CCA and WCLA Algorithms -
. Performance Results for the MCLA-h Algorithm SR

5.1 Sizeof theHoleList- e s e e s
5.2 The Simulator for the MCLA-h Algorithm
53TheResulis . . . ¢ v v v v v v v v v e e e e .
5.4 Results for a Hyperexponential Base Set Distribution

5.5Some More Conclusions . . « + v v ¢ ¢ & o « ¢ o o o o

. Comparison of Strategies for Limited Hole List Copies :
. The Size of the "Total Wait For" List
:CrashRecovery . « v v v v v v vt e e e e e e e e e e e e
. Statc of the Art in Crash Recovery e e e e
.TypcsolFailures . . « v ¢« v v v o v o o o 0 0 o s o « & e
+BasicConcepts + « v v v v v v 0 0 i e e e e C e e v e

3.1 ThePrincipalIdea . . « + ¢« ¢« v ¢ v v v 0 v v 0 v o .
B2L086 ¢ v v v e e e e e e e e e e e e e e e e e
3.3 Broadcastof Updates« v v v v v v v v o N

3.4 The Majority of Nodes Requirement |

3.5 Cancelling Updates . . « « « v ¢ v v v v v v 5 e

. The RCLA-T Algorithm v v v v v o v, .

4.1 The Two Phase Commit Protocol for Performing Updates . .
4.2 Update Cancelling Protocol e s e 6 e u s e e
43 State Diagrams . . . « « « v v o 00 e . e e e e
4.4 The Election Protocol« v o v v v v v v o
4,5 Non-Central Node recovery Protocol . . v . o v o 0 0 .
4.6 Central Node Recovery Protocol« . ..
4.7 Recovery From Loss of State Information Ce
4.8 Summary of the RCLA-T Algorithm

. Performance of the RCLA-T Algorithm

5.1Loggingof Updates . . . « v v ¢ v v v e v v v v v 0
5.2 The Two Phase Commit Protocol

535UMMAarY &+ & v v o v ¢ v v v s s 0 e bt e e e e e

Ch. 8: Restricted Transactions . . « « ¢ ¢ ¢ ¢ o o ¢ ¢ « o o & o o & .184

1. The Arbitrary Update Restriction . « + + o ¢ ¢« o o ¢ . & .. 184
LIExamples o « v v v v v v 0 v o 0 v o 0 o v e e . . 184

. 1.2 More Than One Transaction Type « « « « « « « ¢« ¢« « « . 185
1.3 Another EXample .+ v ¢ ¢ v v v v v b 00 0 e e 186

2. Why We Only Study Arbitrary Transaction Algorithms 188
3. The SDD-1 System e are e e s e 4 s e v« .-189
Ch. 9: Read Only Transactions + « + « « + + e s e n e e c.. . 191
1.Read Only Transactions + « « « ¢ o o o ¢ o o o ¢+ o s+ o o« 181
1.1 Types of Queries e e e e e e e e . . 192
12AnExample . .+ . . o 0000 e e s e s eo.o. 192

1.3 Why We Need Diflerent Query TYPEE ¢« o o o o o o« . . 193

1.4 The Query Algorithms ¢ v . v v v v v L 194

2. Querics in the Centralized Locking Environment - 195
2.1 Consistent Queries .+ .« « v o v v« 0 v 0 e e 0. s 195

Ch.

2.2 The Notions of Consistency in a Distributed Database . . . 196
2.3 Consistency of the MCLA-h Algorithm for Updates 197
2.4 Consistency of Queries . . « .« « v o ¢« v v o 000 . 199
2.5 Current Querics in the Centralized Locking Environment - . . 201
2.6 Current and Consistent Querics in the

Centralized Locking Environment 202
27Summary e .0 203

3. Queries in the Distributed Voting Environment 203

3.1 Consistent QuUeries + « v ¢ ¢« v v v v v VP e e e e e e 203

3.2 Consistency of the DVA Algorithm for Updates 204

3.3 Current Queries in the Distributed Voting Environment . . 209
3.4 Current and Consistent Querics in the

Distributed Voting Environment+« .+ . . 210
35Summary . . . 0 v v e 0. e e e e e e e e e e 210

4. Qucrics With the Ellis Type Algonthms e e e e e e e e e e 211
4.1 Consistent Queries . + « « « v v ¢ « v 0 o .. R B |
42Current QUETIEE + « v v v v v v o 0 e e e e e e e e e s 211

5. Performance of the Query Algorithms & 212
6. Some ConclUsions « + ¢ v ¢ ¢ ¢ ¢ ¢ v 4 v v e e e . e . . 213
10: Transaction With Initially Unknown BaseSet 214
1.OVEIVIEW v v v v v o o o o s o o o s o o s v v o o s v 214
2. Strategies for the MCLA Algorithm 215
2.1 Mechanisms for Detecting Conflicts . . .« « v . v o o 217

2.2 The Other Locking Algorithms « . ¢ o ¢ o 219

3. Performance of the Different Strategies+« v« « . . 219

viii

Ch. 11: Partitioned Data and multiple Controllers e e
I.PartitionedData . . ¢ « v vv v v v vttt e e e e e e e
1.1 The Partitioned DataModelo o v 0 0L
1.2 Transaction Processing With Partitioned Data
2. Multiple Controlless e e e e e e e e e e e s
2] AnExample v e e e e e e . ..
22Controllers e e e e e e e e e e
2.3 Multiple Controller Model e e e e e e
2.4 Processing With Multiple Confrollers e e e
2.5 The Update Algorithm for Partitioned Data With
Multiple Controllers + v v v v v v ¢« o o 4 T
2.6Decadlocks, e h e s s e s e e e e s
2.TPerformance « . v v v v o v v e e b b e s e e e e e ..
3. Read Only Transactions With Partitioned Data and
Multiple Controllers « . . v v v v 0 v v v v v o v w e e L
3.1 Consistent QUETICE v + v v v ¢ ¢ ¢ ¢ ¢ s v o o 00 . .
32Current QUEIESE + & v« v 4 4 v e e e e e e e e e e e
4, The Other Assumptions . « + « v v v ¢ v o v v v o s o o o &
4.1 Transactions With Initially Unknown Base Sets
in the Partitioned Data One Controller Case
4.2 Transactions With Initially Unknown Base Sets :
in the Partitioned Data Multiple Controller Case
43CrashRecovery . .« v ¢« v v v v v v v b b v e e e e
Ch.12:Conclusions + « « v v ¢ v v v v i i e e e e e e
Appendix 1l . v v v v v v s e e e e e e e e e e e e e e e
Appendix Z . . . o 0 i e e e e e e e e e e e e e e e e .
Appendix 3 ¢« v v v v e v e e e e e e e e e e N
Appendix 4 0t e e e e e e e e e e e e e e e e e e e

Appendix5 o .. ., b e et e e e e e e e e e e e e '

Appendix6 C e e b e e e e e e e e e e e e e e
Appendix T o v v v v v v o i e e e e e e * > s 0 8 s 5 s e s
Appendix 8 . v v v L s e e e e e e e e e e e . . e
References . . . o v o v 0 v v v i v o v v ot e e e e s e e

ix

List of Tables

'5.1 Comparison of Analytic and Simelation Results —

NoConflicts Case + . + « v ¢« v v v v v v s e s b e s e e s 89
5.2 Comparison of Analytic and Simulation Results ~

Conflicts Considered . « & ¢ ¢ v ¢ v ¢« v ¢ ¢ o v o ¢ s 0 o g1
5.3 Comparison of Simulation and Analytic Results -

Effcct of High Lock Activity e e e e e .. 92

5.4 Comparison of P(C) With Its Estimate 95
5.5 Comparison of Simulation Resulis {o Results of Modified

Analysis - MCLA Algorithm+ v oo . . 104
. 5.6 Comparison of Simulation Results to Results of Modlﬁed -

Analysis — Distribuied Voting Algorithm e e e e e e 107
8.1 Estimates for the Average Hole List Size 135"
7.1 State Diagram for the Central Node e e e e e 163
7.2 State Diagram for the Non-central Nodes« . . . 164
AT7.1 Comparison of the Truncating With No Knowledge Strategy

 to the Dclay at Central Node Strategy . « v v « v v v v v 4 o W 292

A7.2 Comparison of the Truncating With Perfect Future Knowledge

Strategy to the Delay at Central Node Strategy 297

List of Figures

2.1 An Examplc of a Single Databaseo v v o o . 11
2.2 An Example of a Distributed Database T § |
2.3 A Sample Transaction ¢ . S e e e e e e e e e 19
2.4 Transaction T2 Is Processed af Node 1+ . . e e e e i9
25 TheFinalResult v v v v v v v v v v o o e v v v v e e 19
- 3.1 The DVA Algorithm: An Example e e e e e e 40

4.1 The Performance Model at Each Node e e e e e . 53
4.2 The n-stage Parallel Serverat EachNode ¢ v o o o v .. 60
4.3 Steps of a Transaction, MCLA Algorithm b6
4.4 Steps of a Transaction, DVA Algorithm . . + . . « v v v v ¢ v . . T4
4.5 How and When Obsolete Timestamps Occur + « v ¢ v v v ¢ v« .« . 77
4.6 Example for the Special Case . v v v v v v v v v 0 v o e 0 84
6.1 The Hybrid Method for Constructing Figures . . . e ... 110
6.2 The MCLA and DVA Algorithms: Effect of A, and N on R 112
6.3 The MCLA and DVA Algorithms:

Effect of A, on the IO Utilization . . . + . v ¢« ¢ v v v ¢« o o . 113
6.4 The MCLA and DVA Algorithms: '

Effect of A, on the Number of Messages + « v ¢« ¢ o v ¢ 0 v 113
6.5 The MCLA and DVA Algorithms: Effectof NonR 115
6.6 The MCLA and DVA Algorithms: Effecctof MonE 115
8.7 The MCLA and DVA Algorithms: Effect of B, on R 116 -
6.8 The MCLA and DVA Aigorithms: Effect of I; on R......... 116
8.9 The MCLA and DVA Algorithms: Efectof Ton B 118
6.10 A Casc Where the DVA Algorithm and the MCLA Algorithm Have ‘

Similar Periormance e e e e e e e e e e e e e 118
8.11 The DVA Algorithm: Effcctof Rgon R . « v v v ¢ v v v o o o o . 120
6.12 The MEAS Algorithm: Effectof Nand A;,onR 122
6.13 The MEAS Algorithm: IO Utilization R 122
B.14 The MEAS Algorithm: Effectcof Mon B 124
6.15 The MEAS Algorithm: Effect of B, on R oot e e e e e e e e e 124
6.16 The MEAS and MEAP Algorithms: Effect of I; on R..... . . . 126
B.17 The MEAS and MEAP Algorithms: Effectof Ton R . .« 126 .
6.18 The MEAS and MEAP Algorithms: Efectcof NonR 127
8.19 The MEAS and MEAP Algorithms: Effectof A,on B 127

6.20 The OEA and MEAS Algorithms: Effect of A, onR129:

6.21 The MEAS and OEA Algorithms: Effect of A, on R, -
ForDifferenbvaluesof I, . « & v ¢ ¢ v v ¢ ¢ ¢ 0 v ¢ 0 ¢ s o o 129

6.22 The OEAand DVA Algorithms + + « v « + ¢ ¢ o v v v v « + » » 130

xi

6.23 The WCLA and MCLA Algorithms e 132
- 6.24 The MCLA-h Algorithm: Effect of A,andhon R 138

6.25 The MCLA-h Algorithm: Effectofh e+ . o . . 138
6.26 The MCLA-h Algorithm: Average Size of the Hole Llst 139
6.27 The MCLA-h Algorithm: Fraction of Delayed Updates 140
6.28 The MCLA-h Algorithm with Hyperexponential Base Sets: :

Effectoflh . .« ¢« v v ot e i e e e e e e e e e e e e e 143
6.29 The MCLA-h Algorithm with Hyperexponential Base Sets: :

- Average Sizeof theHoleList 143

6.30 The MCLA-h Algorithm with Hypercxponential Base Sets:

Fraction of Delayed Updates o0 oo . 145
10.1 The MCLA-h Algorithm: The Read Without Locks Strategy e e . 221
10.2 The Read Without Locks MCLA and the DVA Algorithms 222

10.3 The Rcad Without Locks MCLA and the CCA Algorithms 224
AT.1 The Truncating With No Knowledge and the Delay at '
Central Node Strategies © v v v v v v v 0 0 0 0 o 0 0 o o & . 293
A7.2 The Truncating With Perfect Future Knowledge and the
Delay at Central Node Strategies « e+ e . . 208

xii

CHAPTER 1

INTRODUCTION

In this chapter we give a bricf overview of the arca of distributed databases
and we definc the problem that we will address ini this thesis. In section 1 we
dcfinc what we mcan by a distributed database. In the {ollowing two sections
we list some of the potential advantages and disadvantages of these systems. In
section 4 we list some of the current arcas of rescarch in the distributed database
ficld. Then in scction 5 we definc the pariicular arca that we will concentrate on
in this thesis. We discuss the issucs we would like to address, and we describe
the approach taken by giving an outline of this thesis.

1. DEFINITIONS.

One of thc most serious problems in the fast growing area of distributed
databascs is that there is no well defined vocabulary: the same words are given
different meanings and diverse names arc uscd for the same thing. This is espe-
cially truc for the term “distributed databasc” itself, so in this'section we will
try to dcfinc it. ')

The first step is to define what we mean by a standard (non-distributed)
databasc: A database is a collcction of rclated data that is accessible by a com-
puter. Usually the data is shared by several users with diverse objectives. A:
database must also have a sct of procedurcs for handling the data. The operations
on the data include storing, updating, scarching and retrieval of the data items.
The system that handles the databascis called the databasc management system.

For our definition of distributed databascs, we will try to give the most
general one possible. This way we will be able to encompass all of the types of
distributed databases. Our dcfinition is the following: ‘

A distributed database is a systcm that allows infcgrated access
to a collcction of logically independent databases.

1

Ci. 1: INTRODUCTION

Notice that we did not mention the term “nctwork of computers” in our
definition. There will be a computing facility, called a node, associated with cach
databascin the distributed databasc and there will be communication mechanisms
between the nodes. However, a distributed databasc does not necessarily have to
be spatially distributed, nor is it necessary to have a different computer for each
databasc. Two or more of the databascs may be physically located in a single
computer. In this casc, the communication mechanisms are straightforward (e.g.
through shared memory). To diflerentiate a single non-distributed database in
a single computer from a set of datsbascs on a single machine, it is important
that the sct of databases be logically indcpendert. That is, it is necessary that
from a logical point of view they could as well be located on separate machines.
(In the remainder of this thesis, we will still usc terms like “nctwork” or “remote
site” to simplify explanations.)

By intcgrated access we mcan that a transaction entered at any node can
access data in any onc of the databascs. This is a minimum requiremcent for
integrated access; in particular note that being able to update or add data at a
rcmote nodc is not a requircment.

. A typical example of a distributed database would be a system used by a
large manufacturing company. The company has scveral sites and at each site
there is a computer. All the computers are interconncected through a network.
The databascs at cach of the sites might contain data on the local raw materials
and finished products inventory, the planned production at the site, as well as
somc data on the cmployccs that work there (c.g. name, address, shift, extra
hours, etc.). The database at the company's headquarters might have data on all
of the employces (e.g. namc, salary, site where employced, ctc.) and data on the
purchasec and salc orders. Typical operations with the database could be to find
out the address of a given worker, to update the inventory, to shift production
from onc site to another, or to give employecs of a certain classification (at’any
site) a raise.

2. ADVANTAGES OF DISTRIBUTED DATABASES.

Distributed database systems are by no means the final solution to all data
management problems; they arc only an alternative to the more common central-
ized databasc systems. Not all databascs should be designed as distributed sys-
tems. Only by understanding the particular objectives of a given system and

CH. 1: INTRODUCTION

by knowing the advantages oflcred by a distributed sysiem, will it be possible
to decide if distribution pays off. It is also important to understand the ad-
vantages and disadvantages of a distributed solution because emphasizing cerfain
advantages will result in widely varying systcms.

The potential advantages of distributed database systems are the following.
We could also call this list the reasons for choosing a distributed system over a
centralized onc.

1) PERFORMANCE. By taking advantage of the available parallelism and
of the increascd compute power, we can speed up operations in the database
systcm. Our gains can be of three typcs: '

a) Responsc times for scarches can be decreased.

b) If thc data of immediatc importance to the user is kept locally, then
this data can be kept morc up io date than the entire database since
local updates can be donc faster.

c) Larger databascs can be handlcd wnhout dcgrading performance.

2) RELIABILITY. By having duplicate data at different nodes, the system
will be more reliable. If one node gocs down we can stlll access dafa from
anothcer node. ‘

3) CONTROL and QUALITY of data. If the data is distributed among the

“uscrs, they will have direct control'of their swn data while still being able
to share it with other uscrs. When'a uscr is in charge of his own data, he
will be responsible for it and will take better care of it. Therefore, the data
in the system will be of higher quality.

4) SHARING of geographically distributed data. If the database already cxists

~ and is gcographically distributed, then a distributed database system w1ll
interconnect the databascs and allow the sharing of the data.

5) ECONOMY. If the database users arc geographically distributed and if
their intcractions exhibit strong “locality”, then it might be less expensive
to do the processing locally. That is, the tcle-communications costs can be
higher than the tele-processing costs. '

6) LOAD DISTRIBUTION. The distributed database will allow us to move
programs and for data from overloaded nodes to nodes with available capacity.

7) MODULARITY. A distributed database system can be modular and there-
fore easier to expand.

8) SECURITY. Distributed databasc systc“ls have a potential for greater
security becausc the databases can be kept in completely independent com-
puters with access from other nodes in the network carcfully controlled.

CH. 1: INTRODUCTION

3. DISADVANTAGES OF A DISTRIBUTED DATABASE.

Now we will give a list of the potential disadvantages of data distribution.

1) COMPLEXITY. The main problem with distributcd database systems is
that they arc considerably morc complex than centralized systems. In ad-
dition to somc of the common issucs related to standard databases, there is
an cntire set of questions that arc related to the data distribution. (These
problcms will be treated in scction 4.) The higher complexity implies greater
design costs and more sources for error.

2) HARDWARE COSTS. A good distributed databasc system inherently has
morc hardware than a centralized system. Some of the sources of extra
hardware are thec communication mechanisms, the replicated processors and
the exira storage needed for redundant data. Although hardware prices are
changing rapidly, most distribuied altcrnatives will be more expensive.

3] LACK OF EXPERIENCE. There are currently only a few experimental
and limited distributcd databasc systcms being designed. So there is none
of the sccurity implicd by tesicd and widely uscd idcas.

4) LACK OF CENTRAL CONTROL. It is commonly stated that centralized
control is an advantagc of centralized databasc systems. J. Fry and E. Sibley
statc that centralized control “is necessary for eflicient data administration”
[FRY76]: However, the truth of this statement is debatable. If by “efficient”
we refer to hardware eflicicncy (c.g. no wastced resources), then a centralized
systemn would be advisable; but if we arc talking about cflicient service for
thc users, then a distributed system might be better, Paul G. Comba uses the
following argument against centralized control [COMBT5]: “A large complex
enterprise docs not stand still long cnough for ihe databasc administrator
and his stafl to undcrstand the information nceds of cvery uscr and integrate
them into a complcie database specification. ... The only sensible way
to procced is for the uscrs to participate directly in the specification and -
development of those parts of the database system that arc intended to
facilitate their work; and for the design/implementation process to proceed
interactively.”

4. CURRENT AREAS OF RESEARCI.

The ficld of distributed databascs is a complex one where there are still
a lot of unrcsolved issues. If is a rclatively young field where some research

CH. 1: INTRODUCTION

has been done but where much more is needed. We will now list and bricfly
describe the current arcas of rescarch and some of the main problems of dis-
tributed databascs. Notice that these arcas of rescarch arc not disjoint. (A
dctailed description of these arcas can be found in some of the overview papers

[ASCII74,GARCTT,MARY 77, ROTHT7].) '

1) PROGRAM AND DATA ALLOCATION. The problem here is to find the
optimal location and the optimal number of copics of the program and data
files in the distributed database. What is to be minimized are the combined
storage, communication and processing costs. By choosing diffcrent sets of
assumptions, scveral solutions of varying complexity have been obtained
[CASET2,CHUB9,MAHIMT6]. :

2) MAINTENANCE OFF DUPLICATE COPIES. Since copics of the data may
cxist at different nodes, it is nceessary to have algorithms that make sure
that all copies arc updated properly. Special mechanisms are necded to know
where the duplicate copics, if any, cxist. Scveral algorithms for different
typcs of distributed databascs have been suggested and work is in progress
for proving the algorithms correct [JOFINTS,ELLIT7, THOMTS).

3) CONCURRENCY CONTROL. In a distributed databasc system, several
uscrs may be attempting to read and/or update a sct of data. In order to

" always provide uscrs with a consistent vicw of the data, it is necessary to
have concurrency control. This control, which can cither be centralized or
distributed, should include synchronization and locking mechanisms. Some
work has been donc defining the basic concepts [ESWAT6] and analyzing
the available options [GRAY77,ROSE78]. '

4) DEADLOCKS. Just like in any system where multiple users compete for
access to a seb of finite resources, in distributed database systems there is
a possibility for deadlocks. There are two ways to deal with deadlocks:
dcadlock prevention, and deadlock detection and resolution. Both of these
altcrnatives have been analyzed for gencral systems [COFF71] and in par-
ticular for distributed databasc systems [CHUT4].

5) TRANSACTION PROCESSING. This arca involves the design of algo-
“rithms that proccss transactions injo strings of data manipulation commands.
These algorithms arc more complex than the usual algorithms for centralized
databases. First of all, the local knowledge at the node where the transaction
is processed might not be enough to understand the transaction so that
help from other nodes is nceded. Then there is the problem of locating the
relevant data. I the data is duplicatcd, we must choosc the copy to use.
Finally, onc must decide how to actually manipulate the data. There are

[V VIR

CH. 1: INTRODUCTION

three options for this: transmit commands and transmit results back move
all of the nccessary data to a node and work there; or a mixture of these ‘
two mcthods (i.c. filter data before moving). These problcms are discussed
in [STONT77,WONGT7]. -

6) DIRECTORY MANAGEMENT. A dircctory contains a dcscnptxon and
the location of files (or relations) in the system. Dircctorics can be global or
local, distributcd or centralized and they can have one or many copies. The
tradcofls involved with the diffcrent options arc being analyzed [CHUTS).
If the distributed database is dynamically changing, it is necessary to have
mechanisms to add or dclete names to she directory. :

7) DATA AND PROGRAM TRANSLATION. In a non-homogeneous dis-
tributcd database, it is mandatory to bave translation mechanisms between
thc databascs. Since it would be very incflicicnt to design an interface for
every possible pair of dissimilar databascs, it is necessary to design general
procedurcs for translating data and programs. These procedures can include
languagcs for describing the data and program formats plus dcﬂmtlon ofa
common intermediate format [MERT74].

8) PRIVACY. There has been very little work done in the arca of data privacy.
It is nccessary to design good ways of identifying uscrs, both local and remote.
It would also bc nice to be able to restrict access not only by who the user
is but by what his application is. For examplc, a uscr might not be allowed
o access a particular employee's salary, but he may be pcrnuttcd to look
at the avcrage salary of a group of employces.

9) RECOVERY. If a distributcd databasc systcm is to be reliable, procedures
for dciccting errors and recovering from failures are required. It is important
that when some databasc fails, the rest of the data is left in a consistent
form. When a node comes up after a failure, it is indispcnsable to get its
databasc up to date. Recovery can become extremely hard if failures cause
.the network to partition {i.c. to split up into several isolated pieces). These
problems are treated in [ALSB76,GRAY77).

5. THESIS OBJECTIVE AND OUTLINE.

In this thesis we will concentrate on only one of the rescarch arcas described:
the maintcnance of replicated copics of data. In particular, we study the perfor-
mance of updale algorithms for replicated data in a distributed database. Of

TR

CH. 1: INTRODUCTION

coursg, it is impossiblc to isolatc a certain rescarch arca, and in fact, in the thesis
we also touch on the problems of concurrency control and recovery. However,
we do attempt to concentrate on one single problem arca as much as possible in
order to rcduce the complexity and length of the presentation.

In any rcal distributed databasc system, all the issucs of section 4 must
be considered together in order to design a complete system. Since we are not
considcring all issucs here, we do not expect to obtain a complete system design
out of this thesis. The objective of this work is simply to study and compare some
of thc fundamental management techniques for replicated data. It is hoped that
by shedding some light on these issucs we can help the designer of a complete
distribuicd databasc sysiem. '

Since we will be looking at replicated data, it is important to understand
why scveral copics of the samc data may be stored ab diferent nodes in the
systcin. There arc two main rcasons for replicating data. Onc of the reasons for
replicating data is to improve its availability, Another reason is to distribute the
load by allowing transactions to rcad thc data at dilferent sitcs. The price that
must be paid for the increased availability and the option of concurrent reads at
different nodces is an increased cost for processing updates. Updating replicated
copics of data is more expensive than updating a single copy of the data because
in the replicated case updates must be performed on all copics. Furthermore, it
is harder to coordinate conflicting updates when there arc multiple copics to be
modificd than it is to coordinate the updates when there is a single copy to be
updated. ‘ o

In this thesis, we will not study the tradcolls involved in replicating data.
We will assume that the decision to replicate a subsct of the data has been
made. That is, il is either imperative that the data be available even in- the
face of failures, or it is expected that the number of updates to the data will be
considerably smaller than the number of reads on the data. Once we decide to
replicate the particular subsct of the data, we need to design an algorithm for
performing the updates. Here, we will address this last problem.

This thesis is divided into two main parts. In the first part (chapters 2
through 8) we make a sct of assumptions that simplily the analysis of the various
redundant data update algorithms. Some of thesc assumptions arc that the

- databasc is completely replicated at cach nodc, that all transactions are updates

and that no failurcs occur in the system. In the sccond part (chapters 7 through
12) we relax the assumptions made and we study the eficct of doing this on the
resulis obtained in the first part.

Chapter 2 describes the database model we use. Some important concepts

eid A FE—

CH. i: INTRODUCTION

like transaction and databasc consistency arc also defined. (The database model
is extended to include partitioned data in chapter 10.)-Chapter 2 also lists the
assumptions that are madc in the first part of the thesis.

Chsapter 3 presents the update algorithms that will be studied in this thesis.
The new algorithms in this chapter (i.c., the WCLA, MCLA, MCLA-h, TWCLA,
MEAS, MEAP) were actually developed after some of the other algorithms were
analyzcd. That is, the performance analysis of chapter 4 was usciul in identify-
ing the critical system resources. This in turn Icad to the design of the new
algorithms. However, in chapter 3 we present ail the algorithms together in order -
fo simplify thc organization of the thesis.

The performance analysis of two of the update algorithms is described in

~ chapter 4. The performance of the algorithms is studicd through simulations as

well as through a new itcrative analysis {echnique based on queucing theory. The
analysis of the other algorithms in presented in the appendices because these
analyzcs arc similar to the oncs in chaptcr 4. In chapter 5 we compare the results
of thec analysis with the simulation results. Some refincments of the analysis are
also given. The fact that the simulation and analysis results agree fairly closely
provides a good validation of both techniques. In chapicr 6 we actually give the
performance results for the algorithms. The results show that centralized con-
trol algorithms ncarly always perform better than the more popular distributed
control algorithms. This is a surprising result because the distributed algorithms
were thought to be more efficient. In particular, the MCLA algorithm, which
uscs the novel concept of hole lists to increasc parallel exccution of updates, has
the best performance in many cascs of interest.

Chapter 7 starts the sccond part of the thesis by mvcstlgatmg the effects
of the no failurc restriction. We show that it is possible {0 make a centralized
control algorithm resilicnt in the face of many types of failurcs. We show that the
cost in terms of performance of doing this is roughly the samc for all algorithms
and thus, the original performance comparisons are still valid in the case of crash
resistant algorithms. In particular, in chapter 7 we outline the basic mechamsms'
that arc needed o make the MCLA-h 2lgorithm resilient.

In chapter 8 we justily our decision to only study algorithms that are able
to proccss arbitrary update transactions. We give examples of algorithms that
take advaniage of a particular transaclion typc in order to improve performance,
and we discuss why it would be hard to study such algorithms.

Recad only transactions (querics) arc analyzed in chapter 9. We classify
queries into free, consistent, and current querics, and we present algorithms for
processing cach type of query under the diflerent update algorithms. In order

CH. 1: INTRODUCTION

to undcrstand consistent querics, we come back to the issucs of consistency that
were discussed in chapter 2, and we study the types of consistency provided by
the update algorithms. We also discuss the performance of the query algorithms.
In chapter 10 we consider how updates that do not specify their read set
initially can be processed. Somcof the algorithms of chapter 3 have to be modified
in this casc. We present three fundamental sirategics for fransactions that cannot
request their locks beforchand. We also study the performance of these strategies. .
Up to chapter 10, we assume that the data in the system is completely
replicated at cach node in the system. In chapter 11 we relax this assumption
by allowing partitioned data as weli as multiple independent “controllers”. A
controller is a control mecharism that is responsible for the concurrency control
of a given subsct of the data. We present update algorithms for the partitioned
data onc controller casc as well as for the partitioned data multiple controller
casc. We discuss how the performance results of chapters 4, 5 and 6 can be used
to cvaluaic the performance of these algorithms. In chapter 11 we also present
query algorithms for the partitioncd data one controller and for the partitioncd
data multiple controllers cascs. The performance of these' query algorithms is
also discussed. At the end of chapter 11, we come back o the crash recovery
problem. We discuss how the crash recovery idcas of chapier 7 can be extended
{o the partitioned dzta multiple controller case.
~Finally, in chapter 12, we present some conclusions and-we identify some
arcas that nced further rescarch.

<3|
53
%

CHAP

=]

THE DISTRIBUTED DATABASE MODEL

We start this chapter by defining a simple modcl for a single database and for
transactions on this database. We also informally discuss the concept of database
consistency for a single database. Then, in scction 2, we extend these ideas to a
distributcd databasc. In scction 3, we list all the assumptions that are embedded
in this distributed databasc modecl. In addition, we list the other assumptions
that arc madc in order to simplify the analysis of the update algorithms.

1. A SINGLE DATABASE MODEL.

Belore we consider a distributed database, we must define a model for a
singlc databasc. (Many of the idcas in this scction arc taken from [Eswa76].)

We view a single databasc as a collection of M shared named resources called
items [Eswa70). Each item has a name and a valuc associated with it, We use
the notation d[é] to represent the value of item 7. This is a very simple model;
however, it is suflicient for studying the concurrcncy control and consistency
issucs we want to address.

An example of a very small databasc is given in figure 2.1, This database

contains threcitems only. Thenames of theseitems are “deposits”, “withdrawals”
and “balance”. The valuc associated with item “deposits”, d][“deposits”], is 100.
This valuc refers to the total amount of deposits that have becn madc to a certain
bank account. Similarly, the valucs of itcms “withdrawals" and “balance” rep-
resent the total withdrawals and the balance of this same bank account. When
we talk aboui a databasc, it may not bc convenicnt to usc the complete names
of the items as we have done in this example. Therefore, in other examples we
may use the integers between 1 and M as the names of the items of an M item
databasc. Hence, we may work with item 3 or item j (where 1 < 7 << M) instead

of working with itcm “balance”.

10

CH. 2: THE DISTRIBUTED DATABASE MODEL

Figures 2.1 and 2.2

Figure 2.1l.

deposits
withdrawals

balance

Figure 2.2.

deposits
withdrawals

balance

An example of a

100

40

100

40

€0

60

node 1

single database.

100

40

60

node 2

An example of a distxibuted database.

11

CH. 2: THE DISTRIBUTED DATABASE MODEL

1.1 Consistency Constraints.

Associated with a database we have a collection of consistency constraints
or assertions [Eswa76]. These constraints are predicates defined on the database
which describe the relationships that. must hold among the items of the database.
For cxample, in the database of figure 2.1, we might have the consistency con-
straints “balance > 0" and "dcposits — withdrawals = balance”. The values
shown in the figure satisfy these constraints, so the databasc is said to be con- -
sistent. .

- We would like that the databasc always bc consistent. However, due to
- updating activity, the consistency constraints must be icmporarily violated. For
example, if somconc makes a 10 dollar deposit into the account described by the
databasc of figurc 2.1, we must add this amount to the “dceposits” and to the
“balancc” items. Since these two operations cannot be performed simultaneously
as a single atomic action, at some point the constraint “deposits — withdrawals
= balance” will be false. But when both operations are completed, the database
will be consistent again.

1.2 Transactions.

Since we are unable to guarantec consistency between actions, we group
actions into transactions [EswaT6). A transaction is the unit of consistency. That
is, if a transaction T is run on a consistent databasc and without interfercnce
from other transactions, then T should leave the database consistent when it
complctes. A sample transaction for the database of figure 2.1 is “Deposit 10-
doliars inlo the account”. This transaciion consists of scveral actions: (a) Read
the value of item “dcposits”, (b) Read the valuc of item “balance”, (c) Add 10
dollars to the valuc rcad for item “deposits”, (d) Add 10 dollars to the value read
for item “balance”, (€) Storc the new valuc computed for item “deposits” into
the databasc, and (f) Store the new valuc computed for item “balance” into the
databasc. Clearly, if the database is consistent to begin with, then the database
will be consistent after these actions arc performed (at least if they are performed
without intcrfcrence from other transactions.) . :

Since the databasc cannot be consistent at all times, then at least we would
like that all iransactions “get a consistent view of the databasc”. By this we mean
that the data rcad by any transaction should satisfy the consistency constraints.
(More spccifically, all consistency constraints that can be fully evaluated with the

12

CH. 2: THE DISTRIBUTED DATABASE MODEL

data rcad by a transaction should be true. Consistency constraints that cannot
be fully evaluated arc irrclevant as far as this transaction is concerned.) Since
transactions arc the only cntitics that will ever read data from the database sys-
temn, it is sufficient to guarantce that transactions will sce a consistent database.
For cxample, a uscr wishing to rcad some valucs out of the database will have to

- do so through a transaction. That uscr will gct consistent data; the fact that the

databasc may have been inconsistent for intervals before or after the transaction
rcad its data is unimportant to the uscr. . 4

In this thesis we view a transaction T as consisting of three steps:

(1) READ STEP. The transaction T rcads the values for ltcms Uy 22ye e lpe
(That is, T reads d[¢], d[i], ... d[&n).)

(2) COMPUTE STEP. Using the valucs obtained, T performs some arbitrary
computations and comes up with a sct of new valucs for a subset of the items
rcad 71, %,...%m, Where m < n.

(3) WRITF STEP. The new values ptoduccd arc stored in the database.
(That is, T performs “d[j]:== new valuc foritem 5" forallitems 5 € {21, 72, .+ . tm}.)

The fact that we model transactions in this particular way has somc im-
plications that will be discussed in section 3. (Notice that we do not consider
cach slep to be a single atomic operation.) Using the sample database of figure
2.1, the transaction T1: “Deposit 10 dollars into the account” consists of the
following sieps: (1) z: = d[“deposits”], y: = d[“balance”] (where z and y are
local variables of T1); (2) z: = z - 10, y: = y - 10; and (3) d["decposits”]: = z,
d[“balance"]: = y.

1.3 Conflicts Among Transactions.

As wc have slated, a transaction that is executed all by itsclf preserves
database consistency. However, if scveral transactions are executed in parallel or
concurrcntly, there is a possibility that consistency will be violated. By this we
mcan that some transactions may rcad inconsistent data. As we have stated ear-
licr, we do not wish this to happen; All transactions should get a consistent view
of the databasc. To sce how transactions can intcrfere and cause a transaction
to rcad inconsistent data, consider a sccond transaction T2: “Deposit 5 dollars
into the account” that is cxccuted at the same time as transaction T1 above.
Suppose that transaction T2 is completcly exccuted between the time T1 reads
d[“deposits”] and the time T1 rcads d[*balance”]. Thus, the value for “deposits”

-rcad by T1 will not reflect the deposit of 5 dollars made by T2, but the value

13

[RVSCEUPT

CH. 2: TIE DISTRIBUTED DATABASE MODEL

for “balance” read by T1 will reflect the 5 dollar deposit of T2. In other words,
T1 rcads 100 as the valuc for “dcposits” and 65 as the value for “balance”. (See
figurc 2.1.) Hence, T1 will store d[“dcposits’]: = 110 and d|“"balance"]: = 75,
Icaving thc databasc inconsistent. (That is, 110 minus 40 is not equal to 75.)

Now, any transaction that follows can read the “deposits”, the "withdrawals”
and the “balance” and get an inconsistent view of the databasc. (As a fine
point, noticc that T1 secs a consistent view of the databasc. If T had also read
“withdrawals”, then it could have evaluated the consisiency constraint “deposits
— withdrawals = balance”, and T1 would have obscrved that this consistency
constraint was falsc. But since T1 did not rcad the “withdrawals” itecm, then it
has no way of knowing that the databasc is inconsistent.)

1.4 Concurrency Control Miechanisms.

The problcm illustrated with the previous example is a synchronization
problem which appcars in databasc management systems, in operating systems
and in any systcm with concurrent (or parallel) programs. The solution to the
problcm is to have a concurrency control mcchanism which somchow climinates
the destructive interference belween transactions {or programs). The same syn-
chronization problem, in the context of distribuicd databascs, is the problem we
will-be addressing in this thesis. The solution to the synchronization problem for
distributed databascs is conceptually the same as for a single database. That is, we
nced a concurrcncy control mechanism for transactions in a distributed database
system. But in praclice, the concurrcacy control mechanisms for distributed
databascs, and in pariicular for replicated data, arc implemented differently from
thc mechanisms for single databases. The diffierence in implementation mainly
stcms from the fact that in a distributed database the dala is distributed and
not under the control of a single computer or node.

Bcelore we go en to describe our distributed database model in scction 2, we
will bricfly mention {wo of the most common concurrcncy control mechanisms
ihat arc used in single daiabasc systcms. Onc way to climinale intcrference
among transactions is to exccute thiem one at a time with no parallelism. Since
cach transaction is exccuted in its totalily all by itsclf, we guarantec that the
databasc is always consistent after cach transaction finishes. This implics that
cach transaction will scc a consistent databasc. This concurrency control strategy
is called scrialization of the fransactions.

The main perfermance disadvantage with the above strategy is precisely

14

CH. 2: THE DISTRIBUTED DATABASE MODEL

that no transactions arc cxccuted in parallel. Since transactions that do not
rcad or writc any common items can in no way interfere with each other, we
would like to execulc such non conflicling transactions concurrently if possible.
A lock managcr is a concurrency control mechanisin which detects if transactions
reference {i.c., read or write) common items. Transactions that have no items in
common arc allowed to run concurrently by the lock manager, while conflicting
transactions arc dclaycd and scrialized by the manager. The lock manager works
by associating a lock with cach ilem in the database. Before a transaction is
cxecuted, i must request Jocks from the manager for all items referenced by the
transaction. The lock manager only grants a given lock to onc transaction at
a time. I a requested lock is being held by another transaction, the requesting
transaction is dclaycd until the lock is relcascd or returncd. Thus, once a trans-
action obtains all requested locks, it has exclusive access to the reierenced itcms.
That is, only transactions which reference other items can be exccuted concur-
rently and there is no danger of interference. When a transaction completes,
it returns the locks to the lock manager so that they may be assigned to some
other transaction. More dctails as to how and why a lock manager works can be
found in [EswaT0], [Gray77]. (Thesc references also define formally the concepts
of transaction and consistency.) Also notice that deadlocks are possible because
transactions arc compcting for a finitc sct of resources (i.c., the locks). These
dcadlocks can be prevented or climinated by the lock manager.

2. A DISTRIBUTED DATABASE MODEL.

In chapter 1 we defined a distributed databasc as a collection of databases.
We will now assumec that every databasc in the system is a complete copy of
onc databasc. In other words, there is a single databasc which is replicated at all
nodes. This assuinption is made to simplify the analysis of the updatc algorithms.
The cffcct of relaxing this assumption is discusscd in chapter 11.

Basecd on this assumption, we view a distributed databasc as a collection
of M shared named resources called items. Each item has a name and a set of
N valucs associated with it; cach of these valucs is stored at a diflcrent node
in the N node system. We represent the value of item ¢ at node z by d[z, z]
(1 < z < N). All the values for a given item should be the same because the
databasc at each node should be identical. (That is, d[¢, z] should equal d[Z, y]
for all nodes z,y.) However, due to the updating activity, the values may be

15

CH. 2: THE DISTRIBUTED DATABASE MODEL

temporarily diffcrent. The collection of item values stored at a node is called the
databasc (or the databasc copy) at that node.

Tigure 2.2 gives an cxamplc of a two node distributcd databasc. The names
of the three items arc “deposits”, “withdrawals” and “balance”. Each item has
a value stored at each of the two nodes as shown in the figure. For example,
d[“balance”, 2] = 60. As with a single database, we will sometimes use integers
between 1 and M as the names of the items.

2.1 Consistency Constraints.

A distributed databasc also has associated with it a sct of consistency con-
straints. As before, these constraints arce predicates which describe the relation-
ships that must hold among the itcms of the distributed database, These con-
straints arc expressed in terms of the item namcs; the valucs stored in each
node should satisfy the consistency constraints.” For cxample, the distributed
databasc of figure 2.2 may have the consistency constraints “balance > 0” and
“deposits — withdrawals = balance”. In order for the distributed database to
be consistent, the constraints must cvaluate to truc at cach node. For example,
d[“balance”, 1] and d[“balarce”, 2] must both be greater than zero.

In addition to thc consistency constraints we have described, we havé an
additional sct of implicit constraints which statc that the values of the same item
should be equal. That is, d[i,z] = d[5, 3] for I << M, 1 <z < N, and
I1<y<N. . -

2.2 Transactions.

Our modecl of a transaction is very similar to the transaction model given in
scction 1 for a single database. The main difference is that a transaction must
now slore the new valucs it produccs at all nodes. A transaction T consists of
the following stcps:

(1) READ STEP. (At any node z.) The transaction T rcads the values for
items 4y, 12, . . . ¢, from oncof the nodes. That is, T reads d[7, z], d[ég, 2], . . . d[in, 2]
for somc node z. '

(2) COMPUTE STEP. (At any node.) Using the valucs obtained, T performs
some arbitrary computations and comes up with a sct of new values for a subset
of the itcins read, ¢, %,... tm; Wwhere m < n.

16

CH. 2: THE DISTRIBUTED DATABASE MODEL

(3) WRITE STEPS. (Onc writc step at every node.) The new values produced
are stored in the distributed database. That is, T docs “d[7, y}:= new value for
item 7" for all nodes y (1 <y < N), and for all items 7 € {41, %+« « I}

2.3 Conflicts Among Transactions.

We assumc that a transaction that is exccuted without interference from
other transactions, transforms a consistent distributed databasc into another
consistent distributed database. Howcever, if scveral transactions are executed
concurrcntly, there may be interference and the consistency of the data. may
be violated. That is, transactions may interfere with cach other and cause a
transaction to gect an inconsistent vicew of the databasc. Thus, just like in the
single databasc case, we need a concurrency control mechanism that guarantees
that all transactions scc a consistent database. o

Thereisoncdiflference with thesingle databasc case. In a distributed database
we have defined a specific transaction model which docs not allow inter database
rcads. (Sce scction 2.2.) That is, no transactions will ever read data at more than
onc node, and therefore, it will be impossible for any transaction to check the
implicit consistency constraints. Recall that the implicit constraints state that
the valucs of an itcm should be the same at all nodes. It is conceivable that we
design a consislency control mechanism which guaranices that all transactions
(as dcfined in scction 2.2) sce a consistent databasc at cach node but which allows
the values of a single item to be dificrent at different nodes. This mcans that
we have placed a sccond requirement on thic concurrency control mechanism for
distributcd databascs. Onc way to state this additional requirement is as follows: -
If at any point in time the system stops recciving new transactions, then all
the values of a given ilem should converge to the same value. In other words,
if no morc ncw transactions arrive into the system, and if the system finishes
processing a1l previous transactions, then the distributed database should be left
in a statc where the implicit consistency constraints are truc. (This is called
mutual consistency in [THOMT6].)

2.4 Local Concurrency Control Mechanisma.

First let us assume that cach node in the system has a local concurrency
mechanism similar to the one described in section 1 for a single database. This

17

CH. 2: THE DISTRIBUTED DATABASE MODEL

mechanism guarantces that a step of a transaction is exccuted as a single atomic
opcration at that node. (By a stcp we mean cither the rcad sicp, the compute
stcp or onc of the write steps, as defined in scction 2.2.) Thus, if a transaction T is
rcading data at node « (rcad step), T will read the data without any interference
from other transactions. In other words, it will be impossible that some values
and not othcrs rcad by T reflect the output of somc other {ransaction. This
avoids problems like the one illustrated by the example of scction 1.3. Similarly,
the write step of a transaction T at node z will be performed as a single atomic
opcration at node z. Notice that the local ¢oncurrency control mechanisms are
unable to prevent interference from other transactions between the read and write
steps or between the write steps at different nodes. For example, between the
timc a transaction T finishes reading al node z and the time it starts writing at
that samc node, scveral other transactions may have read or written data into
the databasc at node z.

2.5 Global Concurrency Control Mcchanisma.

The local concurrency control mechanisms climinate many of the potential
conflicts belween transactions. Hovs cver, it is still possible that transactions in- -
terfere, cven if the nodes have such local controls. We now give an cxample that
shows how this can occur.

Assumec that transaction T1: “Dcposit 10 dollars into the account” is to be
performed on the distributed database of figure 2.2. Supposc that this transac-
tion arrives from a user to node 1. Node 1 cxecutes the first two steps of T1,
obtaining the new values of 110 {or item “deposits” and 70 for item “balance”.
The write step of T1 at node 1 is exccuted leaving d[“deposits”, 1] = 110 and
d["balance”, 1] = 70. To perform the write step of T1 at node 2, a message is
scnt to node 2 instructing it to store the new values into the database at node 2.
The situation at this point is illustrated in figurc 2.3. In this figure, the message
is shown on its way to node 2. (Noticc that at this instant some of the implicit
consistency constraints have been violated. For example, d[“deposits”, 1] is not
cqual to d["“dcposits”, 2. This docs not represent a problem yet because T1 has
not complcted.)

Beiore the message arrives at node 2, a sccond transaclion T2: "Wlthdraw 5
dollars from the account” arrives at node 1. This sccond transaction is processed
in a similar way. Figure 2.4 shows the situation after T2 has bcen executed at
nodc 1 and its message to node 2 is also on its way.

18

CH. 2: THE DISTRIBUTED DATABASE MODEL

Figures 2.3, 2.4 and 2.5

Transaction Tl: "Deposit 10 dollacs into account" (at node 1)

deposits 110 100

. d:=110
withdrawals 40 bea1d 40
balance 70 60

Figure 2.3. A sample transaction.

Transaction T2: "Withdraw 10 dollaxs from account” (at node 1)

deposits 1i0 100
withdrawals 45 40
balance 65 60

Figure 2.4. Transaction T2 is processed at node l.

deposits 110 . 110
withdrawals 45 45
balance 65 70

Piqure 2.5. The final result.

19

CH. 2: THE DISTRIBUTED DATABASE MODEL

Now supposc that thc two messages arrive in the wrong order at node 2. If
the commands from the sccond message (i.c., the withdrawal) are executed before
the commands from the first message (i.c., the deposit), we obtain the system
of figurc 2.5. Now thc databasc at nodc 2 is inconsistent and any subsequent
transaction that rcads the "dcposits”, "withdrawals” and “balance” itcms at node
2 will scc an inconsistent database (i.c., 110 — 45 is not 70). Therefore, we see
the nced for a global concurrency control mechanisimn that docs not permit this
to happen. Notice that in figurc 2.5 one of #+< implicit consistency constraints
has been violated (i.c., d[“balance”, 1] is not cqual {o d["balance”, 2]) and both
transactions have completed. The global concurrency control mechanism should
also climinate this problem (cven though no transactions will ever be able to
dctect this situation). '

In this thesis we will study some of these global concurrency control mechanisms
which we call updatc algorithms. The algorithms we study are presented in
chapter 3. But before we go inlo that chapter, we must realize exactly what
assumptions and restrictions have been embedded in the distributed database
modcl we have dcfined in this section. These restrictions, as well as some other
additional assumptions, will be discussed in the next section. (We will return
o thc issucs of consisiency and transactions in distsibuted databases in chapter
9. In that chapter we show that some of the updatc algorithms that will be
presented in chapter 3 actually satisfy the two requirements we formulated in
this section.)

3. ASSUMPTIONS.

In this section we will discuss the assumptions that are madc in order to
simplify the analysis of the updatc algorithms. In scction 3.1 we list the assump-
tions that were implicitly made when choosing the distributcd database model of
scction 2. Then in seclion 3.2, we describe a set of further assumptions we make.
Later on in the thesis, many of these assumptions will be eliminated. We believe
that it is simpler to start with a restricted situation and then to generalize, than
it is to start the analysis dircctly with a general system.

20

Cil. 2: THE DISTRIBUTED DATABASE MODEL
3.1 Implicit Assumptions.

Embedded in the distribubed database modcl of section 2 were the following
assumplions:

a) The databases arc completely replicated at cach node in the system. We
make this assumplion because the main emphasis of this thesis is to study the
management of replicatcd data. Of course; in most real distributed database
systems, data will not be replicated at all nodes, and in chapter 11 we dis-
cuss systems where data is nol necessarily rcplicatcd cverywhere (i.e., we
discuss partitioned data). In that chapter we also show how the performance
rcsults obtained in this thesis can be extended to the partitioned data case.
Howcever, leb us point out that in a limited number of systems, data will
actually be lully replicated. For example, a distributed system directory is
onc distributcd database where the same data may be stored at all nodes.

b) The update algorithms must be able to process the arbitrary transactions
dcfined in scction 2. As will be described in chapter 8, it is possible to design
specialized update algorithms that take advantage of particular transaction
types. In this thesis we will not study these specialized algorithms, and in
chapter 8 we will justily our decision.

c) All transactions know that the databasc is fully replicated at each node.
Although this may scemn an unimportant assumption, it actually allows us to
avoid two imporiani issucs: transaction processing and directory manage-
ment. (Scesection 4 in chapter 1.) If a transaction knows that a value {or any
item can be found at any node, then there is no need to consult a directory.

-Furthermore, if a transaction can find all the data it nceds at any single
nodc, then no decisions as to where and how the data is to be read must
be taken. Transactions simply can rcad the data they nced at one node. |
Since we consider the rescarch arcas of transaction processing and dircctory
management to be beyond the scope of this thesis, we will not attempt
to climinate this assumption. In chapler 11 where we look at partitioned
data, we will continuc to sidestep the issucs of dircctory management and
transaction proccssing.

d) Transactions specify at their inception theitems they will reference. That is,
we assume that a transaclion knows what items it will rcad and what items
it will modify before it performs any computations. This allows us to design
updatc algorithms where transactions lock all the items they reference as an
initial stcp. The implications of eliminating this assumption are discussed
in chapter 10.

21

CH. 2: THE DISTRIBUTED DATABASE MODEL

¢) The write sct of a transaction is a subsct of the read (or basc) set. The read
(or basc) sct of a transaction is the sct of items whosc valucs arc read by the
transaction. Similarly, the writc set of a transaction is the sct of items whose
valucs arc modificd by the transaction. The fact that the write sct is a subsct
of the read sct simplifics the presentation of some of the update algorithms.
This is not a scrious restriction. It is simple to force all transactions to rcad
any item they will modify. Of course, the value docs not really have to
be read if it will not be used; the system simply handles the item as if it
had been read. (In some algorithms, the timestamp of an item will have to
be read even if the valuc is not. Scc chapter 3.) In this thesis we will not
climinate this assumption. (Notice that in a blocked system, performance
docs not change anyhow since a block has to be read in order to update an
item.) o

f) Transactions writc out their resulis to the databasces after all data has been
rcad and all computations performed. That is, transactions have a final
writc phasc where only writes arc performed. This assumption simplifies
the update algorithms tremendously, cspecially when the algorithms are
madc crash resistant. (Sce chapter 7.) It is rclatively casy for éransactions

-to opcrate in this fashion. Transactions simply save their output valucs as
they arc produced in temporary storage; when the transaclion completes
its computations, the valucs are written from the temporary storage into
the databascs as a last step. We will make this assumption throughout this
thesis. '

g) Noitems arc added to or delcted from the distributed database. In this thesis
we completely avoid the problems of dynamically crcating new items and
climinating old items. Thesc problems have been discussed in the literature
[BswaT76]. Similar solutions can be designed for a distributed database, but

“we will not discuss these here. (For example, in the locking algorithms of
chapter 3, we can usc predicate locks [Eswa76], or we can lock the index
“ pagce that points to the item that is to be created or climinated.)

h) All nodes have local concurrency contrel mechanisms. This assumption
again simpiifics all the update algorithms. Since it is rcasonable to expect
that any nodc in the system will have these local controls, we will make this
assumption throughout this thesis.

22

CH. 2: THE DISTRIBUTED DATABASE MODEL

3.2 Some More Assumptions.

Finally, we make three morc assumptions about the operation of the system:

i) There is a communication system which allows any node io communicate
with any other node. That is, an update algorithm can hand the communica-
tion system a message with any nodc as a destination, and thc communica-
tion system will deliver this message. The coinmunication system does not
guaranice that messages will arrive in the same order that they were sent.
The comimunication systcm will detect transmission crrors and lost messages.
Howcever, after unsuccessfully attempting to scnd a message a number of
timcs, the communication systcm may give up and tell the user (i.e., the
update algorithm) that it has beea unable to deliver the message.

j) Ne failures occur in the system. We assume that the communication system
never fails to deliver a message, and that the N nodces in the system are
in opcration at all timcs. In chapter 7 we will study the possible types of
failurcs and we will show how the update algorithms can be made crash
resistant. In that chapter we will also study the performance of the crash
rcsistant algorithms.

k) All transactions arc update iransactions. We assumc that all transactions
modify at lcast onc item. In chapter 9 we will consider read only transactions
(queries) and how the update glgorithms can be simplificd to handle them.
Up to chapter 9, we will usc the terms “transaction”, “update transaction”
and simply “updatc” interchangcably. Notice that we will use “update” as
a noun meaning “update transaction”. When we wish to refer to the action
of modifying valucs in a database, we usc the term “perform an update”
(instcad of the verb "update”) in order to avoid confusion.

tet 0

We have now completed the list of assumptions and are ready to look at some
of the update algorithms. But in chapter 4 we will make some moro assumptions
regarding the performance of the distributed database system.

23

CHAPTER 3

'THE ALGORITHMS

In this chapter we will present a set of update algorithms. Each of these
algorithms is a global concurrency control mechanism of the type described in
chapter 2. The sct of algorithms is in no way exhaustive: we have only chosen
a small sct of representative algorithms. In addition, we also present some new
algorithms that were developed as part of this thesis research. The performance
of most of the algorithms we include in this chapter will be analyzed in chapters
4, 5 and 6.

The goals of the update algorithms are to (1) guarantee that all transactions
observe a consistent database, and (2) guarantee that the values of an item con-
verge to the same value if no ncw transactions are received. (Sce section 2 in
chapter 2.) In this chapter we will only give informal arguments as to why the
algorithms presented comply with the two requirements. In chapter 9 we will
show how these informal ideas can be made formal. We give complete formal
proofs for two of the algorlthms in this chapter {i.e. the MCLA-h and the DVA
algorithms).

The update algorithms can be divided into two classes: the centralized and

the distributed control algorithms. In the centralized control algorithms, one

_special node, the central node, is assigned the concurrency control function. These

centralized algorithms are prescnted in section 1. In the distributed control algo-

rithms, there is no distinguished central node and all nodes share the concurrency
control funciion. The distributed control algorithms are given in section 2.

24

[P

CH. 3: THE ALGORITHMS

1. THE CENTRALIZED CONTROL ALGORITHMS.

1.1 The Complete Centralization Algorithm With Acknowledgments, CCAA. -

When we discussed single database systems in section 1 of chapter 2, we
mentioned that one way to eliminate interfcrence between transactions was to
execute them one at a time. In a distributed database, we can do exactly the
same thing. We call this solution the complete centralization algorithm with
acknowledgments or CCAA. (This solution is also called the primary copy al-
gorithm in [Alsb76]). We sclect one of the nodes as the “central node”. This
nodc will be in charge of secrializing the update transactions. All transactions
are forwarded to the central node where they are executed one at a time. All
data necded by a transaction will be read at the central node. Similarly, all
computations will be performed there. When the update values are ready, the
central node broadcasts the new values to all nodes in the system. The central
node will wait until the valucs arc stored at all nodes before starting to process
a new transaction. Since there is absolutely no possibility of interference among
transactions, we can guaranice that all update transactions see consistent data.

We now give a brief description of the CCAA algorithm:

(1) Update transaction A arrives at node from a user.

(2) Node z forwards transaction A to the central node.

(3) When the central node receives an update transactian A, it places it in
a qucue. Update transaction A waits in the queue uniil its furn to be executed
comes up.

(4) When A’s turn comes, it is executed at the central node. (At this point,
all previous transactions have completed.at all nodes.) The values requested by
A are recad from the database at the central node, the computations are carried
out, and the new values are stored in the local database.

(5) “Perform update A" messages are sent oul by the central node to all
other nodes giving them the new values that must be stored at each site.

(8) Each node that receives a “perform update A” message, stores the new
valucs produced by A into its database. Then an acknowledgment message is
sent back to the central node, '

(7) When the central node receives acknowledgments for the “periorm update
A" messages from all the nodcs in the system, then it knows that A has completed
everywhere. Thus, the ceniral node gets the next update transaction that is

25

CH. 3: THE ALGORITHMS .

waiting in its qucue and processes it. (See step 4.) {End of CCAA algorithnﬁ.)

Onc important advantage of the CCAA algorithm is that it is very simple.
On thc other hand, there are three potential disadvantages with the CCAA
algorithm. The first problem is that update transactions are executed serially,
with absolutely no parallelism. Thus, we do not expect this algorithm to be very
efficient. :

The two rcmaining potential disadvantages are due to the fact that there is
a centralized control node. Since these disadvantages occur in all the centralized
control algorithms, we will discuss them in the following section.

1.2 Potential Disadvantages of the Centralized Control Algorithms.

Another potential problem of the CCAA algorithm is that if the central
node crashes, then no more transactions can be processed. This problem also
ariscs in all the other centralized control update algorithms. Since for the time
being we have assumed that no failures occur in the system (sce section 3.2 of
chapter 2), we do not have to worry about this problem at this point. In chapter
7 we will consider failurcs and how they affect the performance of the algorithms.
However, it is appropriate to make a few short comments here regarding failures
so that readers may have an idea of what is coming up in chapter 7. It is possible
to make the CCAA algorithm, as well as the other centralized control algorithms,
resilicnt in the lace of failures. The main idea is to have a protocol for electing a
ncw central node when the old central node crashes. The new central node can
collcet all the state information from the active nodes in the system, and based on
this, it can complete any unfinished update transactions and start processing new
ones. Whea we analyze the performance of the update algorithms (in chapters
4, 5 and 8) we will study the algorithms presented in this chapter and not the
crash resistant algorithms of chapter 7.

A second problem with all the centralized control algorithms is that the
central node is a performance bottlencck because all update transactions must
pass through that spccial node. Such a bottleneck can significantly degrade sys-

" tem periormance. In this thesis we will study this problem. We will show when

the bottleneck problem arises and how serious a problem it is for the centralized
control algorithms.

26

PTG —

CH. 3: THE ALGORITHMS

1.3 The Complete Centrnhzatxon Algorithm (With Neo Acknowledgments),
CCA.

The complete centralization algorithm with acknowledgments (CCAA) can
be madc more efficient by eliminating the acknowledgments to the “pcriorm
update” messages sent by the central node. The acknowledgments of the CCAA
algorithm (step 6) were used by the central node to find out when the write steps
of a transaction had completed at every node. (Sce section 2.2 in chapter 2.) But
it is not necessary for the central node to wait until these steps complete; it is
sufficicnt for the central node to guarantee that the write steps of transactions
arc performed at every node in the same order as they were performed at the
central node. This can be done by assigning a sequence number to each update -
transaction that is executed at the central node. The sequence number assigned to
an update transaction is an intcger equal to one plus the scquence number of the
previous update transaction processed. The sequence number of a transaction is
appendcd to all the “perform update” messages for that transaction, and is used
to order the storage of the new valucs (the write steps) into the database at each
node. Since with this sequence number mechanism the steps of all transactions
arc cxecuted in the same order as in the CCAA algorithm, the CCA algonthm
is logically cquivalent to the CCAA algorithm.

In summary, the CCA algorithm opcrates as follows:

(1) Update transaction A arrives at node z from a user.

(2) Node z forwards transaction A to the central node.

(3) When the central node receives an update transaction A, it places it
in a qucuc. Transactions from this qucuc arc exccuted one at a time at the
central node. That is, the values requested by A are read from the local database,
the computations are carricd out, and the ncw values are stored in the local
databasc. (Update transactions can be executed in parallel at the central node
as long as a local concurrency control guarantees that the eflect on the database
is as if transactions were performed one at & time,) A sequence number is as-
signed to transaction A. This number represents the order, with respect to other
transactions, in which A was exccuted. :

(4) “Perform update A" mcssages are sent out by the central node to all
other nodcs giving them the new values that must be stored at cach site. The
scquence number of A is appended to these messages. After the central node
sends out these “perform update A" messages, it is done with A and can start
processing any other update transactions on its queue.

(5) When a node y reccives a “perform update A" message, it waits untll

21

CH. 3: THE ALGORITHMS

it has processed all “perform update” messages from transactions with lower
sequence numbers. (Notice that the largest sequence number processed so far
must be remembered by all nodes.) Then node y stores the new values into its
Jocal database, as indicatcd by the message. (End of the CCA algorithm.)
Since the CCA algorithm is clearly more cfficient and only slightly more
complex than the CCAA algorithm, we will only study the CCA algorithm in
this thesis. {In addition to being more efficicnt, the CCA algorithm has one other
advantage over the CCAA algorithm: It is simpler to make the CCA algorithm
crash resistant than it is to make the CCAA algorithm crash resistant. This is’
actually a topic for chapter 7, but since we will not consider the CCAA algorithm
further, we make this comment at this point. Notice that if any noncentral node
in the CCAA algorithm is down, the central node cannot process transactions
because it is unable to get the required acknowledgments. This docs not happenin -
the CCA algorithm. Furthermore, the sequence numbers of the CCA algorithm
are very uscful for discovering transactions that were missed when a node was

down.)

1.4 The Centralized Locking Algorithm With Acknowledgments, CLAA.

'We will now investigate other centralized control approaches in order to
iry to improve the performance of the CCA algorithm. If we look at the CCA
algorithm, we realize that the central node is the system bottleneck because it
has the highest Joad. Il we could soincliow reduce the amount of work that is
donc at the ccntral node, we could improve the performance of the system.

In the CCA algorithm, the central node is performing two distinct functions:
(a) the central node is reading the data and performing the computations for all
updale transactions, and (b) thc central node provides the necessary concurrency
control for the transactions (i.e., it serializes the transactions). In the algorithm
we will propose now, the centralized locking algorithm with acknowledgments
,CLAA, we will move function (a) to the other nodes in order o reduce the load
at the central node. Function (b), which is naturally performed at the central
node, wili remain there. .

In the CLAA algorithm, the central node will provide concurrency control
by managing locks for the items in the databasc. (The central node acts just
like the lock manager described in section 1.4 of chapter 2.) Before an update
transaction is executed, it will request locks for the items it references. When
the locks are granted by the central node, the transaction will be able to proceed

28

. CH. 3: THE ALGORITHMS

knowing that no other update transaction will interfere.

In the CLAA algorithm, an update transaction A that arrives at node z is
processed as follows: :

(1) Node z requests from the central node locks for all the items referenced
by transaction A.

(2) The central node checks all of the requested locks. If all can be granted,
then a “grant” message is sent back to node . If some items arc already locked,
then the request is queued. There is a qucue for each item and & request only
waits in one queue at a time. To prevent deadlocks, all transactions request locks
for their items in the same predefined order. .

(3) Once node z gets all of the requested locks, it can proceed with the
transaction. (At this point, node z knows that all previous transactions that
referenced items referenced by A have completed everywhere in the system.) The
items are read from the local database, and the update values are computed. A
“serform update A" message is scnt to all other nodes iaforming them of the
updatc. Nodc z updates the valucs stored in its local database.

(4) When the other nodes (including the ceatral node) receive “perform
update A" messages, they pcrform the indicated update on their copy of the
databasc. After a node has processed the “perform update A” message, it sends
an acknowlcdgment message to node z. ‘

(5) When node z reccives acknowledgments for the “perform updatc A”
messages from all the nodes in the system, then it knows that A has completed
everywhere. Thus, node z can send a “release locks of A” message to the central
node.

(6) When the central node receives the “release locks of A" message, it
relcascs the locks of the involved items. Transactions that were waiting on these
locks are notified and can continue their locking process at the central node. (End
of CLAA algorithm.)

1.5 The Centralized Locking Algorithm (Wzth No Acknowledgments), CLA.

We can now usc the same idea that was used to climinate the need for
acknowiedgments in the CCAA algorithm to climinate the acknowledgments of
step 4 of the CLAA algorithm. As a further simplification, the “release locks”
message (step 5 of the CLAA algorithm) can be merged with the “perform up-
date" message (step 3) to the central node. If we do this we obtain the centralized
locking algorithm with no acknowledgments or CLA. In the CLA algorithm, the

29

CH. 3: THE ALGORITHMS

central node assigns a scquence number to each update transaction after it has
obtained its locks. This sequence number is sent to the transaction originating
node via the “grant” mcssage and is then appended to all "perform update”
messages. The sequence numbers are used toorder all the steps of the transactions
sc that no interference can occur.

We now give an outline of the CLA algorithm: _ :

(1) An update transaction A arrives at node z. Node z requesis from the
central node locks for all the items rcferenced by the transaction.

(2) The central node checks all of the requested locks. If all can be granted,
then a “grant” message is sent back to node z. If some items arc already locked,
then the request is queued. There is a queue for each item and a request only
waits in onc queue at a time. To prevent deadlocks, all transactions request locks
for their items in the same predefined order.

(3) When node z gets the “grant” message for A (together with A’s sequence |
number), it must wait until all transactions with lower sequence number than
A's scquence number have completed at node z. (This was not required in
the CLAA algorithm. This wait is now nceded because in the CLA algorithm
(without acknowledgments), the fact that a transaction holds locks on the items
it refcrences docs not imply that all previous conflicting transactions have com-
plceted everywhere.) After all transactions with lower scquence number than A's
scquence number have completed at node z (i.c., after the “perform update”
mcssages for these transaciions have been received and processed), the items
requested by A arc read from the local database and the update values arc com-
puted. A “perform update A" message (with A's scquence number) is sent to all
other nodes informing them of the update. Node z updates the values stored in
its local database. | ‘

(4) When another node reccives its “perform update A" message, it weits
until it has processed all “perform update” messages from transactions with lower
scquence number. (Notice that the largest sequence number processed so far must
be remembered by cach node.) Then the indicated update is performed on the
local database. When the central node receives its “perform update A" message,
it releases the locks of the involved items and then performs the update on the
local databasc as indicated above. Transactions that were waiting on the released
locks are notified and can continue their locking process at the central node. {End
of CLA zlzerithm.) 4 '

Scme readers might suspect that by serializing the steps of transactions with
scquence numbers we have lost some of the parallclism that was obtained by
using a lock manager. We show this to be truc in the next section.

30

CH. 3: THE ALGORITHMS
1.6 Sequence Numbers Produce Unnecessary Delays.

The centralized locking algorithm as stated above may produce unnccessary
delays in update transactions due to the sequence number restriction. An example
is the best way to illustrate this problem.

Suppose that a large update transaction (i.c., one involving many itcms)
arrives at node 1. A lock request is sent to the ceniral node. At ihe central
node, the locks are granted and the transaction is assigned a sequence number,
say number 10. The grant message is sent to node 1 where the transaction is
exccuted (assuming that node 1 has processed all updates with sequence numbers
less than 10). Exccuting transaction 10 consists of reading all items in its read
set and doing some computations with the values rcad. Since we assumed that
this transaction refercnced many items, executing the transaction at node 1 will
take a long time.

Supposc that while transaction 10 is being execufed at node 1, another
transaction arrives at node 2. Nodc 2 sends a lock request to the central node. Let
us assume that this new transaction has no items in common with transaction 10
or any other transactions which are still in progress. Then the central node can
grant the requested locks and assigns sequence number 11 to this transaction. A
grant message is then sent to node 2 indicating that it can proceed with trans-
action 11. But nede 2 will not be able to exccute the transaction because it has
not sccn transaction 10 yet (i.e., because of the sequence number rule). However,
we know that transactions 10 and 11 have no items in common and that they
could be performed concurrently. Unfortunately, node 2 does not know this fact.

As far as node 2 knows, the following sequence might have occurred: The
locks of transaction 10 were granted, the update performed at all nodces except
node 2 and the locks releascd at the central node, The "perform update” message
to node 2 (step 4 in the CLA algorithm) has been delayed and is on its way. Then
transaction 11 arrived. It conflicts with transaction 10, but since the Jocks of
transaction 10 have been released, transaction 11 can procecd. Thus transaction
11 has obtained its locks but it cannot bc performed at node 2 until node 2 has
performed update 10.

Going back to our original situation, if we wanf node 2 to be able to proceed
with transaction 11 while transaction 10 is being exccuted at node 1, we must
give node Z additional information that permits it to distinguish thic current case
from the hypothetical case where transactions 10 and 11 conflict. This additional
information is available at the central node. There are several ways in which the
central nodc can give node 2 this information. In this thesis we will discuss three

31

CH. 3: THE ALGORITHMS

ways in which this can be done. The algorithm that uses the first method (called
the WCLA algorithm) will be presented in section 1.7; the algorithm that uses the
sccond altcrnative (called the MCLA algorithm) is given in scction 1.8; the third
method is used by the TWCLA algorithm of scction 1.10. Several variations of
the MCLA algorithm are considered in section 1.9,

1.7 The Centralized Locking Algorithm With “Wait-For" Lists, WCLA.

In the WCLA algorithm, the central node kecps track of the last update
transaction that rcferenced each item in the database. In other words, the central
node keeps a tabie, LAST(z), where LAST(?) is the sequence number of the last
updatc transaction that lock=d itcm 4. Then, when an update transaction A
obtains its locks, the central node constructs a “wait-for” list for transaction

~ A. This list, which we will call wait-for(A), includes the sequence number of all

update transactions that A must wait for before being executed. Wait-for(A) is
simply the list of the LAST(?) entries for all items ¢ referenced by A. The wait-
for{A) list is appended to the grant mcessage to A's originating node . Before
nodc z cxccutes transaction A, it must wait until all “perform update” messages
for transactions in wait-for(A) have been processed locally. Notice that nede =
will only wait for transactions whose resulting values arc absolutely necessary
for exccuting A. In our example, update transaction 11 will not be delayed by
transaction 10 because transaction 10 did not conflict with iransaction 11 and
hence is not in the wait-for list of transaction 11. Wait-for(A) must also be
appended to all “perform update” messages for A, so that the new update values
produced by A can be stored at all nodes in the proper sequence and without
unnccessary delays. '

There are two potential overhead sources in the WCLA algorithm. One is
the processing that is necded before an update can be performed. That is, before
performing an update, a node must check that all “perform update” messages
for transactions in the wait-for list of the update have been secn. To do this,
nodes neced to have a list of the sequence numbers of all previously processed
“perform update” messages. This list may be very long, but there are many ways
to compaci it. Thus, we expect this list to fit in main memory at each node,
and the CPU time needed to check the wait-for list against this list of performed
updates should be relatively small. ' A "

A more serious source of overhead is the construction of the wait-for lists
at the central node. This node must keep a sequence number (i.e., LAST()) for

32

CH. 3: THE ALGORITHMS

each item in the database, and in most cases this information will not fit in main
memory. Thus, in order to read or modify this information, the central node
must use an IO device. This is undesirable because we are trying to reduce the

processing loads at the critical central node. '

1.8 The Centralized Locking Algorithm With Hole Lists, MCLA.

In this scction we present an alternative to the WCLA algorithm which does
not have the IO overhead at the central node associated with wait-for lists. The
idca again is to send additional sequencing information with the grant messages,
but we choose information which is more casily accessible at the central node.

Lct us use the term hole list for the list of update transactions in progress
{i.e., locks granted but not released) at the central node. (We use the term hole list
becausc cach entry in the list is a hole or a missing entry in the list of transactions
that have released their locks.) When the locks of an update transaction are
granted, the transaction's sequence number is added to the hole list. When an
updatc relcascs its locks at the central node, its scquence number is removed
from the hole list.

Now consider the relationship between an update transaction A which has
just obtaincd all its locks at the central node and the hole list cxisting at that
instant. Il update transaction B is in the hole list, then A and B can not have
refcrenced common items (else A could not have gotten its locks). Therefore, A
does not have to wait for B. In other words, the hole list existing at the instant .
when A obtains its locks is a do-not-wait-for list because it contains the sequence
number of transactions that can be executed in parallel with A. If we append the
hole list to the “grant” message to A's originating node z, then fransaction A
can be exccuted at node z even if node = has not performed the updates in the
hole list. In orr example, sequence number 10 would be in transaction 11's hole
list, so transaction 11 will not be dclaycd.

Notice that there may be other update transactions which are not in the
holc list but do not conflict with A cither. For example, a transaction C which
docs not confiict with A, but rcleased its locks before A got its locks is in this
category. We then see that the hole list is a partial “do-not-wait-for” list. If we
compare the hole list for an update transaction A with a complete list of all the
transactions that do not conflict with A, we find that the hole list contains the
morc recent entrics in the complete list. However, the older transactions in the
complcte list have probably already been processed at all nodes and are therefore

33

CH. 3: THE ALGORITHMS

not capable of producing dclays like the onc illustrated in scction 1.6. So the
hole list will probably be enough to eliminate almost all unnecessary delays. As
a matter of fact, if the transmission delays arc uniform (as we will assume in
our pcrformance model of chapter 4), the usc of a hole list will climinate all
unnecessary delays. This is true because in this case all the “perform update”
mcssages for transactions not in A's hole list will arrive at A’s originating node
before the “grant” message arrives at that node.

In summary, hole lists arc used as follows. When an update transaction A
obtains its locks at the central node, a sequence number S(A) and a copy of the
holc list FI(A) arc appended to the “grant” message for A. Transaction A will be
exccutcd at A's originating node only when all transactions with lower sequence
number than S(A) but not in H(A) have been scen locally. The sequence number
S(A) and the hole list H(A) arc also appended to all “perform update” messages so
that the values produced by A can be stored at all nodes in the proper sequence.
That is, before a node stores the values produced by A, it must have stored all
valucs for updates with lower sequence number than S(A) but not in H(A).

The advantage of the MCLA algorithm over the WCLA algorithm is that
the hole list can be kept in main memory and is casy to update. Thus, the IO
overhcad for locking in the MCLA algorithm is almost zcro. (In most cases, the
lock table can also be kept in main memory as a hash table.j The disadvantage
of the MCLA algorithm is that it docs not eliminate all unnecessary delays. But
for a systcm where communication delays have a small variance, the hole hst
mechanism will eliminate almost all unneccessary delays.

1.9 Limited Hoie Lists.

In the MCLA algorithm of section 1.8, we assumed that the complete hole
list copy can be sent in the “grant” and the “perform update” messages of every
update transaction. In some cascs, it might not be possible or desirable to trans-
mit hole lists of arbitrary length in messages, so we must set a practical limit
for the size of the hole list copy. Let us call this preset limit 2. The hole lis6
at the ceniral node will have to be complete; however, the copics made of it for
transmission will be cut to size h in case they are longer than .

There are several altcrnatives for handling the case of an overflowing hole
list copy. In the next three subsections we will describe three options.

34

CH. 3: THE ALGORITHMS

1.9.1 The MCLA-h Algorithm.

We call the first alternative for handling limited hole list copics the MCLA-
b algorithm. The basic idea in the MCLA-h algorithm is the following one. When
. an update obtains all of its locks, the central node checks the size of the hole
list. If the size of this list is less than or equal to h, then a copy of the hole list
is added to the “grant” message (and later to the perform update messages) and
the updatc can proceed. If the size of the hole list is greater than h, then the
update transaction is deferred at the central node. The update and its copy of
the hole list are placed in a deferrcd queue. Then, as holes disappcear from the list
(i.e., as updates rclease their locks), we also remove those holes from the copies
of the hole list of dcferred updates. As soon as a deferred update has a hole list
copy of size less than or equal to h, the update is removed [rom the deferred
queue and it is allowed o procced. '

We will now give a brief outlinc of the MCLA-h algorithm:

(1) An update transaction A arrives at node . Node z requests from the
central node locks for all the items refercnced by the transaction.

(2) The central node checks all of the requested locks. If some itcms are
alrcady locked, then the request is queued. There is a queue for each item and a
rcquest only waits in onc qucue at a time. To prevent deadlocks, all transactions
request Jocks for their items in the same predcfined order.

(3) When transaction A obtains all of its locks, the central node assigns it
a scquence number. Then the central node makes a copy of the current hole list
and assigns this copy to transaction A. This hole list copy for A consists of the
scquence numbers of the update transactions that arc currently holding locks
at the central node. The transactions in A's hole list are the transactions that
A docs not have to wait for before being performed. Transaction A's sequence
numbcr is added to the hole list at the central node.

(4) If the number of cntrics in A's hole list copy is less than or equal to the
limit A, then a “grant” message (which includes A’s sequence number and hole
list copy) is sent to node z. If the hole list copy has more than k entries, then
the “grant" message for A is dclayced at the central node. As the transactions in
A's hole list copy release their locks at the central node, their scquence number
is removed from A's hole list copy. As soon as the hole list copy of A contains h
(or lcss) entrics, the “grant” message for A is sent out o node .

(5) When node z gets the “grant” message for A (together with A's sequence
number and hole list copy), it must wait until all transactions with lower sequence
number than A’s scquence number but that are not in the hole list copy of A have

35

CH. 3: THIZ ALGORITHMS

completed at node z. Once the “perform updatc” messages for the necessary
transactions are received at node z, the items requested by A are read from the
local databasc and the update values are computed. A “perform update” message
(with A's sequence number and hole list copy) is sent to all other nodes. Node z
updates the values stored in its local database. »

(6) When another node receives its “perform update A” message, it waits
until it has processed all “perform update” messages from transactions with lower
scquence number but that are not in the hole list copy of A. The indicated up-
date is then performed on the local database. When the central node receives
its “perform update A" message, it relcases the locks of the involved itcms.
Transactions that were waiting on the rcleased locks are notified and can continue
their locking process at the central node. The scquence number of A is removed
from the hole list. Transaction A's scquence number is also removed from the hole
list copies of any transactions that were delayed because their hole list copy was
“too large. (Il any of these copics now have h entries, the corresponding “grant”
message is sent.) The local database at the central node is also updated. (End of
the MCLA-h algorithm.)

Since the MCLA-h algorithm is onc of the most important algorithms we
will study in this thesis, we also give a detailed description of this algorithm in
appendix 1. Notice that a MCLA-infinity algorithm is simply an algorithm that
has no limit for the sizc of the hole lists, whilc 2 MCLA-0 algorithm only grants
locks to an update when all previous updates with locks granted have completed.

The performance of the MCLA-0 algorithm should be very similar to the
performance of the original ceniralized locking algorithm described at the begin-
ning of this report. However, these algorithms are not identical since in the
MCLA-0 algorithm the updates arc delayed at the central node, while in the
- other algorithm, the updates are delayed at the originating node (after having
been granted locks) waiting for updates with lower sequence numbers.

1.9.2 The Truncating Alternative.

A second alternative for handling hole list copies of a limited size is simply

“to truncaie the lists that are too long. Hence, instead of delaying the update
transactions at the central node before sending the “grant” message (as described
above), we simply climinate some entries [rom the hole list and send the “grant”
message immediately. Notice that we can just take out scquence numbers out
of the hole list because it is a do-not-wait-for list. The fact that some sequence
numbers (i.e., holes) are missing from the hole list of a transaction simply means

36

CH. 3: THE ALGORITHMS

that the transaction will be delayed at its originating node. Of course, if the
" perform updatc” messages for the holes that were not transmitted happen to
arrive before the “grant” message docs, then there will be no delay..

The problem with this mcthod is how to decide what holes to cut off the hole
list copy. If we could know in advance which will be the first holes to disappear
from the list (e.g., which updates in the hole list will release their locks first),
we could truncatc those holes from the list and save time. However, il we do
not know what holes will disappcar first from the hole list, it might be better
to delay updates at the central node. The two altcrnatives we have described so
far, delaying at the central node and truncating the hole list, will be compared
in chapter 6.

1.9.3 Bit Maps.

A third alternative for handling limited hole list copics is to use bit maps to
compact the hole list. Since most updates that have gotten their locks but not
rclcased them (i.c., holes) will probably have scquence numbcers numerically close
to the latest scquence number issued, we can use a small bit map (c.g., 32 bits) to
represent the hole list. However, since there can always be holes with very small
scquence numbers (caused by updatces that take a very long time to complete), a
small bit map might not cover all holcs. Thercfore, a hybrid method is suggested
where part of the hole list is represented by a bit map and-the remaining holes
are represented by a list of scquence numbers. Hopciuliy, in most cascs the bit
map will be suflicicnt to cover all holes, making the handling and transmission
of hole lists very efficient, Clcarly, in some cascs, the compacted hole list will be
too large and will have {o be cut. The options for domg this are the same as for
the noncompacted case.

1.10 The Centralized Liocking Algorithm With “Total-Wait-For” Lists, TWCLA.

In section 1.7 we considered the use of wait-for lists to convey additional
scquencing information. In this scction we study a different type of wait-for list
which we call the “total-wait-for” list. Let the fotal-wait-for list be the list of
all transaciions which bave released their locks at the central node. That is, the
sequence number of an update transaction is added to the total-wait-for list when
the transaction releases its locks at the central node. An update transaction T

37

CH. 3: THE ALGORITHMS

which just obtained its locks could have conflicted with any transaction on this
list, but does not conflict with transactions not on this list. Thus, the total-
wait-for list existing at the time when T obtains all its locks is the list of all
transactions that T must wait for before being executed. | '

The way we have described the total-wait-for list, it would grow indcfinitely.
However, clements can be deleted from the list: Say an update A relcascs its locks
and its sequence number is added to the total-wait-for list. When A obtained its
locks, & copy of the total-wait-for list that cxisted at that time was appended to
A. Suppose that A's total-wait-for list contained the sequence numbers of updates
Bi,Bs,...B,. Since A is now in the total-wait-for list, we can at this point delete
the scquence numbers for updates By, By, ... By, from the list because by waiting
for A we automatically have to wait for By, Bs,...By. Therelore, the sequence
number of an update B; remains on the total-wait-for list only from the time B;
rcleascs its locks to the time when another update A with the sequence number
of B; in its total-wait-for list rcleascs its locks.

As with the hole list, a copy of the total-wait-for list is added to all “grant”
and “perform updatc” messages. Before a node performs an update A, it must
make surc that it has previously processed all updates on A's total-wait-for list.
Again, there arc several alternatives available if the size of the total-wait-for list
must be limited to a size h.

One alternative is to delay updates at the central node until their total-wait-
for list shrinks to a sizc iess than or cqual to h. Unfortunately this strategy does
not work as well as it did for hole lists because in the case of total-wait-for lists,
we cannot dclete any clements without adding new ones. Thus, it might be a
long time before the total-wait-for list shrinks. Ancther alternative is to truncate
the total-wait-for list and to send the “grant” message immediately. Since we
cannot simply drop clements off the total-wait-for list (as we could do with the
hole list), we must be carcful. Onc way to handle truncated total-wait-for lists
would be to only remove the elements with the smallest sequence numbers and
to use the following update cxecution rule: Before a node performs update A, it -
must make surc that it has previously processed all updates on A's total-wait-
for list and it has also processcd all updates with sequence number less than the
smallest sequence number in A's total-wait-for list.

2. THE DISTRIBUTED CONTROL ALGORITHMS.

38

CH. 3: THE ALGORITHMS
2.1 'The Distributed Voting Algorithm, DVA.

Another solution to the redundant update problem is a distributed voting
algorithm suggested by Thomas [THOMT76]. We call this algorithm the DVA
algorithm. In this thesis we only consider the daisy chain version of this algo-
rithra. We assumc that the timestamp of a transaction is gencrated when the
transaction is accepted. (The reason for doing this is discussed at the end of this
scction.) The DVA is a relativcly complex algorithm, so we urge the reader to
study [THOMT6] carcfully. Here we will only give an extremely bricf outline
of the algorithm. Most of the material in this outline is tzken directly out of
[THOMTE).

Lect us assume that cach node in the system has a perfect clock. Let us
also assumc that all the clocks are synchronized. By reading the time [rom its -
clock, and by appending a node identification number to this time, every node
can produce a unique timestamp. A timestamp, ts(T), assigned to cach update
transaction T processed by the system. (We will shortly see how this timestamp
is assigned.) Each item value in the system also has a timestamp associated with
it. When transaction T modifics a valuc, the timestamp. of the value becomes
1s(T). Hence, the timestamp of a value records the last time when the item
was modified. (It is actually not necessary to have perfect clocks; they can be
“simulatcd” with special counters [THOMT6]. Here we assume that nodes do
have perfect clocks in order to simplify the presentation.)

In the DVA algorithm there is no central controller; the nodes communicate
among themselves and decide what updates can be performed. The nodes in the
- system form a dasy chain or ring. Before a fransaction can be performed, it must
move along this chain obtaining votes. After a transaction gets a majority of
“OK"” votcs, it can be performed. A transaction may also receive a “reject” vote,
in which casc it may not be periormed.

When an updatc transaction A arrives at a node, it immediately reads the
items desired (and their timestamps) from the local database. Then the new
update values are computed. Next comes the voting phase where A visits the
nodes along the chain. Each node votes on A using the voling rule given below.
(As the transaction moves along the chain, it carrics with it the timestamps of
the base sct items that were read at the originating node.) After each vote, a
node uses the request resolution rule to decide if A can be performed. The update
application rule, also given below, describes how the “accept” messages for A (i.e.,
“perform update A" messages) are processed ab cach node. The steps followed
by an update transaction in the DVA algorithm are illustrated through a simple

39

CH. 3: THE ALGORITHMS

Sl

Figure 3.1

s2

S4,

[

We illustrate the steps followed by update transactions in the DVA
algorithm with the following two sample transactions A and B:

(s1)
(s2)
(s3)

(s4)
{s5)
(=6)

(s7)

Transaction A arrives at node 1 and gets its first OK vote.
Transaction A visits node 2 wherc it gets its second OX vote.
Transaction A visits node 3 where it gets its third OX vote
and is accepted. (Notice that 3 votes constitute a majority
in this 5 node system.)

"Accept A" (or "perform update A") messages are sent to all nodes.
Transaction B arrives at node 4 and gets its first OK vote.
Transaction B visits node O and gets a reject vote. (B read
obsolete timestamps or conflicted with anothér transaction.)
"Reject B" messages are sent to all nodes. (MNode 4 re-starts
transaction B from scratch at a later time.)

Figure 3.1. The DVA Algorithm: An Example.

40

N

CH. 3: THE ALGORITHMS

example in figure 3.1. We now give the rules used by the DVA algorithm:

1) Voting Rule. Two update transactions conflict if the intersection of the base
set of one and the write set of the other is not empty. (Sec section 3.1 in
chapter 2.) Fach update transaction is assigned a priority equal to the node
identification number of iis originating node. Between the time a node votes
for a transaction and the transaction is resolved, the transaction is said to
be pending at that node. The voting rule consists of five steps:

a) Compare the timestamps for the transaction base set items with the
corresponding timestamps in the Jocal database.

b) Vote “Reject” if any base sct item is obsolcte (i.e., if wefind a tlmestamp
which is more recent than the one tha.t was rcad at the transaction’s
originating node).

c) Vote "OK" is cach base sct item is current and the transaction does’
not conflict with any pending transactions at the node.

d) Vote “Deadlock Reject” if cach base sct item is current but the brans-
action conflicts with a pending request of higher priority.

e} Otherwise, defer voting and remember the transaction for later recon-
sideration.

2) Update Resolution Rule. After voting on a transaction, each node uses this
rule to decide what must be done next. The update resolution rule consists
of four parts:

a) If the vote was “OK" and a majority of “OK" votes for the transac-
tion cxist, then the transaction is accepted. A timestamp is assigned
to the transaction at this time. The timestamp must be greater than
any timestamp seen in the voting process. (Sce chapter 9.) “Accept”
messages (with the new update valucs and the new timestamp) are sent
to all nodes. _

b) If the vote was “Reject”, then reject the transaction by sending out
“reject” messages to all nodcs. :

c) Ii the vote was “Dcadlock Reject” and a majority consensus is no longer
possible {i.c., the transaction received a majority of ‘Deadlock Reject”
votes), then rcject the transaction by sending out “reject” messages to
all nodcs.

d) Otherwise forward the transaction and the votes accumulated so far
to the next node in the chain.

3) The Update Application Rule. When a node learns that a transaction, A,
has been resolved, it uscs the update application rule o either perforn the
update or to reject it.

41

CH. 3: THE ALGORITHMS

a) If the node reccives an “accept A" message, the new values which are
not obsolcte are stored in the local database. That is, for each item in
A's write set, the node compares the item value timestamp, t, with the
timestamp of A, ts{A). If t is less than ts(A), then the item is medified
as indicatcd and the timestamp for the item is set to ts(A). If ¢ is greater
than ts(A), then no modification is performed since the value is obsolete.
All conflicting transactions that were deferred at the node because of
A are rejected. :
b) If the node receives a “reject A" message, then the node uses the voting
rule to reconsider conflicting requests that were deferred because of A.
(In the DVA algorithm we have described, the timestamp of a transaction A
is assigned when A is accepted. An alternative is to generate the timestamp for
A alter A reads the values for the items in its base set at its originating node.
The alternative we choese makes the proofs of chapter 9 simpler. In a failure
environment, a transaction may be accepted more than once. This means that the
same transaction might have differcnt timestamps. We believe that this docs not
represent a serious problem because the effect of having a transaction accepted
twice with diffcrent timestamps is equivalent to the eflect of the transaction being
accepted once.)

2.2 The Ellis Ring Algorithm, OEA.

Like the centralized locking and the distributed voting algorithms we have
studied up to now, the Ellis ring algorithm (OEA) makes sure that all nodes receive
the samc updates and guarantees database consistency in a completely duplicated
distributcd databasc. (The “O" in the namc OEA stands for “original”, This is
to distinguish it from the modificd Ellis type algorithms that will be prescnted.)
The Ellis ring algorithm is a distributcd control algorithm. Here we will briefly
describe the operation of tiie algorithm and refer the reader to [ELLIT7] for the
dctails and a proof of the correctness of the algorithm.

Each databasc in the system has a slate associated with it. The state can
be idle, passive or active. The statc information can be viewed as a three way
lock for the complete database at that node. An idle state corresponds to an
unlocked database, while the passive and the active states correspond to special
types of locked databascs. A database is active when an update that originated
there is in the process of locking all databascs. A database is passive when it is
not active but knows that an update that originated at another node is in the

42

CH. 3: THE ALGORITHMS

process of locking all databascs. Whenever a database is active or passive, the
processing of all other updates that originate at that node is delayed until the
databasc becomes idic again. A first-in first-out queue, the internal quecue, is used
for thesc waiting updatcs.

Before an update can be exccuted, it must obtain passive or active locks at
all nodes in the system. This is done by forming a ring (or daisy chain) with -
all nodes and by having each update move along this chain obtaining the locks.
When an update finishes this process and arrives at its originating node once
more, then it can be performed. To perform the update, it is sent once more
along the chain. Each node in turn performs the update on its local database and
scts the state to idle. (In some cascs the state will not be changed; sce below.)

All updates arc given a priority when they originally arrive. This priority is
the node number of the originating node. When several updates are concurrently
in the locking process, their prioritics are used to order the updates as follows.
When update A (which originated at node p) is in the locking process and arrives
at a node ¢ which is in the active state, it knows that there is another update
B (which originated at g) which is also in the locking process. Therefore, if the
priority of A is less than the priority of B (i.c., p < ¢) then A waits in an external
qucue at node ¢ until update B is performed. If on the other hand, A bas higher
priority (i.e., p > ¢), then A can continue knowing that B will be dclayed at
node p. :

Assuming that A is delayed (i.e,, p << ¢), then when update B is performed,
the locks must not be relcased since A will need them. (This guarantees update
A a turn; i.e., A will not be "starved”" by other later updates.) Thus, a special '
flag in updatc B, “update final", is sct to false to indicatc to all nodes that they
should only perform the update and not sct their state to idle. When update
B arrives at node g after having been performed, ¢'s state is set to passive and
update A is rclcased from the external queuc. At that point, update A already
has all the locks but it still has to complcte its loop around the ring. When A
arrives at node p, the update can be performed and all the locks can be released.
(Assuming that no other update was in p's external queue.)

221 Outline of the Ellis algorithm.

These are the steps that must be followed when processing an update A that
arrives & node pr

(1) If state(p) = passive or active then some other update(s) is in the process
of updating the databasc. Therefore, A is delayed by placing it at the end of the

43

CH. 3: THE ALGORITHMS

internal quecue at node p. If state(p) = idle, then we can proceed: Set state(p)
to active and send A to node successor(p) to obtain other locks. (Successor(p) is
the node that follows p in the ring.)

(2) When A arrives at node ¢ in the ring, we check statc(q) If state(q) =
idle, we set it to passive. If statc(g) = passive, we change nothing. If statc(q) =
active and p < g, we change nothing. If state(g) = active and p > g, we delay
A by placing it in the external queue at node g. Unless A was delayed, we send
it on to node successor(g). If successor(g) is not p, then we repeat this step at
node successor(q); otherwise we perform step 3 at node p. '

(3) When A arrives at node p after having visifed all nodes once, we are
rcady to perform the update. First, updatc A is performed on the local database.
Then, if the external queuc at p is empty, we sct the “update final” flag in A to
truc; otherwise we sct it to false. State(p) is not changed yet, and we send A to
node successor(p) to perform the update (step 4).

' {4) When update A arrives at node g to be performed, we perform the indi-
cated update on the local database. If the update final flag in A is true, then we
sct statc(g) to idle; else we do not change state(g). If successor{g) = p then we:
perform step 5 at node p; otherwise we repeat this step at node successor(q). If
statc(g) was set to idle and the internal queue at node ¢ is not empty, then we
remove one entry from the qucue and start processing that update at step 1.

(5) When A arrives at node p afier being executed at all nodes, we check
the qucues at p: If the external queuce is not empty, we remove the update from
the queuc and send it to node successor(p) (step 2). State(p) is sct to passive. If
the external queue is empty, then we set state(p) to idle and check the internal
queuce. If it is non-cmpty, then we remove onc entry and start processing it at
stcp 1. After step 5, update A has been completed. (End of OEA algorithm.)

2.2.2 Comments on the Ellis Algorithm.

Notice that there is never more than one update waiting in a given external
qucue. Also notice that updates originating at the highest priority node are never
dclayed in extcrnal queucs, while updates originating at the lowest priority node
could be delayed in any external queue {except the one at that node). -

The operation of the Ellis ring algorithm is based on the assumption that an
update traveling in the ring cannot overtake or pass another update that is ahead
of it in the ring. This means that all rcqucsts for service at cvery node must be
handled in a first-in first-out fashion. Similarly, messages must arrive at a node
in the same order they were sent to it. (If the communications network does not

44

CH. 3: THE ALGORITHMS

have this property, it can be added by using scquence numbers for messages.)

To scc why this assumption is important, consider the following example
for an n node ring. Update A is being performed (update final is truc) while
updates B and C wait at internal queucs in nodes n—1 and n respectively. When
A's “perform update” arrives at node n— 1, state(n — 1) is set to idlc and B
is permittcd to continue (step 5). Now suppose that B arrives at node n before
A’s “perform updatc” arrives there. In this case, B finds state(n) = passive and
continucs on (slep 2). Since node n is the only one where update B could have
been delayed again, we know that B will continue around the ring and will obtain
all locks. Latcr, A's “perform update” arrives at node n. State(n) is sct to idle,
update C is reicased, and state(n) is set to active (step 5). Update C also goes
on to lock all databases. Thus, both B and C will be performed concurrently.
Since this can causc problems, we must not allow B to be processed at node »
before A’s “perform update” is seen at node 7. :

2.3 Advantages and Disadvantsges of the Ellis Ring Algorithm. .

The Ellis ring algorithm has somc advantagcs over the centralized algorithms
of scction 1 and the distributed voting algorithm of scction 2.1. One advantage
is that cach nodc only has {o know about two other nodes in the ring: the
predecessor and the successor nodes (except if failurcs occur). Unlike the previous
centralized locking algorithms, no prior knowledge of the items referenced by an
updatc is nceded. (Sce chapter 10.) Therefore an update in the Ellis algorithm
can decide what items to update after it has obtained its locks. (Updates in
the previous algorithms would not need prior knowledge either if they simply
locked (or referenced) all items in the database.) Another advantage of the Ellis
algorithm is that it requires very little state information. No timestamps or locks
for individual itcms arc needed. Thus no time will be spent reading timestamps
or locks from an IO device because all state information can be kept in main
memory. ' :

The Eliis ring algorithm has two major disadvantages. First, updates must
lock the complete database. This climinates the possibility of concurrently per-
forming updates that do not conflict. Except in special circumstances, this is a
serious drawback. Another disadvantage of this algorithm is that updatcs must
travel along the ring twice. This introduces transmission delays not found in the
other algorithms. We will now discuss modifications to the Ellis algorithm that
solve the first problem and reduce the magnitude of the second one.

45

CH. 3: THE ALGORITHMS

2.4 The Modified Ellis Ring Aigorithm, MEAS.

_ In this scction we describe a modificd Ellis ring algorithm (MEAS) which
allows updates that do not conflict to cxccute concurrently. The basic idca is to .
have state information associated with each item at cach database. Thus, the
statc of item 7 at node j, state(?,5), can be idle, passive or active. Similarly, we
provide internal and external queues for waiting on cach item at each node. And
now, cach item referenced by an update will be locked. (A priori knowledge of
the basc sct is now required.) '

There are two altcrnatives for locking the items in an update. One is to lock
cach item scquentially, i.e., attempt to lock item ¢ only when locks for item ¢ —1
have been sccured at all nodes. Clearly, this alternative is undesirable because
it rcquires that the update circulate around the ring once for each item to be
locked. Therefore, we only consider the sccond alternative. '

The second alternative is to lock all the ifems as we visit each node in the
ring. That is, when an updatc A arrives at node p, we sct state(s,p) to active
for all items 7 referenced by A. If for some item k, state(k,p) is already active or
passive, the we wait on k's internsl queue at node p. After A has obtained all
local locks, it travels along the ring requesting locks for all items referenced. If
any itcm is not available, then A must wait on the item’s external qucue. When
A rcturns to node p, it has locked all referenced items at all nodes and the update
can be performed. If no other updates are waiting in the external queuc of item
¢ (referenced by A), ther A's locks can be relcased at all nodes. If on the other
hand an update is waiting, then the locks for that item are not relcased. In other
words, cach item in A will bave an “update final” flag which will indicate {o each
nodc that performs the update what items are to be relcased.

This alternative allows non-interfering concurrent updates and is more efficient
than the first alternative. Unlortunately, there are two probiems that we must
dcal with before this solution works properly: update overtake and deadlocks. -

2.4.1 Update Overtake in the Modified Algorithm.

Since updates can be delayed as they move along the ring, it is possible for
one update to overtake or pass one ahead of it. This violates an assumption that
was made for the original Ellis algorithm. One of the problems that can occur
is illustrated by the following example.

Consider a four node nctwork. Update A, referencing items ¢ and j, originates
at node 1. It scts state(s,1) and state(s,1) to active. At node 2, A locks item ¢

46

CH. 3: THE ALGORITHMS

(i-c., scts state(s,2) to passive) but is delayed on item j. Mcanwhile, update B,
referencing item 2 only, originates at node 3. It is not delayed and sets state(z,3)
to active, scts statc(z,4) to passive and leaves state(7,1) and state(7,2) as they were
(active and passive respectively). (Sec step 2 in original Ellis algorithm.) Thus,
updatc B overtakes update A which is waiting at node 2 on item j. Since node 3
sees no updates in ¢'s external queue at that node, then update B is performed
with item ¢'s "update final” flag sct to true. Statc(z 2) will thercfore be set to
idle, but A still thinks that it has a lock for item ¢ at node 2. This situation can
lcad two updates to modily item 7 at the same time.

In the modificd algorithm, once an updatc B has obtained all locks for an
item 7, it cannot find out if there are other updates attempting to lock the item
simply by checking the external queue for that item. If there is an update in the
cxternal queue, then there is no problem: no locks are relcased for item ¢ when B
is performed. However, if the external qucue is empty, we cannot simply release
all locks for item ¢ (e.g., sct state(7,all nodes) to idle). We would like to leave
alonc any locks that arc being held by an update different from B and to release
any locks that arc exclusively held by update B.

One way to do this is to remember at cach node who has locked what items.
A simpler solution can be obtained by noticing that only updates with a Jower
priority than B's could also be holding locks on the items referenced by B. (If an
updatec C with priority greater than or equal to B's priority had locks on item
t, it must have sct state(,z) to active, where z is a node number greater than
on cqual to B's originating node number. This mcans that B cannot get past
nodc z and thus it cannot have all the locks for item 2.) Therefore, we only need
{o remember the minimum priority of the updates that have obtained locks for
item 2. I"'urthermore, this only has to bc done for passive locks since active locks
(other than the onc held by B) must have been obtained by updates with lower
priority. .
Therefore, we define “lowest priority(,z)" to be the smallest priority of the
sct of updates that passive locked item 7 at node z. An update “passive locks”
item ¢ at node z when it either scts state(z,z) to passive or when it finds state(?,z)
alrcady passive and continucs. Lowcst priority(¢,z) is only defined when state(s,z)
is passive. YWhen an update B is performed with update final flag set to true for
item 7, passive locks where lowest priority(7,z) is less than the pnonty of B will
not be reiezszd. All other locks will be releascd.

This modification allows updates to be delayed while requesting locks. Tosee -
that the modified algorithm opcratces correctly, consider the state of the system
after an update B has been performed with update final flag set fo true for item

47

"CH. 3: THE ALGORITHMS

2. Update B is performed correctly since it did obtain all the locks for item <.
All other updates that reference item 7 are left as if they had arrived after B's
completion and had gotten their locks then, Therefore, the other updates should
be able to continue from this state and finish correctly.

2.4.2 Decadlocks in'the Modified Ellis Algorithm.

The original Ellis algorithm avoided deadlocks by having updates only wait
for higher priority nodcs to become available., For the modified algorithm we
must extend this idea in order to avoid deadlocks.

Dcadlocks can be avoided by a-priori ordering all the items in each database.
We assign a scquence number o cach item and each item should have the same
number in all databases. Then we form a global sequence number for cach itcm by
concatenating its node number with the item's scquence number. For example,
item number 105 in node 3 has global scquence number 3-105. Dcadlocks can
then be avoided by using the following rule: “An update should not wait for an
item with global scquence number z to become zwallablc while holding locks on
an itecm with higher global scquence number than 2."

if at cach nodc we request locks by ascending sequence number, then the
above rulc can be enforced. However, there is a special case we must deal with.
Supposc that an update A is waiting in the external queue at node p'for itcm
¢ because another update B has locked item ¢ (i.c., state(s,p) = active). When
B is performed, the update final flag for item 7 will be set to false and 4's locks
will not be relecased. When B has been performed, statce(?,p) is sct to passive and
update A is allowed to continuc. Notice that at this point update A “inherits”
locks for item ¢ at all nodes from update B. Thus, updatce A is holding “forward”
locks- which must be relcased if A ever has to wait for an item with lower global
scquence number. For example, if later A has to wait for item j at node ¢ { where
g is greater than p but lcss than or equal to n, the number of nodes), then the
locks that A holds for item ¢ at nodes ¢+ 1, ¢4 2,... n must be relcascd If
J <, then the lock {or item ¢ at node ¢ must also be released.

2.4.3 The Complete Modified Algorithm.

Appendix 2 gives & sicp by step description of the modified Ellis ring algo-
rithm.

. 48

CH. 3: THE ALGORITHMS
2.5 The Modified Ellis Algorithm With Parallel Updates, MEAP.

In this section we describe one last modification to the Ellis ring algorithm.
This modification allows an update to be performed in paralle] once it hasobtained
all its locks. This modification can be used in the original algerithm or in the
modificd algorithm of Appendix 2. However, here we only consider the modified
algorithm of Appendix 2. We call the new algorithm the MEAP algorithm.

The basic idca is to take advantage of the fact that the network we are
considering can transmit messages from any node to any other node. (If this is not
so, and the network is actually a ring, then we cannot make any improvements.)
So when update A has obtained locks for all its items at all nodes (procedure
Locks-obtained in Appendix 2), then it can send messages to all other nodes in
parallcl informing them that they can perform update A. However, in order not
to violate the assumption that updates cannot overtake updates ahead of them,
we must make sure that an update B that has been released by A is not processed
at a nodc that has not performed update A.

Onc strategy that docs this is the following one. Each node numbers all
updates that originate at that node and that are to be performed. Additionally,
all nodcs remember the last update they have performed from cach node. (For
example, node 4 remembers: I have processed up to update number 403 from
node 1, up to update number 100 from node 2, ¢tc.) Furthermore, any messages
from nodc n to node m must include the “status” of node n, the is, the list of
updates that have been performed by node n. ([For example, if node 4 above
gends a message, the message must say: “Node 4 has processed through update
number 403 from nodc 1, through update number 100 from nodc 2, eic.) When
node m receives the message from node n, it will the delay processing the message
until it has processed all of the updates processed by node n. This guarantees
that no updatc will be performed or processed out of scquence. (Notice that
no acknowlcdgments are needed for the “perform update” messages.) Update
scquence numbers for updates at node n can be periodically be reset to 0. This
proccess rcquires carclul synchronization which is confrolled by node n.

Undecr normal nctwork operation, updatcs should scldom get out of sequence
and therefore very few message processing delays will be incurred. Of course, the
algorithm is now more complex and the mcessages transmitted arc larger since
they include “status” information, but this overhead should be offset by the time
saved with the parallel updates. If the number of nodes in the system is large,
the “status” information for cach node can become very large, making parallel
updates uneconomical.

49

PRSI

CH. 3: THE ALGORITHMS

The MEAP is the last algorithm we consider in this chapter. In the next
chapter, we will analyze some of the algorithms prescnted in this chapter.

50

RO,

CHAPTER 4

PERFORMANCE ANALYSIS

In this chaptcr we analyze the performance of some of the updatc algorithms
that were presented in chapter 3. In scction 1 we describe a simple performance
model of a distributed database. In section 2 we give a brief overview of the
analysis technique, and in scction 3 we give some queucing theory results that
will be necded for the analysis of the algorithms. Then, in section 4, we analyze
the MCLA algorithm. The analysis of the DVA algorithm is described in section
5. The analysis techniquc we describe in this chapter can also be used to-analyze
most of the other algorithms. However, in this thesis we will not analyze the
other algorithms. because their analysis is similar to the analysis of the first two
algorithms. The analysis of the CLA algorithm and of the Ellis type algorithms
can be found in [GARCTS].

1. THE PERFORMANCE MODEL.

Figure 4.1 shows the modcl that was used to represent the distributed
database system at cach node. The medel was designed to be as simple as possible
while still displaying the principal characteristics of such a system. Requests for
service arrive at a pode from three sources: the users at the node, the network
and the node itsclf. Each request for service can be of two types: a request for
CPU iime only and a request for IO service followed by CPU time. Both the
JO and the CPU scrvers at each node service at most one request at a time, so
that first-in-first-out qucuces are provided for waiting requests. Once the request
is serviced, it can generate further requests, either at the same node or at other
nodcs. The request can also change various CPU controlled queues. The entrics
in these queues may cause more requests for service at a later time. ‘

To illustrate the operation of the model, we will briefly describe how a vote
request (in the DYA algorithm) is processed. An update transaction arrives at a

51

CH. 4: PERFORMANCE ANALYSIS

node and requests a vote. In order to voic, the node needs the local timestamps
of all the items involved. Assuming that the timestamps are stored in an IO
device, the request must first obtain service from the IO server. The service time
is proportional to the number timestamps read. (The fact that the timestamps
arc stored in an IO device and not in main memory can casily be changed through
a paramcter to be described later.) Next the request will proceed to the CPU
server where it will receive CPU time roughly proportional to the number of steps
nceded in the voting procedure. Then, depending on the outcome of the voting
procedure, the transaction will cither move on and request service at another
node, or it will be deferred locally because of a conflict with another transaction.
In case the transaction is deferred, it will wait until its fate can be decided. When
it is time to decide its fate, the transaction will request more CPU time at the
node.

Theoperation at a real distributed database node is probably not as simple as
we have described it. The IO operations for a request will be intcrleaved with the
CPU computations for the same request. However, we believe that the effect of a
collection of small IO operations and small CPU operations for a scrvice request
is approximately cquivalent to the cifect of lumping all of the IO operations into
one and of similarly lumping the CPU opcrations.

Another difference between our modzl at cach node and a real computer is
that in our model there is no multi-processing. This mecans that the requests are
serviced scrially instead of having several requests receiving service concurrently.
Nevertheless, since most of the requests for service are small, the scheduling al-
gorithm should not have a noticcable eflcct on the response times and the results
obtained with the model should be comparable to the results obtained with a
multi-processing model. _

In a multi-processing environment, the different operations in progress can
interfcre with each other. Thercfore a local concurrency control is needed at each

"node for both algorithms. This extra overhead can be added to our model by
varying some of the model parameters that will be described in the next section.

1.1 The Parameters.

The model paramcters describe a particular instantiation of our model. In
order to obtain useful results, it is very important to select a small number of
meaningful parameters, If too many parameters are chosen, there will be too
many variables and it will be hard to understand the interrelationship of all the

.52

CH. 4: PERFORMANCE ANALYSIS

Figure 4.1
FROM 19
USERS USERS
>
ol 10) cPU . .
FROM (R SERVER SERVER TO
NETWORK NETWCRK

Figure 4.1. The performance model at each node.

53

CH. 4: PERFORMANCE ANALYSIS

pu-ameters and the system performance. If the parameters are not meaningiul
and intuitive, it will be hard fo relate them to real systems in order {o assign
them actual values. :

The parameters we selected for the model are the following:

1) Mean interarrival time of updates at each node, A,. We assume that the
updatc intcrarrival timc is cxponcatially distributed, that is, we assume
Poisson arrivals. The mean of the distribution is A,. This means that on
the average 1/A, updates per sccond arrive at each node. Poisson arrivals
arise in many rcal lifc systems with a large number of independent users,
and seem to be a good assumption for our case foo. |

2) Mcan base set, B,. We assume that the number of items refcrenced by an
update transaction (the basc sct) has a discrete exporential distribution.
A discrete exponential distribution is obtained by making a continuous ex-
poncntial distribution discrete. (This will be explained in detail in section
2.) The mcan of the continuous exponential distribution is B,. The fact that
the base set is exponcentially distributed means that updates that reference a
small number of itcms will occur more frequently than updates that reference
many updates. We assume that an update transaction references random
items in the database. . .

We believe that the discrete exponcntial distribution is one of several rea--
sonable distributions for the base set. Other oncs arc the Erlang and the
normal distributions. However, in this thesis we will only consider the dis-
crete exponcential distribution ‘
Out of the refcrenced items, same will be read-only items while the rest (at
least one) will be read/write. We will assume that the number of read/write
items (e.g., items in the write sct) in an update is uniformly distributed
between 1 and the number of items in the base set. On the average, about
half of the items refcrenced by an update will be read-only. (See section
3.5.)

3) The number of items, M. This parameter describes the total number of
items in the systcm.

4) The number of nodes, N. The number of nodes and databascs in the system
is N.

5) The network transmission time, T. In order {o simplify the simulation, we
assume that the time it takes any message to go from any node to any other
node is a constant T. Thisis an acceptable assumption if the communications
network is lightly loaded or if the distributed database message traffic is
only a small fraction of the total nctwork traffic. In both of these cases, the

54

CH. 4: PERFORMANCE ANALYSIS

mcssage delay is independent of the number of database messages generated.
On the other hand, in some nctworks the transmission time may be very
sensitive to message sizc, to network load and to the distance between nodes.
Our constant transmission time docs not model these cascs as well.

6) CPU time slice, C,. The CPU time slice is the time it takes any CPU server
to do a “small” computation. For example, in C, seconds, a processor can
check and set one lock {in memory), compare two timestamps (in memory)
and maybe add something to a qucue, send a lock request to the central
node, efc. :

7) CPU updatc compute time, C,. If an update refcrences z ifems, then the
time to compute the actual update values is 2zC,,. That is, once a transaction
has been accepted or all of its locks have been granted, it will need 2C,, CPU
scconds before a message with the update values can be sent o all nodes.

8) IO time slice, J,. This is the time it takes to read or write a lock or a
timestamp from an IO device. IFor example, if a transaction at a node necds
to rcad = timestamps, then it must get zl; seconds of service time from the
IO scrver.

9) 10 item update time, J3. The time nceded fo read or write one item value
from or to the IO device is Iy.

10) Retry dclay time, R;. The last paramcter is a special one since it only
applics to the distributed voting algorithm. The retry time is the time a
nodc must wait before reirying a rejected transaction.

In sclecting the parameters, several additional assumptions have been made
(c.g., constant transmission time). The list of assumption has grown considerably
by now. (The great number of assumptions that have been made simply illustrate
the great number of factors that must be considered in designing a distributed
databasc.) With so many assumptions, how rclevant can we expect the results
obtained from the simulation to be? This is hard to say, but we do have onc
thing in our [avor. We arc only trying to compare the performance of diffcrent
algorithms; we arc not trying to predict the exact performance of a given system.
Each of the factors we have considered (c.g., constant transmission time) may
alter our results, but it will probably aflect all the algorithms in a similar way.
So even if we arc unablc to guarantee exact results, we will hopefully be able to
discover general trends for cach of the algorithms. (We will later study the effect
of each assumption on the simulation results.)

55

CH. 4: PERFORMANCE ANALYSIS

1.2 The Performance Measurcs.

There are many variables one can choose to evaluate the performance of the
system. In this thesis we will study the following variables:

1) Updatc response time. The response time of an update is defined as the
dilfcrence between the finish time and the time when the update arrived
at the originating nodc. There are scveral ways of defining the finish time;
here we will consider the update to be finishcd when the originating node
has finished all work on the update. At that point the node can inform the
uscr that his or her update has been completed. Notice that at the finish
time, other nodes might not be done with the update. The average response
time of update transactions, R, will be the main performance variable in

 this thesis. | |

2) Number of messages. Another important periormance variable is the num-
ber of messages that must be sent per update transaction. The messages
to and from a uscr are considered internal messages to a node and are not
counted here. A broadcast message is counted as N — 1 messages, where N
is the number of nodes.

3) IO and CPU utilization. The IO and CPU utilizations at each node are also
of intcrest. The utilization is defined as the fraction of the available time
that a server is busy.

1.3 Using the Model.

The performance medel we have described was used to study the algorithms
of chapter 3. Twe techniques were used for this: simulation and analysis.

Dctailed event driven simulators were built to study the algorithms. Each
simulator has an update ‘ransaction gencrator that produccs transactions as’
described in the model. (Sce section 1.1.) The items referenced by each trans-
action arc selccted at random from the M itcms available. The simulator then
mimics the operation of the system as it processes the transactions. Of course,
the simulator does not read or write the data corresponding to a transaction; it
only mimics this by requesting the necessary 10 and CPU time from the scrvers.
However, the simulator does keep track of such things as granted locks, the
timestamps of the item values, and the deferred transactions. During the simula-
tion, sfatistics like the average responsc time of transactions and the number of
messages are collected. ‘

56

CH. 4: PERFORMANCE ANALYSIS

In addition to the simulators, the update algorithms were also analyzed
using a technique which is described in the {ollowing sections. The objective of
this analysis was (1) to doublc check the performance results obtained from the
simulators and (2) to obtain additional insight into the opcration of the system.

For the analysis of the algorithms we make one final assumption. We assume
that the CPU update time {C,) and the CPU time slice (C,) are both 0. This
assumption is madc to simplify the analysis; the extension to the case where
Cy and C; arc greater than 0 should bc straightiorward. Furthermore, the new
assumption can be justified because in most of our cases of intercst, C; and C
arc both much smaller than the IO service times (; and I;) and the network
transmission time (7). As long as Cy, and C; are small compared to I;, I and T,
they do not affect the system performance. :

2. OVERVIEW.

The technique for analyzing the performance of the algorithms is iterative.
"First we assume that update requests never conflict with cach other. Under this
assumption, we derive some performance measures like the average wait time
at cach 10 queuc and the avcrage response time of cach update. Then using
these mcasures, we computc the probability of conflict between updates. This
probability is uscd to cstimatc the extra IO load at each node and the delays
incurrcd by the conflicting requests. With these valucs, we recompule the average
wait time and average response time. This process is repeated until the average
response time value between iterations does not change noticeably (or until the
computations diverge).

Throughout the computations, many simplifications are made and thus the
results obiained arc only approximate. However, most of the simplifications made
are rcasonable. The fact that the approximate results coincide fairly well with
the simulation results, gives credibility to this last statcment. (Sec chapter 5.)

In the next section, we derive some results that are useful in the analysis
of the algorithms. Then we proceed to study cach algorithm separately and in
dctail.

51

CH. 4: PERFORMANCE ANALYSIS

3. USEFUL RESULTS.

© 3.1 Independence of Nodes.

The interconncection of all nodes forms a network of queues [KLEI75]. The
analysis of such a network is very complex for the general case. However, we
simplify the analysis here by assuming that cach node can be analyzed independ-
ently. This simplification can be justified as follows.

Jackson [JACKS5T7] studicd an arbitrary network of queucs with each node
having an exponential scrvice time and receiving requests from outside the sys-
tem in the form of a Poisson process. Jackson showed that cach node in such a
systcm bchaves as if it were a M/M/1 system with a Poisson arrival rate equal
to the sum of of all the original arrival ratcs at that node. (M/M/1 is a system
with Poisson arrivals and 1 exponcntial server,)

In our case, all of the extcrnal arrivals are Poisson, but the service times
al cach node are not exponential. Forlunately, service times are “roughly” ex-
poncntial because all IO service times are proportional to the number of items
referenced in the update that is being serviced. Recall that the number of items
referenced in an update is a discrete approximation to the exponential distribu--
tion. (The actual service time distributions at each node will be derived later
on.) Thus, we hold that Jackson's result is still valid and we will analyze each
nodc independently. The arrival rate at each node will be the sum of the ex-
ternal arrival rate (i.c., new updates from uscrs) plus the arrival rate due to
service requests from other nodes. (For further justification of this assumption
sce [GARCT8).) '

3.2 The M/G/1 Queue.

Ve only use the exponcential service time assumption to decompose the net-
work intc a sct of independent queucing systcms. In the rest of the analysis,
we use the aciual service time distribution at cach node. Thus each system is a
M/G/! onc (G means general service time distribution) and not a M/M/1 one.
The average wait time, W, in such systems is given by [KLEIT5):

58

CH. 4: PERFORMANCE ANALYSIS

pX(1+CY "

W= 2(1—p)

where X is the mean of the service time distribution, C} is the squared cocflicient
of variation of service time and p is the utilization factor. The utilization factor

is simply _

p=NX (2)
where) is the Poisson arrival rate at the system. The coefficient of variation
can bc computed as

7 —)
o= ®

where X2 is the sccond moment of the service time. Notice that both the mean
and the second moment of the service time distribution are needed to compute
the average wait time.

The average number of requests waiting in the queue (not including the one
in service) is give by [KLEIT5]:

7 2+ CD
T T—)) .

3.3 The IO Server.

The service time requested by cach iransaction depends on the type of re-
qucst. For example, a vote request at a node {in the distributed voting algorithm)
will nced IO time proportional to the number of timestamps that it will read,
whilc a perform-update request will need IO time proporticnal to the number
of items in thc write sct. We modcl this bchavior by an n-stage parallel scrver
(figure 4.2), where each individual server services one §ype of request only and
the probabilitics at each branch are the fraction of the total requests that are
of the given type. Scrver ¢ is described by its mean service time Xj, its second
moement X’—f , and the probability e; that an arrival goes to that server. Only
zero or one request can be in the service facility at each node at a time.

We now derive the mean service time X and the second moment of the
servicé time X2 for the complete facility at a node. From the operation of the n
scrvers, we know that the probability distribution function of the overall service

59

CH. 4: PERFORMANCE ANALYSIS

Figure 4.2

QUEUE

ARRIVALS

-
|
|
1
]
|
]

<
|
!
!
i
!
1
)
|
|
!
1
|
[
1

3

THE SERVICE FACILITY

Figure 4.2. The n-stage parallel server ‘at each node.

60

CH. 4: PERFORMANCE ANALYSIS

time is

flz) = a1fi(z) + aofy(z) + .. . + anfuls))
where f;(z) is the probability distribution function (pdf) of service time ¢. From
this equation we find the mean service time

7=/xf(x)d:c=alfl+azyz+...+a,,fn (6)
and similarly, | .

F=fx2f(x)dx=a{x_§+azfg+...+a,,x—$,)

3.4 The Base Set. .

In order to usc equations (8) and (7), we nced X; and X2 for each type of
scrvice request. And since these values depend on the number of items in the
base and write scts, we must study the probability function of the number of

items referenced in an update.

Let Y (a discrete random variable) be the number of items in the base set of
an update request and let fy(7) be the probability function of Y. We assume that
fv(?) is a discrete exponential distribution. (Sce section 1.1.) This distribution is
rclated to a continuous exponential distribution (with mean B;) as follows. Let
X be a random variable with a continuous exponcential distribution fx(z). Then
the probability that Y = 1 is the probability that X is between 2—1 and ¢. That

is,)
fy(i)=Pr[i—1<X<i]=[1fx(:c)n:l:c, 1 >1
Since X is exponentially distributed,
1
Ix(z) = I exp(—z/B;)
3

where B, is the mean of the continuos exponential distribution. As we will see,
B is close to the mean E[Y] but is not the same. Thus,

#t)= [Lexp(e/B)do = exp (—i/B)lexp (/5 ~ 1

i—1

61

CH. 4: PERFORMANCE ANALYSIS

Now we can obtain the mean and the sccond moment of Y

ev}

E[Y] =Y if(i) = [l —exp(—1/B.)] " 8)
=1
EYZ — = '2:2) = [l+cxp(—'1/B,,-)]
)=) =)
= {1+ exp (—1/By))(E[Y])’ ©)

The details of these derivations are in [GARCTS]. Notice that if Bs > 1, then the
mcan E[Y] is approximately B,, the mean of the original exponential distribution.
(exp (—1/B,} can be approximated by 1 — 1/B,.)

3.5 The Write Sct.

We now derive the mean and the second moment of the write set distribu- -

tion. Let discrcte random variable Z be the number of items in the write set.
This number should be a random fraction of the number of items in the base set.
However, Z should be at lcast 1 because all fransactions must modify ab least
one item. In other words, Z can be defined by

Z =|1+RY]

where Y is the number of items in the base set and R is a random number between

0 and 1. That is, Z is an integer that is uniformly distributed between 1 and Y.
. This mcans that discrete random variable Z is a function of discrete random

variable Y and continuos random variable R, where fy(¢) is defined above and

Alz)=1 0<z<1L
Using iterated expectation [PAPOT75),

E[Z) =E[E[Z | Y)),
E[z%] =E[E[Z* | Y]),

so we obtain that

E[Z] = E[Y]2+ ! (10)
B[z = S E[Y’| + ;ElY]+ 5 e

62

CH. 4: PERFORMANCE ANALYSIS

(See [GARCT8] for dctails).)
Using the above results, we can now proceed to analyze the update algo-
rithms. : '

4. THE MCLA ALGORITEM.

In this section wc describe the analysis of the MCLA algorithm (or the
MCLA-h algorithm with & = infinity). During thc discussion that follows, one
must keep in mind that the hole lists used by this algorithm eliminate all un-
necessary delays. (Sce chapter 3.) Hence, the only delays we study in the analysis
of the MCLA algorithm are the queucing delays at the IO servers and the delays
waiting for locks ab the central node.

41 No Conflicts Case.

The analysis of the MCLA algorithm under the no conflicts assumption is
divided in two parts: the central node analysis and the other modes' analysis. We
first describe the analysis of a non-central node because it is the simpler case.

4.1.1 The Non-Central Nodes.

There are two types of IO service requests at a non-central node. The first
type is a request to rcad the items in the basc set of an update (RRBS). This
occurs when a node receives a grant locks message from the central node because
at that point the node must compute the update. One RRBS occurs for cach
updatc request that arrives from the uscrs at that node, so RRBS arrive at a
rate of N\ per sccond. (N is the inverse of the interarrival time A,.)

The second type of request is a request to perform update (RPU). These
arrive at the nodc for every update that is accepted in the system. Since there
are N nodcs, RPUs arrive at a rate of VN per second.

Each RRBS requires {Iz)(Number of items in update) scconds of service, so
that the mean scrvice time for this request is [;E[Y]. (Recall that Ij is the IO
time needed to rcad or write one item.) Similarly, the second moment of this
scrvice time is J;E[Y?]. On the other hand, RPUs have have a mean service time
of I;E[Z] and a sccond moment of [;E[Z%. The total arrival rate at the node is

63

CH. 4: PERFORMANCE ANALYSIS

AN 1) and the probability of a RRBS is 1/(N - 1), while the probability of
a RPU is N/(N +1).

Using equations (6) and (7), wc obtain the mean and the second moment of
the service time at a non-central node:

1

x—m=(L)IdE[YH—(N)IdEm (12)

N1 N1
- 1 N
7 — (= |72 2 2 2
x5, = (5 e+ (e (13
and using equation (1), we obtain the average wait time at a non-central node
o PXed14CF)
T l—=p)
(N + DX,
2[1 — N+ 1))0\';]
since ' \
2 X (7;)
Cio=——"a
(%)
and

p=(N -+ I\ Xpe.

(The M in cquation (1) is now replaced by (N -)\, which is the total Poisson
arrival rate at the node.)

4.1.2 The Central Node.

We now analyze the central node in the MCLA algorithm. All update re-
quests that arrive at the system (N\ per second) must request locks from the
central node (RL). The IO time needed to do this at the central node is 2
(number of items in update). The factor of 2 is included because the locks must
first bc read and then they must be set. Thus, the mean and the second moment
of RL scrvice requests are 2L, E[Y] and 4I°E[Y?] respectively. After the locks
have been granted, the update transactions need to read the base set in order

64

CH. 4: PERFORMANCE ANALYSIS

to compute the update. This is done at the node where the update originated
(RRBS). The central node will also have to perform this type of work since
N\ updates per second originate at the central node. As stated in the previous
scction, the mean and the second moment of RRBSs are L;E[Y] and IZE[Y?].
Finally, all transactions must also relcase their locks at the central node and
perform the update (RRLPU). These request arrive at a rate of N\ per second.
RRLPUs need -
I(size of base set) - Ii(size of write set)

scconds of 10 time. Since the sizes of the base and write scts are not independent,
the derivation of the mcan and the sccond moment of RRLPUs has to be done
carefully. The details are given in [GARCT8] and the result is -

mean service time of RRLPU's = LE[Y] 4 [E[Z] (15)
second moment of RRLPU's = I2 B[Y?] + LL(E[Y] +E[Y?))
+ I E[Z7) (16)

The total Poisson arrival rate at the central node is N(2N - 1) and the

probabilitics for RL, RRBS, and RRLPU are N/(2N 4- 1), 1/(2N +4 1) and
N /(2N + 1) respectively. Now we can use equations (6) and (7) to find the mean
and the sccond moment of the complcte service time at the node: :

7:(N Yon)+ (gt JuBt) + (e GBI + BBl

2N 41 2N +1 2N -1
5 N 1
27— 2R[y2 2 ry2
X? (21\1—}— 1)fLIsE[Y]+(2N+1)IdE[Y]
N 2 1 [y2 12 2 172 ,
+ (g B+ 4+ B0v7) + 38027 (18
Substituting into equation (1), we find the average wait time at the central node:
7 PX{1+C)
T ol—p)

(2N +)AX? (19)

B 2[1 — (2N + 1)7\2]

65

Caiianbaneiay

CH. 4: PERFORMANCE ANALYSIS

Figure 4.3

FIGURE 4.3
STEPS OF A TRANSACTION

MCLA CENTRALIZED LOCKING ALGORITHM

~-- Mo Conflicts Case =---

ORIGIN: Non-central node Xx.

e e L L L L L L L

Request arrives at node x :

Transmission of lock request to central node

Locks are granted

Transmission of “grant® message to node x

Read base set items

Send "perform update" to all nodes,
nessages immediately arrives at node X

Perform update at node x

Average response time

ORIGIN: Central node.

e = s e e Be e e e = Y e e P G B G e e B A T e e T W R W Ge 08 O O G e

Request arrives at central node

Trensmission of lock request to central node

Locks are granted

Transmission of “grant' message to pode

Read base set items

Send “perform update" message to all nodes,
nessage immediately arrives at central node

Pertorm update and release locks

66

Average time
for step.

We + 2 Is E[Y]
T

Wnc + Id E[Y]

8

Wnc + Id E[Z]

Average time
for step

C L L L L T

We + 2 Is E[Y]
8

Wc + Id E[Y]

. 8
We + Is E[Y] + Id E[Z]

CH. 4: PERFORMANCE ANALYSIS

4.1.3 The Average Responsc Time.

Once the average wait times at each node are known, the average response
time of an update can be computed simply by studying the steps followed by
an update. Since we are assuming that the network is an independent set of
queucing systems, the average total response time is the sum of the average
response times at each node. Figure 4.3 shows the steps followed by a transaction
that originates at the central and non-central nodes. The average total response
time for transactions originating at the central node is

R, = 3W, -+ 3LE[Y] -+ L(E[Y) + EfZ) (20)

while the value for transactions originating at non-central nodes is

Rpe = 2T + Vo + 2Woe + 2L E[Y] + L(E[Y] + E[Z]). (21)

Since there are N — 1 non-central nodes and only one central node, the
average response time for all requests is

= (e

This completes the analysis of the central locking algorithm when no conflicts
among the updates occur.

4.2 The MCLA Algorithm - Conflicts.

We have obtaincd expressions for the average wait time at cach node and
the average responsc of updates when no conflicts occur. Next, we use these
results to estimate the probability and the effect of conflicts, and use these values
in- turn to recomputc the wait and response times.

The analysis that follows is only approximatc. One reason for this is that a
more detailed analysis is probably much harder. A second reason is that these
results wiil have a small effect on the performance of most systcms since the
fraciion of updatcs that conflict should be very small.

The main assumption we make in analyzing the algorithm under conflicts is
that updates that conflict are “average” updates. By an average update we mean
an update A such that A has exactly E[Y] items in its base set, A has exactly E[Z]

67

CH. 4: PERFORMANCE ANALYSIS

items in its write set and whenever A waits at a node, it waits cxactly the average
wait time at that node. This simplifies the conflict analysis greatly. This would
be a valid assumption if the average cffects of update conflicts were equivalent to
{he effccts of average updates conflicting. Unfortunately, this is not quite true.
For example, if we know that an updatc has had a conflict, then chances are that
ils base sct size is greater than average. This particular point will be analyzed
chapter 5, but for the time being we go ahead and usc this assumption.

4.2.1 Probability of Conflict.

Our first step is to estimate the probability that two updates conflict, Pr(C).
That is, assume that update A has bcen granted at the central node the locks
for all of its Y4 items. Then we need the probability Pr(C) that a second update
B arriving at the central node will not be able to get a lock for one of its Yy
items. The probability that the first item of B coincides with an item of A is
Ya/M, where M is the total number of items in the database. The probability
that the other itcms in B coincide with one of the itcms of A is also about Yo /M
(assuming, of course, that Y and Yg <« M and that the probability of two hits
is very small). Since there arc Yg items, the probability of any conflict is

‘Z_A=YAY
M

In the rest of cur analysis, we use the average value of Pc:

YAYB] _ &)’ 23)

Px(C) =E[v M

(YA and Yp are indcpendent.)

4.2.2 Probability of Waiting at Central Node.

Equation (23) only gives us the probability of a conflict between two updates.
However, what we really necd is the probability that update B will have to wait
for locks at the central node (Pr(W)). Let J be the average number of updates
that are holding locks at the central node. Then,

Pr(W) = Pr(C)J. ' - (24)

68

CH. 4: PERFORMANCE ANALYSIS

To estimate J we necd to know how long a transaction holds its locks. If
the transaction originated at a non-central node, the locks arc held while the
originating node computes the update and until the central node is notified:

Le = (transmission from central to originating node)
=+ (time to compute update values)
-} (transmission from originating to central node)
~ (time to release locks).

On the average this becomes
Lpe =T+ Wae+LE[Y]+ T+ W+ LE[Y] + LE[Z]. ~ (25)

For a transaction originating at the central node, no transmissions are involved,
50

L. = W, 4+ LE[Y] + W, + LE[Y] + LE[Z). (26)
The average lock time for any update is

L— (%)I—qt(,iv)f @

sincc there are N — 1 non-central nodes and only one central one.
Using Little's formula [KLEI75), we can obtain the average number of trans-
actions holding locks at a given instant:

J = (arrival rate of lock requests)L,

or _ _)
T = NA\L. (28)

This value can be substituted into equation (24) to obtain Pr(W).

4.2.3 Cost of Conflicts.

To estimate the cost of each conflict, we will assume that an update trans-
action will at most conflict with onc other transaction during its execution. This
is rcasenable to do since the probability of two or more conflicts is much smaller
that the probability of one conflict. A delayed transaction must wait until the
lock it needs is released. On the average this time will be L/2 since we assume

69

b ——————t——— s e -

CH. 4: PERFORMANCE ANALYSIS

that the conflicting lock request arrives at a random point in time with respect
to the transaction that holds the lock. After waiting, the transaction must rcad
and sct the remaining locks. We assume that the conflict could have occurred -
with any lock, so that thc number of remaining locks is uniformly distributed
between 0 and Y — 1 items (Y is the number of items in the base set). The mean
and the second moment of the number of remaining locks are

E[Y]—1
)

E[Y] E[Y], 1
(T"T+E)

respectively. (Sce [GARCTS] for details.) Reading and setting cach of these locks
takes 2], secconds. Therefore, the mean and the sccond moment of the 10 service
time are: :

and

LEY]— 1)
and . |
gﬁ(E[;a] - %ﬂ + é-) (29)

We can now recompute the average JO wait time at the central node (sce
cquation 19). We now have a new type of request: the request to lock remaining
ilems (RLR). The arrival rate of RLRs at the central node is Pr(W)N\ which is
the fraction of the lock requests that arc not granted the first time through. The
total Poisson arrival ratc at the central node is (2N - 1--Pr(W)N)\. Equations
(17) and (18) are modificd accordingly to give

1

_— N ,
Xe= (2;\" +1+ Pr(W)N)zI"Em T (2N F1+ Pr(W)N)IdEIY]

+ (v W)N)(I.,E[Y]-}-IdE[ZD (30)

+(PrW)N)L(E[Y]-—l)

2N+ 1+ Pr(W)N

0

CH. 4: PERFORMANCE ANALYSIS

X2 = (2N 1 —11\-, Pr(W)N)M3 E[YY+ (2N 1 -il—Pr(W)N)I 4E[Y’]
+ (e B+ La(E0 +EY) + 2B ey

2N + 1 4Pr(W)N
Pr(W)N E[Y] E[Y] , 1
+(2N+1+1>1~(W)N)‘H3 3~z T/

When these new values are substituted into equation (19), we obtain the
ncw average wait time at the central node. In turn, the new value for W, is
substituted into equations (20), (21) and (22) to give us a new average response
timc K. However, to this valuc we must add the expected value of the delay due
to conflicts. Since a request that conflicts is dclayed L/2 seconds plus the time
to set the remaining locks, the new response time R is given by:

=R+ Pr(W)(L/2+ W+ LEY] — 1)). (32)

Here, 12 is the valuc obtained from cquation {23) with the ncw value of V.
The procedure we have just described can be repcated (starting at cquation
23) until the increase in R is negligible. The procedure to do this is as follows:

Initialize; Pr(W) := 0; L := 0; oldR :=0;

SolveSystem; << Result is I3, W, and W, >>

Do until "R is closc to oldR”
begin -
ConflictAnalysis; << Result is Pr(W) and L >>
oldR :=R;
SolveSystem; << result is new R, W, and W, >>
end; '

The complete program is given in appendix 3.

4.2.4 Convergence and Saturation.

A natural question to ask at this point ist Under what conditions does the
iterative anzalysis we have just described converge? That is, in what cases will
the difference between “oldR” and R actually approach zcro and in what cases
will this difference increase? We have not investigated this issue for the following
reason. If the algorithm of appendix 3 does not converge within a few steps (e.g.,

71

CH. 4: PERFORMANCE ANALYSIS

3 or 4), then the number of conflicts in the system must be significant. This
invalidatcs the main assumption of the analysis, so there is no point in studying
whether the analysis algorithm will eventually converge: in cither case the result
is not valid. Thus, in the program of appendix 3 we give up after 5 iterations. If
the program gives up for this reason, the analysis cannot provide good results.

In practice, this scems to be an adequate rule. In all the test cascs where
the analysis program gave up, the system was fairly close to saturation already
(as verified with the simulator). Thus, the analysis can be used to estimate the
point where the system becomes saturated.

 Also noticc that in some equations (like equation (19)) it is possible that

the denominator reach zcro, or evea become negative. In such cases, the system
is clcarly saturated and our analysis assumptions are invalid. The program of
appendix 3 will report this situation.

With this section we conclude the analysis of the MCLA algorithm.

5. THE DISTRIBUTED VOTING ALGORITHM (DVA).

5.1' No Conflicts Case..

We now analyze the performance of the distributed voting algorithm (DVA)
under the assumption of no conflicts. The type of analysis is very similar to the
onc performed with the centralized locking algorithm.

In the distributed voting algorithm there is no central node, so the analysis
is simplificd. At any node in the system there are three types of service requests.
The first type is a request to read the items and timestamps in the base set
(RRIT). These requests arc gencrated by ncw updates as they arrive at their
originating nodes. The time nceded to read onc item and one timestamp is Iy I,
so that the mean and second moment of RRITs are

a+T)EY] and (l-+LPE[Y]
respeciively. The arrival rate of RRITs is N per second because one RRIT occurs

for cach new update that arrives at a node (and assuming no rejected updates,
of course). :

12

CH. 4: PERFORMANCE ANALYSIS

The sccond type of request for service is a request to vote on an update
(RV). This type of request involves reading all of the fimestamps for the items in
the basc set. Since reading one timestamp takes J; seconds of 10 time, the mean
and the sccond moment of RVs are

LE[Y] and I’E[Y%.

Assuming that all nodes vote OK on all updates, a given node must vote on all
the updates that originate at that node. That node must also vote on all of the
updatcs originating at the Ny, — 1 previous nodes in the daisy chain, where Ny,
is the number of votes needed for a majority. Thus the arrival rate of RVs at a

node is N, A.

Finally, there are requests to perform an update (RPU). These requests
involve writing the items in the writc sct and updating the timestamps for these
itecms. Since for each item in the write sct we nced Iy 4 I; seconds of 10 time,
the mean and the second moment of RPUs are :

(I +L)E[Z] and (L I)*E[ZY.

The arrival rate of RPUs ab each node is N\ because all updates must be per-

formed at all nodcs.
The total arrival rate at a node is (1 -+ N, -+ N)\ and the probabilitics of

RRIT, RV and RPU are 1/(14-Nip+N), Nin/(14-Niw+N) and N /(14-Ni+N)
respectively. We can now usc equations (6) and (7) to obtain the mean and the
second momcnt of the service time at node ¢:

_ 1 , N
X;= (m)(ﬁ + L) BlY] + (m)f E[Y]

+ (e O B @

XI= m)(fé + L) E[YY + (l-l-lj\fvTﬂ—N)I 2E[Y?]

+ (e O PR 54)
Using equation (1), we obtain the average IO wait time at node i:
pXi(1+G;)
2(1—p) .
(1 -k Ny -+ NJAX?

2[1—(1+M,,+N)M\T-

Wi =

(35)

73

v

CI. 4: PERFORMANCE ANALYSIS

Figure 4.4

FIGURE 4.4

STEPS OF A TRANSACTION

DISTRIBUTED VOTING ALGORITHM
--- No Conflicts Case ---

ORIGIN: Node i.

Request arrives at node i
Read items and timestamps
Vote at node i
Transmission to node i+l
Vote at node i+l
Transmission to node i+2
Vote at node i+2

-
.

Transmission to node i + Nm - 1

Vote at node i + Nm - 1, update accepted
Transmission of accept message to node i
Perform update at node i

Average response time

[Note: Arithmetic (e.g., i + x) is modulo N.]

74

Average time
for step.

D R R e

W + (Is + Id) E[Y]

W + Is E[Y]
T
m'l + Is E[Y]
_ T
wi,-vz + IS E[Y]

T
WieNm-r + Is ELY]
T

W, + (Is + Id) E[Z]

CH. 4: PERFORMANCE ANALYSIS

(Notice that if there are no conflicts, W; is independent of 4. However, this is not
true in the gencral case and we therefore include the ¢ subscript here.)

“The next step is to use the result of equation (35) to compute the average
rcsponse time. Figure 4.4 shows the steps followed by an update transaction.
The average response time is simply the sum of the average times taken at each
stcp (by our independence assumption):

§+Npy—1
Ri=Wit L+ WEY+ Y, (W+LEN)+7)
=
' NWi‘ _‘f_‘_(fa + IdJ E[Z]: (36)
= Ej:n—o R |
R=="—. (37)

This ends the analysis of the distributed voting algorithm with no conflicts.

5.2 The DVA Algorithm - Conflicts.

The analysis of conflicts in the distributed voting algorithm is more complex
than the equivalent analysis for the MCLA centralized locking algorithm. The
tcchnique used is the same; however, there are many cases to consider in the
distributed voling algorithm. When there are no conflicts, all nodes in the dis-
tributed algorithm have the same behavior. Unfortunately, when conflicts occur,
" cach nodc performs dilferently since decisions arc made according to the node's

priority (i.c., its position in the daisy chain).

In the following, we assume that we have an cstimate for the average wait
time at node ¢ (W;). (Sce scction 5.1.) Furthermore, we assume that the num-
ber of updates that conflict is small compared to the ones that don’t conflict.
Wec also assumec that an update will conflict with at most one request before it
is completed. (That is, at most, an update will be retried once.) Finally, we

.assume that all conflicting updates are average updates {just as was done for the
centralized zlgorithm).

5.2.1 The Size of the Pending List.

The first siep is to estimate the following values:

75

CH. 4: PERFORMANCE ANALYSIS

pt[¢,] = the average time that an update that arrives at node 7 with 7 OK votes
will remain on j's pending list, assuming that the update is completed
without any conflicts.
ql¢, 7] = the average size of the pending list at node j due to update requests
that arrived at j with ¢ OK votes (only considering requests without any
conflicts).
For example, pt[0, 1] is the average time that an update that originated at
nodc 1 will stay on the pending list at node 1, assuming that the updatc completes

without any dclays.
Since A requests per sccond arrive at node 7 with ¢ votes (0<i<N,—1),

then by Little's formula

ql?, 5] = A pi[i,J] (38)
To compute pt[¢, 5], we consider the interval between the time an updateis placed
on the pending list end the time it is removed. When the update is placed on the

pending list at 7, it has ¢ 4 1 votes. Therefore it will remain on until it receives
Ny, — (% -+ 1) more votes and it is accepted. Thus, if (7 - 1) 5 N,

Nen—(i-+1) '
pilidl= 3 (T+Wie+LEY))

k=1

+ T+ W+ + L) E[Z]. (39)

The last two terms represent the update time nceded to remove the update from
the pending list. If (¢ 4 1) = Nj;, then no more votes are necded and

pili, 1] = W+ (la + 1) E[2] - (40)

The next step is to study how a conflict between two updates can occur
and to ecstimate the extra IO load and delay in each case. There are basically
two types of conflicts: (1) an update, A, arriving at a nodec might find that its
timestamps are obsolete or (2) update A might conflict with another request on
the pending list.

5.2.2 Obsolete Timestamps.

Obsolete timestamps occur when a conflicting update B is accepted while -
update A is being processed. Update B must have obtained its Ny, OK votes at

76

CH. 4: PERFORMANCE ANALYSIS

Figure 4.5
0
THE NETWORK: 5
(N=6) !
3 4
AT NODE: ! -2 3 4
/—l_’_\ N~ A
EXECUTIONOF IR ELZ-E 2+ 2-F &
UPDATE A: LT N TN N | |- TIME
4 [}
I 1
UPDATE B ! :
ACCEPTED AT : X |
NODE O — ! X
I
NODE | X r
1 l}
' !
NODE 2 — X _TIME _
{]
N I
ODE 3 ! ‘
NODE 4 d-—a(_-—:o-@—v-l'
NODE 5

Pigure 4.5. How and when obsolete timestamps occur.
(Update A originates at node 0.)

(i

CH. 4: PERFORMANCE ANALYSIS

nodes where A has not been processed (otherwise A would have been deferred)
and similarly A must have received its OK votes (0 < votes < N — N,,) at
nodcs where B has not been processed.

For example, figure 4.5 shows how and when obsolete timestamps can occur
in 2 6 node system. The top line shows the steps involved in processing an update
request A that arrives at node 0. Below this linc, we show the time intervals
where the acceptance of a conflicting request B would cause A to sce obsolete
timcstamps. These intervals are dependent on the node where B is accepted;
therefore we show the intervals for all six nodes. We illustrate the case where
B is accepted at node 4: If B is accepted at any time in interval e (sec fig. 4.5),
then the acceptance message will arrive at node 0 just before A is voted on. This
mcans that A will sec old timestamps. If B is accepted in interval 8, then the
accept message will arrive at node 1 before A is voted on and A will sce obsolete
timcstamps in this case too. If B is accepted before @, then the update acceptance
message will arrive at node 0 before A cven reads the items, so when A reads
the items it will obtain the new values. If B is accepted after 8, then A will not
scc oid timcstamps at node 2 because it will be delayed (or deadlock rejected) at
node 1. Notice that for B to be accepted at node 4, it must be on the pending
list at node 1 and it will thereforc be impossible for A to proceed past node 1.
(At this point we only consider updates that sce old timestamps; cases whcre A
conflicts with an update in the pending list are treated later.)

From this example, we can writc down what happens in the general case.
The probability that an updatc that originates at node ¢ will obtain obsolete
timestamps on its vote request (RV) at node 7 itself is:

Pold[i; i = Pr(C'){M_',-R + (N - 1)[W.-+ L+ Id)E[Y]:l)\} (41) |

where Pr(C’) is the probability of a conflict. In this case, a conflict occurs when
onc element of the write sct of the accepted update coincides with one item of
the base set of the other update. Thus,

E[Y]E[Z]
M

(Compare equation (42) to equation (23).) The valucin curly brackets in equation
(41) is the av cragc number of updates that are accepted in the critical intervals
(c.g., interval a of figure 4.5).

What is the cost of such an occurrence? Thc update that failed must be
retried. Therefore, all IO operations up o the point where the update was rejected

Pr{C") = (42)

78

CH. 4: PERFORMANCE ANALYSIS

will bc overhead. Thls includes onc RRIT and one RV at node . Thus, the arrival
rate of these requests must be modified:

arrival ratc of RRIT]¢] := arrival ratc of RRIT[¢] + Pold[z, 7]\ (43)
arrival rate of RV[¢] := arrival rate of RV[] + Pold[z, 7]\ (44)

(The initial values of arrival rate of RRIT[7] and arrival rate of RV[i] are the
values in the previous section.) The rejected request will be delayed. by

. Wit (L +L)EY]+ Wi+ LEY] +Re.
(and Ry is the retry time). Therciore, when we recompute the average response
time (cquation 37), we must add a term to account for this delay. We will do
this by dcfining a variable 'dclay[i] which will accumulate all of the delays for

updates that originated at node ¢. Variable delay[é] is initially sct to zero and
when we are done recomputing B (cquation 37), we will add this term. Thus,

delay[¢] i= dclayl[s]
- Poldfi, i [‘W;+ (I L) E[Y] + W4 LE[Y] +R¢] (45)

(where Pold is defined in equation 41.)

Up to now, we have only considered updates that are rcjectcd at theoriginat-
ing node ¢ duc {o obsolete timestamps. Next we consider such rejections at other
nodes. This can happen at nodes ¢ -7 for 1 < j < (VN — N,,) only. (Sec figure
4.5.) (The computation of node numbers (c.g., ¢ - j) is always modulo N.) The
probability that the update that originated at nodc ¢ is rejected at 2 -+ 7 because
of old timcstamps is: .

P, i+ 3] = PAOH [N — Nt) = i Wi + LB+ T (49

The cffect of such a conflict is that the update progress so far {through voting
at nodc ¢ - 5) will bc wasted and the update must be retricd. This is taken into

account as follows:

arrival ratc of RRIT[¢] := arrival ratc of RRIT[¢} 4 Pold[, ¢ + j]A, {47)
arrival rate of RV[k] := arrival ratc of RV[k] 4 Pold [z, 2 -+ 7]\
for: <k<t4j, (48)

acagl] = dlayll -+ Poldl i+ s+ (U W) BIY]+

17
FLEY]+ S (T+‘w:+1;E[Y1)+T+Rt}(49)

k=i41

79

CH. 4: PER.FORMANCE ANALYSIS

Recall that cquations (46) through (49) must be repeated for 1 < 7 < (N —Np),
while equations (41) through {49) must be repeated for cachnode 0 <7 < N—1.

5.2.2 Conlflicts with Pending Requests.

The other type of conflict occurs when an update A arrives at a node with
currcent timestamps, but it conflicts with an update on.the pending list at that
nodc. We divide this analysis into two parts: the conflict occurs at A's originating
nodc ¢ {on first votc) and the confiict occurs at the other nodes (¢ -1, 7 4 2,
cte.).

The first case is the [ollowing one. Update A arrives at node 2. It reads the
items and timestamps and then 7 voes on A. During the voting, node ¢ notices
that A corrlicts with an update B. Assume that B originated at node : —h where
0 < h < Np—1. (As always, ¢ —h is performed modulo N.) The probability
that this happens is the probability that A and B conflict times the average
number of requests from 7 — A that are on the pending list at :. That is,

Pr(C") qlh, 7] . (50)

‘where qlh, ¢] is defined in cquation (38) and Pr(C”) is the probability of a conflict.
There are actually two ways in which A and B can conflict. An itcm in the write
sct of B can coincide with an item in the base sct of A. The probability of this

Pr(l) = E[%M (51)

and if B is ever accepted, then A must be rejected. The other way that a conflict
can occur is for an item in the write set of A to coincide with an item in the read
sct of B (i.e., the base minus the write sct). The probability for this is '

_ E[ZJElY~17) _ ElZ)E[Y]—Efz)

Pr(2) i M } (52)
and in this case A may continue after B is accepted. Therefore,
Pr(C") = Pr(1) + Pr(2) (53)

Thus, with probability (Pr(1)--Pr(2)) qlr, 7] update A (origin) will conflict
with B {origin 7 — h) at node ¢ (0 < h < Nj— 1), There are two actions that
the distributed voting algorithm will take in this case: Either A is delayed at i

- 80

CH. 4: PERFORMANCE ANALYSIS

or A reccives 2 DR (dcadlock reject) vote. We study the effects of the actions
separately.

Il © — h is greater than ¢ (¢ —h modulo N), then A will be delayed at <.
In this case, with probability Pr(1) glh, ¢}, A will wait until B is accepted and
then A will be rejected. A's delay will be (A's wasted time) - (average time for
completion of B), or

delaylt] := delay[z] 4+ Pr(1) q[h, z]{—V»T,
+ O+ WEX e LE R ERAL g

{Sec cquation (39). We assume that B's remaining time is uniformly distribuied
between 0 and ptlh, ¢).) One RRIT and one RV will have to be repeated for A,

80

arrival ratc of RRIT[¢] := arrival rate of RRIT[¢] + Pr(1) q[R, Z]A (55)
arrival rate of RV[¢] := arrival rate of RV[z] --Pr(1) [k, 2]\ (56)

On the other hand, with probability Pr(2) [k, 7], A will only be delayed and
not rejected. In this case, we will have to vote again on A, so

arrival rate of RV[i] := arrival rate of RV[7) 4- Pr{2) q[h, 2]\ (57)

delayfi] i delay] -- Pr(2) ol i]{W—.-—HsE[Y] + 2L

Ncxt we consider what bappens if A is deadlock rejected at node 2. This
happens when 2 — h is less than ¢, and in this casc somcthing curious occurs.
Update B has received b OK votes before node 2, one OK vote at node 7 and will
go on to receive OK votes at nodes 241, 24 2,...7 4 (N — h — 1). This is
assuming, of course, that B does not conflict with any other requests. Here we
assumec that this is true because, as we stated earlier, the number of updates that
have conflicts is small and thercfore, chances are that B will complete with no
delays. Also nolice that update B is “ahecad” of A in the daisy chain and when A
arrives abt node 7 -1 (after its DR at node 7), it will again see B on the pending
list at that node. Thercfore A will get another DR vote at ¢~ 1. This chase will
continue until B is accepted and A arrives at a node where B has been removed
from the pending list. When this occurs, with probability Pr(1) g[k, 2], A will be
rejected (because its timestamps are obsolete) and with probability Pr(2) qfh, 7],
A will be able to continue.

81

CH. 4: PERFORMANCE ANALYSIS

To cstimate the effccts of this chase, we assume that the time before B is
acceptied at all nodes is pt[k, 7] /2. Then we see how far A can go in this time. The
following program segment computes the delays and the extra loads involved:

‘<< At this point, A has just started exccution, “Exce-time" will
be the time that A has been in exccution. “4” is the node
where A is currently at. >>

Exce-lime := W; -+ (I, 4 I;) B[Y] + W; + LE[Y];

k:=1; << nodei>>

skip := 0; << skip will count the number of DR votes. >>

arrival ratc of RRIT[¢] := arrival rate of RRITI¢] 4+ Pr(1)q[h, N

arrival ratc of RV[¢] := arrival rate of RV[¢] +Pr(1) gfh, 2] ;

<< Now A has bcen deadlock rejected for the first time. >>

Remaining-time := ptlh, 7]/2;

While remaining-time > 0 do

. begin
<< A advanccs to next node, >>
k:=k - 1; << modulo N >>
skip :=skip 4 1;
exce-time 1= cxec-time ++T 4 Wi+ I, E[Y]
arrival ratc of RV[k] := arrival rate of RV[k] 4-Pr(1) g[h, Z]A
remaining-time := remaining-time —(T + Wi+ LE[Y]);
end;

<<< With prob. Pr{l)q[h, 2], A was rejected at last vote, so: >>

delay(r] := delay[s] +Pr(1) qh, 7](cxce-time +T 4Ry);

<<< With prob. Pr(2) qlh,], A will continue. Update A wasted

skip —z votces, 50 A will have to go past node -+ N, — 1 in
ordcer to obtain its N, votes. Thercfore, >>

delay[é] := delay[s] - Pr(2) gk, 7] (exec-time —W; — (I, 4- I;) E[Y]);

For l:= (i 4+ N, — 1) 41 until (¢ + N, — 1)-}-skip do

arrival rate of RV[l] := arrival rate of RV[[] 4-Pr(2) q[h, 7]\ ;

Up .to now we have only considered the case where A conflicts with B at
A’s originating node 4. Now we consider the casc where A conflicts with pending
request B at nodes ¢ - 1, ¢ -+ 2, ctc. In the previous case, A could conflict at ¢
with requesis originating from scveral nodes. However, in this case A can only
conflict with pending request B at node ¢ - g if B originated at node 2 g
(for 1 < g < N — 1). To sce this, imagine that B did not originate at node
¢ =~ g. Then, if it is in the pending list at 7 - g, it must also be on the pending

82

CH. 4: PERFORMANCE ANALYSIS

list at 7 -+ g — 1 and A would have conflicted with B at that node and not at
1 -+ g. This argument is only valid under the normal operational conditions we
arc considering, where no updates or messages are delayed in the communication
lincs. '

The analysis of this case is similar to the previous one. The details are shown
in appendix 4 where we present a complete program to compute the average
response time. (See last part of procedure “Conflicts”.) However, there is one
spccial case we must consider. This occurs when the number of nodes, N, is even
and when A conflicts with a pending request on its last vote at node ¢ 4Ny — 1.
This is a special case because if A is delayed at that node, it holds Ny, — 1 votes
and the request it conflicted with, B (origin at ¢+ Ny — 1), will not be able to
obtain a majority of votes. (Majority in this case is Nj, = N/2-}-1.) We analyze
this spccial casc in a scparatc way.

First, we estimate the probability that this special case occurs. We do this
through an example. Figurc 4.6 shows the cxccution of update A which started
at node 0 of a four node system. Below this, is the exccution of B, the conflicting
request that originated at node 2. The relative position of the time axis of B
shown in figurc 4.6 is not important; as a matter of fact, it hclps if onc views B's
axis as being able to slide back and forth with respect to A's axis.

We wish to find the time interval where B could arrive in order for the
conflicl to occur. There are {wo conditions that must be met if A is to conflict
with pending request B at node 2. First, B must be on the pending list. That is,
B's first votc al 2 must have occurred before A arrived at 2; otherwise A could
complcte. This first condition implics that point P; must precede point £ in
time: P; > P4 (Sce figurc 4.6.) The sccond condition is that A originates at
node 0 before B arrives there; otherwise B completes before A ever gets to node
2. This condition mcans that P, > Pj. Since Py=P3-}Dp and P, =P, -+ Dy
(scc figure 4.8), our two conditions imply that

Py —Dg < Py < P34 Da.

The probability of the special case occurring is the probability of a conflict be-
tween A and B (Pr(C")) times the number of possible B “candidates”. Since
updatces like B originatc at node 2 at a rate of N per sccond, an estimate for
the number of candidates is N(Dy -+ Dp) and the probability of a special case
is Pr(C")\(Da -+ Dp). From this example, we can generalize and find that the
probability of the special case is ‘

83

CH. 4: PERFORMANCE ANALYSIS

Figure 4.6

0
THE NETWORKX:
o= Q) ! 3
2
EXECUTION OF A: l

*: ”~~N

« > =

3 '\c_c(' z g

+ +‘ + s +

° o - o
B '; \‘ l;,/, l;
7 TIME
T NN ,
DA"t
% 7\ p‘!»
P 4% B's RV must occur before A's RV.
s’ \
7/ t A's RV must occur before B's RV.
= - 1/ ’
& S > ,}5\\
(e « 4 o Ne]
+ + +
) ©

= B = 4

| T N N] TIME

EXECUTION OF B: r

Figure 4.6. Example for the special case.

(Update A originates at node 0; update B originates at
node 2.)

84

CH. 4: PERFORMANCE ANALYSIS

N—1

Pr(S) =Pr(C" Y (Wt LEY] +7). (59)

k=0

Thecffects of the conflict depend on whether A is delayed or deadlock rejected
at node ¢ 4 N,, — 1. If A has a higher priority than B (ie., : <:+N,,— 1),
then A will be delayed at node ¢ - N, —1 until B gets its N,,,— 1 OK votes and
its Ny — 1 DR votes and B is rejected. After voting again at node 2+ N,,; — 1,
A will be able to continue. We assume that B's remaining time fo rejection is
uniformly distributed between 0 and the time for N votes (Ny — 1+ Ny — 1
), so that

N—1
delay[i] := delay[i] + Pr(S){% 3 (Wk + LE[Y] + T)

k=0
o+ Wermoi + LEIY). (60)
The extra 1O load is |
arrival rate of RV[i+ Ny —1] i= arrival ratc of RV[z-I—Nm—l] -I—Pr(S)}\ (61)
On the other hand, if A has lower priority than B (7 > {-+N,,—1), update

A will be deadlock rejected at node 2 4~ Ny — 1 and at the following nodes uniil
A is rejected. In this casc,

dcloyfil = deayl] + Pr(SH Wi-+ e+ L) BIY)

N-—l
+ 2\ S (Wi LEY] + T) -}—R;} (62)
arrival rate of RRIT[¢] := arrh al rate of RRIT][¢] -+ Pr(S)A (83)
arrival rate of RV[k] := arrival ratc of RV[k] 4 Pr(S)A,
fork:=0,1,2,...N—1. (64)

This complcics the analysis of the special case.
We have now computed the elfects of the most important types of conflicts.
The cifccts are of two types. First, the arrival rates of RRIT and RVs at cach

85

CH. 4: PERFORMANCE ANALYSIS

nodc have increased. This mcans that the average wait time at cach node must
be recomputed (cq. 35). Sccondly, we have computed the expected value of
the delay of a single request (delay[¢]). Therefore, this value must be added to
the average response time of requests that originate ab node 7 (cq. 36). After
performing these two steps, we have new cstimates for the average wait times
and the average responsc time. This procedure can be repeated until the values
converge. The details of this proccdure are shown in the program of appendix 4.
The result of executing this procedure is the average response time for updates in
the distributed voting algorithm. (The comments on convergence and saturation
of scction 4.2.4 also apply to the DVA algorithm.)

In the next chapter we will make some improvements on the analyses we
have presented here. Then, in chapter 6, we present the performance results for
the update algorithms.

86

CHAPTER 5

COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

In this chapter we compare the simulation and analysis techniques that were
presented in chapter 4. In scction 1 we compare the performance results that
were obtained for the MCLA and DVA algorithms. In section 2 we describe some
refinements to the MCLA analysis that are intended to improve the accuracy of
the results. Then in scction 3 we present the results obtained with the refined
analysis and we compare these results to the MCLA simulation resulés. The
rcasons why cven the refined analysis results differ from the simulation results
in certain parameter ranges are given in section 4. In section 5 we show how the
analysis of the DVA algorithm can also be improved. Finally, in scction 6, we
briefly mention the advantages and disadvantages of each technique.

1. COMPARISON OF THE MCLA RESULTS.

The analytic technique for studying the performance of the MCLA and the
DVA algorithms is divided in two parts. (Sce chapter 4). Initially, the algorithms
are analyzed assuming that no conflicts among the updates occur and then the
conflicts are taken into considcration. In order to check both parts of the analysis,
we initially compare the results of the first part of the analysis with special
modified simulators that produce no conflicts among the update transactions.
Then, in seciion 1.2, we study the tesults of the second part of the analysis in
relation to ihe results produced by the original simulators.

1.1 Comparison of the Results When No Conflicts Occur.

The simulators of the MCLA and the DVA algorithms were modified so that
no conflicts occurred among the updates. This was simply done by making the

87

2

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

outcome of the test for conflicts be always false. No other parts of the simulators
were changed.

The results obtained from the modified simulators for the case of 6 nodes
are shown in table 5.1, In this table, R, is the avcrage response time for updates,
s2 is the sample variance of the obscrved response times and n is the number of
observations. For the MCLA algorithm, the IO utilization at the central node
is given, while for the DVA algorithm, the average IO utilization at the nodes
is given. The results obtained from the first part of the analysis are also shown
in this table (R,). The column labeled “%DIFF.” gives the difference between
the simulation average response time and the analytfic average rcsponse time as
a percentage of the simulation avcrage response fime.

To give an idca of the accuracy of the simulation results, we compute the 90
percent confidence interval for the results shown in table 5.1. (See [FREUT1].)
. First we assume that the n samples taken from the simulation are n independent
samples from a distribution with mean p and standard deviation o. (The samplcs
arc not quite independent because the value of a sample may allect some of the
other values. That is, the samples may be autocorrelated. However, when the
number of samples is large, we can assume that the samples are independent and
obtain satisfactory results; sce [GORD78].) Statistic F, is the average of these
n samples and we are interested in knowing how close to the true mcan, p, our-
estimatc R, is. From the central limit theorem [FREU71], we know that the dis-
tribution of the sample mean { of which R, is a sample) can be considered normal
for a large number of samples regardless of the original distribution. Therefore,
we can obtain the 90 percent confidence interval for R, as:

(R:'—Z.osi , Ryt Z.os—o—) (1)

ﬁ n

where constant Zgs is 1.65. Since we do not know the standard deviation, o,
we must approximate this as the square root of the sample variance sZ obtained
from the simulation. Thus, the 90 percent confidence interval is approximately

— 2 52 o
R—185/S , R+165= 2)

is iaiervel can be interpreted as follows: If we run the simulation for a
given casc Qu differcnt times (cach timestarting from different initial conditions),
then 89 cutb of the 100 times, the interval given above will include the true mean

my
ni

88

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

———— —— — ——

Teble 5.1

TABLE 5.1

COMPARISON OF ANALYTIC AND SIMULATION RESULTS.

N=26, Bs =

NO CONFLICTS CASE
5, M =1088, T = .1, Rt =

MCLA Centralized Locking Algoritha.

[

Ar | a
....... i
15 | 8.769
18 | 6.829
7 | 8.936
5 | 1.194
4 | 1.747

Ar Ra
15] 1.526
16 | 1.689
7 | 1.735
5 [1.951
4 | 2.287

I

| Rs | s
[omemen- fommmeen
| 8.768 | £.385
| 8.834 | 5.399
| 8.951 | §.577
| 1.248 | 1.231
| 1.852 | 3.25%

rrmcsen | cocan--

— — e —— et —— —

1, Is = Id = 8.825.

!
|
l
!
|
|
I
!

Ut

ation{}

iliz-|

%4

Diff X

%

f I0 utilization at central node (from simulation).

% Average IO utilization at all nodes (from simulation).

¥ % Difference

= 180%(Rs - Ra)/Rs.

§9

$# 95 % confidence interval is 1.65%sqrt(s*s/n)%188/Rs.

96%

|
Diff.*| C. 12

|

T o —— —

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULA’I‘ION.TECHNIQUES

" of the response time distribution, u. The 90 percent confidence intervals for the

cases in table 5.1 are given in the last column of that table. The interval is given
as a percentage of R, in order to make comparisons with the “%DIFF." column
easier.

The cases shown in table 5.1 seem to be typical cases and the diff erences be-
tween the simulation and the analytic resulis are relatively small. However, notice
that in many of the cases, the analytic result B, is not in the confidence interval.
Also notice that when the utilization is greater than 0.60, the difference between
the analytic and the simulation results is considerably larger. The significance of
these observations will be discussed later; first we compare the techniques when
update conflicts are taken into account.

1.2 Comparison of Results When Conflicts Occur.

Table 5.2 compares the simulation results to the analytic results when
conflicts among updates are considered. The simulators used did not have the
modification described in the previous section and the analytic results were ob-
tained using the complete technique described in chapter 4. (See appendices 3
and 4.) The cases given in table 5.2 are for various combinations of the number of
nodes /N and the interarrival time A, for both the centralized and the distributed
algorithms. The column heading are the same as before.

Notice that the difference between the analytic and the simulation results is
now larger. The diffcrence increases as the utilization increases. However, it still
scems that in most of the cascs tested (in addition to the cascs shown in table
5.2), the difference was relatively small as long as the utilization at all nodes
was less than 0.50. The one exception to this rulc were the cases where the ratio
B;/M was larger than 0.01, as is illustrated in table 5.3. This table gives the
difference between the analytic and the simulation results as M was varied while
B, was held constant. Notice that some of the diffcrences are larger than what
we would expect from table 5.2 since the utilization is less than 0.50.

The fact that the analytic results differ from the simulation results as more
conflicts cccur (ie., as By/M increases), suggests that the analysis for conflicts
is undercsiimating the cost of conflicts occurring. In the next section, we refine
some zspecis of the conflict analysis of chapter 4 in order fo try to reduce the
difference with the simulation results.

90

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

Tauble 5.2

TABLE 5.2

COMPARISON OF ANALYTIC AND SINMULATION RESULTS.
--- CONFLICTS CONSIDERED ---

Bs =5, M= 1888, T= .1, Rt =1, Is = Id = 8.825
MCLA Centralized Locking Algorithm.
|Utitiz-] % | 98% |

| | [I | |
{ N g Ar | Ra | Rs { s* | n | ationt] Diff.X| Cc. I¥¥|
----------] e Rl et] R L
| 6 1 15 | 8.772 | 8.808 | 6.339 | 8956 | 8.265 | +3.45 | 1.27 |
}] 61 18 | 8.835 | 8.855 | 8.582 | 9654 | £.388 | +2.29 | 1.39 |
6	7	8.951	1.818	8.918	9204	8.443	+5.86	1.63
6	6	1.843	1.138	1.415	8957	8.522	+8.34	1.82
6	5	1.237	1.415	2.787	9655	B8.627	+12.6	1.98
91 186	8.951	1.085	.6.893	9568	8.457	+5.33	1.58	
9	7] 1.288	1.553	3.714	9287	8.657	+17.1	2.13]	
Distributed Voting Algorithm								
o [JUtitiz-l %	98%						
NJT A0	Ra	Rs	s*	n	ation#] Diff.*	C. I?¥		
[-=-]-mmmmee	- ommmen f-emenne [-nene Rl e [oesmeee	-meeeee						
6] 15	1.548	1.537	1.689	§331	8.117	-8.72	1.53	
f 6] 18	1.646	1.675	1.665] 5331	8.177	+1.73	1.71		
] 6 { 7	1.796 [1.871	2.263	5331	6.256	+4.81	1.82		
6	5	2.868	2.229	3.508	5328	8.365	+7.58	1.98
l 9 15 | 1.892 | 1.983 | 1.817 | 5327 | 5.158 | +8.58 | 1.68 |
} 9 1] 7 | 2.378 | 2.529 | 3.913 | 5722 | £.351 | +6.29 | 1.71 |

I0 utilization at central node (from simulation).
¥ Average IO utilization at all nodes (from simuIation).
% % Difference = 186%{ Rs - Ra)/Rs.

x % 98 % confidence interval is 1.65%sgrt(sxs/n)=198/Rs.

g1

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

Teble 5.3

TABLE 5.3

COMPARISON OF SIMULATION AND ANALYTIC RESULTS.
--- EFFECT OF HIGH LOCK ACTIVITY ---

Conflicts considered, .
N=6, Bs=5, Ar=16, T= .1, Rt =1, Is=1d = 8.825.

MCLA Centralized Locking Algorithm.

| [i _ | Utiliz- | %
| M | Ra | Rs | ation +| Diffx|
--------- Rttt Rttt el e R
1666	©6.835	£.855	£.388	+2.34
488	©.846	06.893	8.313	+5.26
268	8.863	£.946	6.318	+8.77
[188	©.897	1.844	8.328	+14.88
Distributed Voting Algorithm.				
. [] Btitiz-	%			
M	Ra i Rs	ation 4	Diff.¥]	
--------- R B L B ttated Dol L				
1886	1.646	1.675	8.18¢	+1.73 I
488	1.781	1.839	8.185	+7.56
386	1.732	1.898	8.187	+8.75
288	1.793	2.843	6.193	+12.24

4 I0 utilization at central node (from simulation).
4 Average IO utilization at all nodes (from simulation).

% % Difference = 188%(Rs - Ra)/Rs.

92

CH, 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

2. Conflict Analysis Revisited — The MCLA Algorithm.

In this section, we consider some “second order” effects of conflicts in the
MCLA algorithm. Some of the results obtained here will also be applicable to
the DVA algorithm, but in order to simply the prcaentatlon, we will consider the
distributed algorithm later,

2.1 Probability of Conflict.

In chapter 4, we found that the probability that {wo updates conflicted (e.g.,
their base sets intersected) was given by

3 2 .
Pi(c) = S ®

(see equation (23) in chapter 4). The derivation of this equation did not state
clearly for what values of B; (the base set parameter) and M (the number of
items) the equation was valid. We will now derive a better approximation of
Pr(C) and we will investigate the ranges of B; and M where it is valid.

Suppose that we have two updates, A and B. Let discrete random variable
Y bec the number of items in the basc sct of A and let discrete random variable
X be the numbecr of items in B's base set. Let us represent the event “A and B
conflict” by C and theevent “A and B do not conflict” by NC. The probabilitics
‘of these events occurring are Pr{C) and Pr(NC) respectively, and Pr(C) equals
1—Pr(NC). Update B conflicts with A if at lcast one item in B coincides with
an item in A's base set.

First we will obtain an expressica for Pr{NC) given that we know that the
value of Y is 7 and the value of X is j. We write this expression as Pr(NC' | Y =
tand X = j). The process of two updates conflicting can be viewed as sampling
without replacement [FREUT1]. We have a set (update A) with M elements of
which 7 elements are Jabeled “success” and M — ¢ are labeled “failure”. We wili
sampic from this seb 7 times. Bach of the 7 times, we select an element of the eet
at random and if we have a success then we have a conflict. A particular element
of the set {i.e., an itcm) cannot be selected more than once (i.e., no replacement;.
That is, we are selecting a subset of j elements and we are interested in the
Sility $hat all elements selected are failures (Pr(NC)).

T.“ sre are (M) ways in Whlch a subset of 5 elcments can be chosen from a

o~ (

i v

J

a3

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

is the number of combinations of j ebjects sclected from a set of M objects and

is given by y y ‘
(,-) = F0—a “

The number of subsets (of 7 clcmcnts) that have no successes is the number of

ways in which we can choose the j elements from the M — ¢ failures, or (M ’).
Therefore the probability of not getting a conflict is given by

&

To computc the probability of no conflict Pr{NC) from Pr(NC' | Y = tand X =
7), we use the so called “rule of elimination” [FREU71]:

PNC|Y =iand X = j) = 5)

M M
Pr(NC) = Y Pr(Y =i)Pr(X =j | Y =i)Ps(NC | Y = {and X = 3) (6)
J=li=1

Since X and Y are independent, Pr(X = j | Y = 1) is Pr(X = j). Taking into
account the limits for ¢ and 7, and equation (5), we obtain: ,

M M—j (M—-u)
Pe(NC) = > Pr(Y =) Pr(X = j)=Fi=" (7)
J=1 1=l ()
In chapter 4 we showed that
. R l—a N .
Pr(Y =1)=Pr(X=1)= e 8

where & = exp{—1/B,). Using this fact and equation (4), we get:

M M—J

.L—G) ,(M—-z‘M—-—z——l) M —i—741)
2 20 M—1)M—2)...(M —j+1)

Pr{NC
=1 =1

(9

94

USSR

CH. 5: COMPPARISON OFF TIE ANALYSIS AND SIMULATION TECHNIQUES

Tuble .4

TABLE 5.4
COMPARISON OF P(C) WITH ITS ESTIMATE.

I | | (E[YD® | [%
} Bs } MO T w1 P(e) f} Diff.*;
....... --...-_..-_I-..-....-..-..!..---........- - .-
1	2696	©.85125	8.86125	6.81
1	10668	6.68256	6.86258	6.88
1	288	6.61251	68.81247	6.38
[1	166	6.62562	6.82486	6.64
1] 20	8.1251	8.1289	3.47	
: 1 } 16	8.2582	8.2334	7.20	
------------------ R reoul syt Raateteatd				
] 5	18288 -	0.00384	8.88383	8.32
1 5	5006	5.08G688	5.88634	8.72
5 I 1066	8.83843	£.62928	3.93	
I 5	508	©.560686	£.65644	7.83
I 5	180	8.3043	£.2230	36.88
5 56	6.6886	8.3629	67.78	
Jommmmee- Jomomemenn |==mmoene [-=smmmmne [m=mmmne- |

18	26006	5.88552	§.86547	8.81
18	18808	£.51184	6.61885	1.71
18	2888	§.55521	8.85682	8.62
18] 1893	8.1184	£.89453	16.81	
18	266	©.5521	6.3181	73.56
18	186	1.1842	£.4683	135.75
R	=emmmemo	-mmesenes [reemnmne [mmneenen		
28	46068	©.81851	§.21832 ! 1.7%	
26	26088	8.82182	8.82627	3.65
28	4888	8.1851	B8.88936	17.61
26	2808	8.2182	6.1573	33.61
I 26	466	1.8518	6.4352	141.58
28	288	2.1821	8.5839	266.88

1 Computed using equations (9) and (18) of chapter 5.
* Computed as 186+{estimate ~ P{C)}/P(C}.

o0
Ut

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

Once we evaluate equation (9), we can find P(C) simply as . .
Pr(C) =1—P:(NC) (10)

It seems hard to find a closed form expression for equation (9), so we evaluate
it and equation (10) using a numerical method. A program to evaluate with high
accuracy equations (8) and (10) was written [GARCTS]. Table 5.4 compares the
values of Pr{C) obtained by means of the program with the estimated values
given by equation (3). From these results it scems that equation (3) is a good
approximation to Pr{C) only when (E[Y])?/M is less than 0.05.

Notice that the values of Pr(C) given in table 5.4 are in all cases less than
the estimated values of cquation (3). This is unfortunate since this will increase
the difference between the analytic and the simulation results in table 5.3. For
cases with (E[Y])’2/M < 0.05, the decrease in Pr(C) is very small, so that the
diffcrences in table 5.3 will hardly increase. However, when (E[Y])?/M > 0.05,
the increased deviation of the simulation and analytic results will be ..ot;ceabie
We will discuss the implications of this later.

2.2 Size of the Base Set Given Conflict.

In chapter 4, we assumed that an update that conflicted had average charac-
tcristics. In particular, we assumed that the size of its base set was given by

E[Y] = (1 —exp(—1/B)) ' = (1—a) {11)

(where @ = exp(—1/B,)) and this value was used in the rest of the analysis.
However, since we know that the update has conflicicd, we expect the base set to
be larger than average. In this scction, we derive an expression for the average
base sct of an update given that it has conflicted. To do this, we assume that
(E[Y))*/M is less than 0.05.

Suppose that update A has arrived at the central node to request locks and
it has conflicted with update B. Asin the previous scction, we let discrete random
variable Y be the number of items in A’s base sct and discrete random variable X
be the number in B's base set. Also let C be the event “update A conflicted with
B". We arc interested in the expected value of Y given event C, i.e., E[Y | C].
We ccmipule ihis from the following equation: '

[o0]

E[Y | cj = iPr(Y =1]C). - (12)

=1

96

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

The expression Pr{Y = ¢ | C) is the probability that A has ¢ items in its base
sct given that it has conflicted. To compute Pr(Y = ¢ | C), we use Bayes' rule
[FREUT1):

Pr(Y =¢)Pr(C | Y =1)
Yo Pr(Y =K)Pr(C | Y = &)

The denominator in cquation (13) is the probability of a conflict Pr{(C). The
value of Pr(Y = 1) is (1 — a)a’/a. (Sec cquation (8).)

To compute Pr(C | Y ==) for cquation (13), we must know how many items
arc in update B (that is the update A has conflicted with). In other words, we
know Pr(C | Y = ¢) given that X, the number of items in B, is 7. This last
expression is Pr{C | Y = ¢ and X = j). Since (E[Y])’/M is less than 0.05, we
approximate this by: '

Pr{Y=i|C)= (13)

, 'Pr(c|Y=iandx=j)=% (14)
This equation was uscd in chapter 4 to derive the approximation to Pr(C)
(cquation (3)). Since that approximation was good when (E[Y])%/M was less than
0.05, we expect cquation (14) to be a good approximation for this case too. (In.
other words, if (E[Y])?2/M << 0.05, then for the most probable values of ¢ and 7,
cquation (14) will be a good approximation.)
From equation (14), we compute P=(Y =1 | C) as follows:

Pr(C|Y =14)=) Pr(C| Y =iand X =j)Pr(X = j), (15)
i=
Pr(C|Y=1)= iﬁ[{X] (18)

where E{X] is of course given by

E[X] =E[Y] =) jPr(X =), (17)

J=l

- Now we substitute equation (16) into equation (13) and obtain

Pr(Y =)i E[X]/M

Yorei Pr(Y = KKE[X]/M (18)

Pr(Y=1¢|C)=

97

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

Pr(Y =3 |C) = %‘"‘—9 (19)

Substituting into equation (12), we obtain the desired result:

2 1 12PrY =1)
Y |
E[;,]] (@1vpym < 0s). | (20)

lE[YlC]=

Using the value of E[Y] given in equation (11) and the value of E[Y? given by
equation (9) in chapter 4, we can also write this as

BYjo=122 ey

In a similar fashion we can obtain the sccond moment of Y,

E[YY = 2-{- =)-1-1 (®r2/M < 05). (22)

(a)
{Sce [GARCTS] for details.)

Incidentally, notice that the denominator of equatian (18) is the probability
. of a conflict P(C). From cquation (17), we find that

E[Y]E[X]

i - (23)

P:(C) =
which is exactly the appr~ximation of cquation (3) for the case (E[Y])?/M << 0.05.
It is also possible to show that E[X | C] = E[Y | C]. That is, cquations (21)
and (22) not only apply to the update that conflicted, but also to the update it
conflicted with.

To give an idea of the diflerence between equations (21) and (11) we give
an cxampls. A reasonable valuc for the basc set parameter, By, is 5 items. Then
E[Y] is 5.52 while E[Y | C] is 10.03. That is, thc average base set of the updates
th'at M“:i"v is mmOSu twice the size of the average base set of all updates

not appearn, hls is fo be cypcctcd, since thcse equations are only valid for the
case where M is very large compared to E[Y] (i.e., (E[Y])}/M < 0.05). As the

98

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

value of M decreases and B, is held constant, we expect the real value of E[Y | C]
to decrcase and approach E[Y] because more and more updates with smaller base
sets will conflict as M decreases.

If discrete random variable Z is the number of items in an update’s write
sct, then the mean and the second moment of Z given that a conflict occurred
are given by : :

Bz |c) = SCACEL g (24)
2 1
pz2 o) = I BRI, L (25)

The details are given in [GARCTS].

The values of E[Y], E[Y?, E|Z] and E[Z% were used in chapter 4 for two pur-
poscs: to compute the probability of conflict and to estimate the cost of conflicts
(dclays and extra IO time). Now that we have the values of E[Y | C), B[Y?| C],
E[Z | C] ard E[Z?%| C], we use these new values instead of the original ones to
compute the cost of conflicts because these computations refer only to updates
that have conflicied. However, when computing the probability of conflict or
when dealing with updates which we do not know have conflicted, we still use
the original values.

2.3 Other Improvements to the Conflict Analysis.

In order to try to reduce the gap between the simulation and the analytic
rcesults, we now consider some other “second order” effects. We expect the im-
provements { or dcterioration) to be small, but in any case it is important to

make sure that these changes are as small as we suspect. We still assume that
(E[Y])Z/ M is less than 0.05.

For example, in chapter 4 we approximated the average time that an update
A had to wait for a locked item by E[L]/2 (or L/2), where E[L] was the time that
an average update held its locks. (Sce equations (27) and (32) in chapter 4.) If
updaie A is waiting for a lock, the lock is held by an update, B, that A conflicted
with, so insiead of E[L]/2 we should now use E[L | C]/2, where E[L | C] is the
average Ec-:k time given that a conflict has occurred. The valve of E[L | C] is
compuied by using E[Y | C] and E[Z | C] instead of E[Y] and E[Z] in equations
(25), (28) and (27) in chapter 4:

99

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

E[Lne | C] =T - Wae + LE[Y | C]+ T + W+ LE[Y | C] + LE[Z | O] (26)
E[L. | C] = W, + LE[Y | C] + W, + LE[Y | C] + LE[Z | O] (27)

iz | 0= (2 JBlene 01+ (37 Bl 1. 28)

N

This estimate of E[L | C] assumes that no other update is waiting for the
item, i.c., that A will be able to continue once the item “" is free. However,
there might be a third update A’ waiting for item 7 with a higher priority than A.
Therefore, the lock wait time for A will be larger than E[L | C] on the average.

" The expected value of this extra delay is the probability that A’ is waiting
with a higher priority times the cxtra time that A’ will keep item ¢ locked. The
last term can be approximated by E[L | C]. The probability that A’ is waiting
is the probability that an update A arrived between the time B arrived and the
time A arrived and that update A’ referenced item ¢. The probability that ¢ is in
the base set of A’ is approximately E[Y]/M, and the time interval between the
arrival of B and A is on the average E[L | C]/2. Since updates like A’ arrive at

a rate of VA, the probability that the extra delay occurs is

E[L|C]. _E[Y]
g A

Thus, the expected value of the delay is

E|L| o]{E[L2| C]N?\EE]} | (30)

(29)

and a better approximation to the average time that an item remains locked is

(EIL | Cloia) NAEY]
°M

E[L l C] new — E[L l c]old + (31)?

This new velue can now be used to compute the delays caused by a conflict.

A sccond improvement on the conflict analysis involves the probability that
an update waits. In chapter 4, we stated that the probability that an arriving
update had to wait for locks at the central node was :

Pr{W;) = Pr(C)J
where J = NAE|L]. Recall that J is the average number of updates that are

holding iocks and that are not waiting themselves. This equation does not take

100

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

into account all the locks that are being held by waiting updates, Some updates
may be waiting for one lock while holding other locks. On the average, these
updates have locked :
EY|C]—1

2
items. (The details of this derivation can be found in [GARCT8].) The probability
that an arriving update conflicts with one of these waiting updates is

Py — P 1AL =)2 (33)

(32)

(The derivation is similar to the one for cquation (23). Assume that D[Y] Y |
Cl—1)/ (2M) is also less than 0.05.) The probability that an arriving upuaue
has to wait duc to other waiting updates is

Pr(Wy) = Pr(Co) " (39

where J' is the average number of updatcs that are waiting at the central node.
Using Little's formula, J7 is the product of the arrival rate of updates that wait
times the average time these updates wait. The arrival rate is approximately
NAPr(W;). The average wait time is the avcrage time that the iten we are
waiting on remains locked plus the time needed to lock it ard the remaining

itcms, i.c.,
E[L | C’]ncw

+ W I{EIY | O] — 1) (35)
seéonds, where E[L | C’]new is defined in equation (31). Therefore,
o[BIl o o
={ = T W+ L{E[Y | C] — 1) pNAPr(W)). (36)

This valus can be substituted into cquation (34) to obtain the probability that an
arriving update has to wait at the central node due to a conflict with a waiting

——

update. The total probability of an upda.te waiting is then
Pr(W) = Pr(W}) 4+ Pr(W3).

The delay due to conflicts is greater now since with probability Pr(W;) an
update has io wait for two other updates to finish. The expected value of the

101

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

delays (considering both types of conflicts) is
[L l G']new
delay =Pr(WK ———— + W+ L(E[Y | C] — 1)} +Pr(Wo) E[L | C] (37)

(Compare to cquation (32) in chapter 4.) There is no extra IO service time
involved in this additional delay.

The last refinement we consider is the case where an update A waits for one
item and then, after getting that lock, conflicts again with a third update B’
The average and the second moment of the number of items remaining to be
locked alter a conflict are

E[REM | C] = |
2
E[REM? | O] = E[Y | C] E[Y2| C] n é

(Sce [GARCTS].) Followmc the derxvatxon of Pr(W;), we estimate the probablhﬁy
of a second wait at the central node given that a first update has taken place by

(E[Y]C]—1)E]Y]

E[Y |C]—1
(38)

Pr(2nd wait) = Wi NAE[L). (39)
~ The expected increase in delay duc to this sccond conflict is
Clne E[REM | C] —1
Pr(W)Pr(2nd wait){u—‘" + W, —]—I([RE ;C])}

The first term is the probability of the first conflict. The average number of
items that remain to be locked after the second wait is (K[REM | C] —1)/2. The
cxpression above should be added to equation (37) to obtain the total cxpected

dclay.
Since after the second wait, (E[REM | C]—1)/2 items will have to be locked,
the mean and the second moment of the extra IO service time are

2L(E[REM 2| C]— 1)

and

E[REM?|C] EREM|C] | 1
4"3(3 2 +'e')‘

(Sce (GARCTS) These extra leads must be taken into account when computing
the average wait time at the central node.

102

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

3. COMPARISON OF N2W RESULTS FOR CENTRALIZED ALGORITHM.

The program to compute the average response time of an update in the
MCLA algorithm (appendix 3) is now modified to include the results obtained
in scction 2. The complete listing of the modified program is given in appendix
5. The resuits of this program arc compared to the simulation results in table
5.5. As can be seen by comparing this table to tables 5.2 and 5.3, the difference
between the simulation and the analytic results has been reduced somewhat by
the refined analysis of the previous scctions. (The reduction ranges from 0.5 to §
percent of the original difference.) The improvement is noticeable but not really
- significant.

The program of appendix 5 assumecs that (E[Y])?/M is less than 0.05.
However, notice that this is not true for the cascs of table 5.5 where M is less -
than 500. As was mentioned carlier, when (E[Y])%/M is greater than 0.05, the
valucs for the probability of conflict Pr(C) {cquation (3)) and the expected size
of the base set given a conflict E[Y | C] (equation (21)) are actually larger than
the true valucs. Therefore, the valucs of R, in table 5.5 when (E[Y])%/M > 0.05
arc larger than the valucs that would be produced by a more accurate analysis.
This means that the diffcrences between the analytic and the simulation results
shown in table 5.5 for these cases arc actually smaller than the difference we
would obtain by using the correct values of Pr(C) and E[Y | C]. In other words,
the results of table 5.5 are decciving because they make the analysis results look
close to the simulation results even in the case where (E[Y])%/M is greater than
0.05.

The improvement (i.c., the reduction in the diffcrence between the analytic
and the simulation results) we have obtained by considering some of the “sccond
order” cffects has been small. It scems that we will be unable to obtain any
significani improvements by considering any other similar “second order” effects.
Thus, the analytic results of table 5.5 are as accurate as is possible to obtain
from a simpie analysis. Considering the confidence intervals shown in table 5.2,
the simulaticn results scem to be very stable. Both results agree if (B[Y])2/M
is less thaxz U.05 and if the maximum utilization is less than about 0.60. But
they do nct zzree in the other cases. What results are the ones that are incorrect
for (E[Y])?/Af > 0.05 or for the maximum utilization > 0.60? We address this
question in the following section.

103

Cli. 5: COMPARISON OF TIE ANALYSIS ANI) SIMULATION TECIINIQUIZS

Tabic 5.5

TABLE 5.5

COMPARISON OF SIMULATION RESULTS TO RESULTS OF MODIFIED ANALYSIS.
~-- CENTRALIZED LOCKING ALGORITHM ---

Bs =5, M=10888, T=.1, Is=1Id = 8.825.

| I I I | Utiliz- | % |
| N | Ar | Ra | Rs | ation 1| Diff.*|
| ==oemmma- |===mmmen- |==seooemn- | ===memm=- |=mmmeee- Jommmmena-
6	15	€.7725	8.888	8.285	+3.13
0	18	©£6.839	£.855	8.388	+1.87
6	7	0.959	1.818	8.443	+5.85
6	6	Y.8%7	1.138	8.522	+7.12
6	5	1.266	-1.415	©.627	+18.53
I 9 | 16 | 8.961 | 1.885 | 6.457 | +4.38 |
] g | 7 | 1.327 | 1.553 | 8.667 | +14.55 |
N=6,Bs=25, Ar=18, T=.1, Is= 1Id = 8.825

| | CELYD* | | | Utiliz- | %

| i | M | Ra | Rs | ation | Diff. *|
[===men=-- =mmmmm—- f=mommee- R | ==mmoe-- |==-=mane-
| 1888 | 8.83 | 6.839 | 8.855 | 0.388 | +1.87 |
| 488 | 8.87 | 8.857 | 6.893 | 8.313 | +4.83 |
i 208 | 8.15 I 6.892 | 8.946 | 8.318 | +5.71 |
! 160 | 8.38 | 6.988 | 1.044 | £6.328 | +6.13 |

+ Utilization at central node {from simulation).

4% % difference computed as 188%(Rs - Ra)/Rs.

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

4, SIMULATION RESULTS VS ANALYTIC RESULTS.

There is a possibility that either the analytic or the simulation results arc off
when (E[Y])?/M is greater than 0.05 or when the maximum utilization is greater

than 0.60.

~ The analytic results could be wrong simply because the analysis we have
performed is just too simple to take into account the cases of high IO load or
high lock activity. For example, when the IO load is high, our assumption that
the arrival of all IO requests to a node is a Poisson process is not true and this
may aflect the results. {See chapier 4.) This assumption is a critical one since
it permits the decomposition of the nodes into independent queueing systeins.
Similarly, when the mean basc sct of updates is large compared o the total
number of items, the conflict analysis might not be accurate because it is based
on average values instead of on the dynamic values of system variables. In par-
ticular, as (E[Y])?/M grows, the probability that at a given time a few updates
will monopolize most of the locks increases. In thesc congestion periods, the
queucs of waiting updates will grow and the response time of updates will be
considerably greater. The simplified conflict analysis we used did not take into
account these types of congestions.

On the other hand, it is also possible that the simulation rcsults arc off
even though the confidence intervals are small. The cause of this could be an
initial transient that dics out very slowly and produces a bias in the results.
However, the fact that the simulation results arc fairly stable with respect to run
~time (after a clear initial transicnt) indicates that any such bias must be small.
Furthermore, all the simulation runs show consistent differences with the analytic
results. That is, in all cascs, as (E[Y])2/M incrcases past 0.05 or the utilization
incrcascs past 0.60, the simulation average response time is increasingly greater
than the analytic average rcsponsc time. This rules out statistical variations as
the probable cause of the diffcrence.

In view of the above discussion, we decide that it is the analytic results that
deviate from the true results when (E[Y])?2/M > 0.05 or when the maximum
utilization is greater than 0.60. However, in most cases of interest, we expect
(E[Y])%/#{ to be considcrably less than 0.05 because most updates only reference
a min’m”l z“czxon of the databace Thc fact that the analytlc results are not

urzie

other haad, a;ammg simulation results when the utilization is grca.tcr than 0. 60
is expeasive in terms of computer time, so that in most heavy load cases we will
have to be satisficd with the analytic results.

105

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

5. COMPARISON OF NEW RESULTS FOR TEE DVA ALGORITHM.

The results obtained for the probability of conflict, Pr(C), and for the ex-
pected size of the basc set given that a conflict has occurred can also be applied
to the distributed voting algorithm. Since the improvements obtained for the
MCLA algorithm were not very impressive, we do not consider any additional
“sccond order” effects for the distributed algorithm.

The program to compute the average response time in the distributed voling
algorithm {appendix 4) has been modified o take into account the larger base
scts of updates that have conflicted. Since we assume that (E[Y})?/M < 0.05,
we still use equation (3) as an estimate of Pr(C). The modificd program is shown
in appcndix 6 and its results arc compared to the simulation results in table 5.6.
Just as expected, the reduction of the difference between the analytic and the
simulation rcsults is small. As in the case of the MCLA centralizeq algorithm, the
diffcrence for the cascs where (E[Y])?/M > 0.05 is actually greater than shown
in table 5.0.

6. ADVANTAGES OF BACH TECHNIQUE,

To summarize the findings of this chaptier, we list some of the advantages
and disadvantages of the simulation and analytic techniques. No technique is
the better of the two. They actually complement cach other and it is best to
have both techniques available for studying the update algorithms.

The Analytic Technique — Advantages.

e Little computation tiine is required to obtain results. This is true even for
the cascs of high IO utilization or high lock activity. With more results
available, results are easier to plot.

e Provides a good understanding of the opcration of the system.
The Analytic Technique ~ Disadvantages.
¢ Resslis are not very accurate if (B[Y])%/M is greater than 0.05 or if the

maximum utilization is greater than 0.60.

e Analysis becomes very complex if we wish to change some assumptions
(e.z., change distribution of number of items in base set).
Simuiziion Technique — Advantages.

Prcduces fairly accurate results for all casces.

Heipful in understanding the operation of the algorithms.

Simulations are flexible. Once a simulation is written, i is easy to vary

108

ClH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

Teble 5.0

TAGLE 5.6

.COMPARISON OF SIMULATION RESULTS TO RESULTS OF MODIFIED ANALYSIS.
--- DISTRIBUTED VOTING ALGORITHM =-~-- _

| | I | | Utitiz- | % |
| N | Ar | Ra | Rs | ation t | Diff.*|
J=meemenn- [r=emenan- [==ecmmmee- |=ommmmmm- e jm-mmmome- |
i 6 | 15 | 1.5%6 | 1.537 | 6.117 | -l1.24 |
I 6 | 18 | 1.659 | 1.675 | 8.177 | +8.96 |
I 6 | 7 | 1.819 | 1.871 | 0.256 | +2.78 |
6	5	2.185	2.229	8.365	+5.56
9	15	1.987	1.983	8.158	-8.21
9	7	2.423	2.520	8.251	+4.19
N=6,Bs=5, Ar =18, T=.1, Rt =1, Is = Id = 8.825.					
]	(ELYD*	_	I Utiliz-	%	
M	M	Ra	- Rs	ation 11 Diff.*	
--------- et e R R ELC S L E LS					
1086	6.83	1.659	1.675	©£.188	+8.96
4806	6.88	1.734	1.839	8.185	+5.71
306	©.16	1.776	1.898	©6.187	+6.43
260	8.15	1.861	2.842	8.193	+8.91

1 Average I0 utilization at all nodes (from simu'iaf.ion).

% % difference computed as 188x(Rs - Ra)/Rs.

107

CH. 5: COMPARISON OF THE ANALYSIS AND SIMULATION TECHNIQUES

scme assumptions (e.g., try a ncw update arrival distribution).
The Simulation Technique — Disadvantagcs.
e It is expensive to get results for high IO utilization cases.
e It is hard to find “bugs” in the simulators.

This concludes the comparison of the analysis and the simulation techniques.
We have oniy looked at two algorithms in this thesis, but the analysis for the
other algorithms is very similar. (Sce [GARCT8].)

]

108

Coalihe 512

kil

R L H b e e S P S S UL N

o i)

v

CHAPTER 6

THE PERFORMANCE RESULTS

In this chapter we present some of the performance results for the update
algorithms. In section 1 we describe the way we use both the analysis and the
simulation results to plot the curves for this chapter. In section 2 we then compare
the results of the centralized locking algorithm with hole lists (MCLA) with the
results of the distributed voting algorithm (DVA). The performance results for
the Ellis type algorithms arc given in section 3. The results for the complete
centralization algorithm (CCA) and the centralized locking algorithm with wait-
for lists (WCLA) are given in section 4. In that section we also compare these
algorithms to some of the other algorithms. In section 5 we study the centralized -
locking algorithm with limited hole list copies (MCLA-h), while in section 6 we -
compare two of the strategies for handling limited hole list copies. Finally, in
section 7, we briefly look at the centralized locking algorithm with total-wait-for
lists (TWCLA).

1. HOW THE RESULTS ARE PLOTTED.

When plotting the performance results for the update algorithms we take
advantage of the fact that we have two independent techniques for studying the
algorithms. We use the simulation results where we know or suspect that the .
analysis docs not provide accurate results. (See chapter 5.) Since the analysis
results are inexpensive to obtain (in terms of computing resources), we use them
in all other situations. This “hybrid" method is illustraied in figure 6.1 where
we show how the graph for figure 8.14 is produced. (We chose to illusirate the
hybrid method with figure 8.14 because in this figure the differences between the
analysis and the simulation results are some of the largest encountered. In the
other figures of this chapter, the differences are usually smaller.)

109

CH. 6: TIIE PERFORMANCE RESULTS

=

average
response
tine (sec) 9 ~— results of analysis

X points from simulation

\
3T \ - ~=—=—curve of figure 6.14
x
1 \
?
6+
5 T LY
ad
e

1 L } t I,

—t— ; —— t t +—1} t + + + b~
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

M, the total number
of items

Figurc 6.1. The Hybrid Method for Constructing Figures.
N=6, Bs=S5, Ar=1l0sec., Is=1d=0.025scc., T=0.0lsec.,
the MEAS algoxithm.

110

CH. 8: THE PERFORMANCE RESULTS
2, PERFORMANCERESULTSFOR THEMCLA AND DVA ALGORITHMS;.

In order to study the performance of the algorithms, we selected a sct
of "typical" parameter values which we consider reasonable for a distributed
database implemented with current technology. Each one of these parameter
values was then varied in order to discover the effect of the parameter on the
system performance. The typical values used were 10 for the interarrival time,
A,; 5 for the base set parameter, B;; 1000 for the number of items in the database,
M; 6 for the number of nodes N; 0.1 seconds for the transmission time, T'; 0.01
milli-sccond for the CPU time slice, Cy; 1 milli-second for the CPU compute time
Cl; 0.025 seconds for the IO time slice, I;; 0.025 seconds for the I0 item update ,
time, Iy; and 1 second for the retry time, Ry ~

Figures 6.2 through 8.11 present some selected results for the MCLA and
the DVA algorithms. The parameter values used o obtain each figure are given
in the figures. If the value of a parameter is not given in the figure, then its
typical value (defined in the previous paragraph) was used.

Figure 6.2 shows the relationship between the interarrival time Ay, the num- - -

ber of nodes N and the mean response time R for the initial set of parameters. In .
most cases, the MCLA centralized algorithm performs considerably better thaa

the distributed voting algorithm. For small number of nodes, the difference is

not as dramatic, but as the number of nodes increases the difference in perfor-

mance increases. The so called “bottleneck” effect does appear in the centralized

algorithm: there is a relatively sharp knee in the curve when the requests for -
locks swamp the central node {e.g., N = 8, A, = 5.) Since there is no bottleneck

in the distributed algorithm, one might expect this algorithm to do better under.
heavy loads. Indecd the distributed algorithm does not have the sharp knee,

but it turns out that the distributed algorithm does better only in a limited

range and this range covers cases where both algorithms perform poorly. The

explanation for this is that in the distributed voting algorithm all nodes get

swamped when the update arrival rate increases too much. This can be seen in

figure 6.3, which shows the IO utilization as a function of the load (for 6 nodes).

The CPU utilization shows similar behavior, but the utilization is much less than

the IO one, i.e., the IO server is the critical resource here. Notice that the central

node is the one that gets the heavy load in the centralized aigorithm, but the

total amount of IO time used in the distributed algorithm (sum of all nodes) is

considerably greater than the total IO time needed in the MCLA algorithm,

Figure 8.4 shows the number of messages transmitted per update transaction
for the case of 6 nodes. In the central algorithm, this number is independent of

111

CH. 6: THE PERFORMANCE RESULTS

Ficure 0.2

(SEC)
300__ DVA —
MGLA --——-

2,57

_— e = —— = T

T,

Figure 6.2. The MCLA and DVA algoxithms: Effect of Ar and N on the
average response time. M=1000, Bs=5, Is»Id=0.025 sec., T=0.l1 sec.,
Rt=1 sec.

112

CH. 6: THE PERFORMANCE RESULTS

Picures 0.3 and 0.4

10 ‘
UTILIZATION
- DVA ——
b1 MCLA -=-- //
7/

ST CENTRAL e AVERAGE
. _OF ALL
»~~ NODES

OTHER
- “"NODES
5 &
Ar
Figure 6.3. The MCLA and DVA 2lgorithams: Effect of Ar oa the IO

utilization. N=6, M=1000, Bs=5, Is=Id=0.025 sec., T=0.1 sec., Rt=l sec.

A

NUMBER
g
MESSAGESCT

6+

' P
:

Tigure 6.4. The MCIA and DVA algoritims:
of messages transmitted per update. N=6,
Is=Id=0.025 sec., T=0.l sec., Rt=l sec.

113

5 4
(SEC)

%

Ar

3

(D-

Effect of Ar on the number
M=1000, Ss=5,

s am e @y

o

CH. 8: THE PERFORMANCE RESULTS

the load. Updates that originate at the central node only need 5 messages, while
updates originating at other nodes require 5 + 2 messages. The average over all
updates is 8.68 messages per update. In the distributed algorithm, the number
of messages increases slightly as some updates are rejected and retried. With no
rejections, an update requires 3 messages to obtain a majority of votes, plus 5
messages for performing the update. S

For 8 nodes, the difference in the number of messages transmitted is small.
The diffcrence accounts for about 0.23 seconds of the difference of response times
(since T = .1 and since 5 of the messages in the centralized algorithm and 4

" in the distributed algorithm do not add to the response time). This means that

the big difference in response times comes primarily from the higher fotal IO
utilization of the distributed voting algorithm. For a larger number of nodes, the
diffcrence in the number of messages transmitted is substantial and the dxfference' »
in responsc times is even greater.

The fact that the MCLA algonthm performs better than the DVA a]gomthm '
as the number of nodes increases is illustrated in figure 6.5. The jumps in the
curve for the distributed algorithm refiect the number of nodes needed for a
majority consensus. :

Figure 6.6 shows the effect of M (the number of items) on the system perfor— _
mance. As long as M is large (as compared to B,), the response time is independent
of M. This is convenient since it is possible to extrapolate our results to very
large databases. As the size of the database is reduced (with B, held constant),
the number of conflicts among transactions must increase, and therefore the
response times grow as M decreases. Notice how the centralized algorithm handles
the increased number of conflicts much better than the distributed algorithm.
Centralized control is a more efficient way of arbitrating many conflicts.

Figure 8.7 presents the effect of B, (the mean base set) on the average response

- time R for constant M (number of items). For a small number of conflicts (in

this case, B, < 5), the curves are linear since the response time is proportional to
the number of items in an update. As the number of conflicts increases (B, > 4),
the response time displays a nonlinear component due to the extra delays. In
any case, the MCLA algorithm is less sensitive to changes in B, and even with
a mean base set of 1, the central algorithm performs better than the distributed
algorithm,

Figure 6.8 shows the effect of varying the IO time slice I;. An IO time slice
of 0 represents a system where all the locks or timestamps are kept in main
memory. Once again, the distributed voting algorithm outperforms the MCLA
algorithm onliy in extreme circumstances.

114

CH. 6: THE PERFORMANCE RESULTS

Ficures 6.5 and 6.0

L ——
— /
R ’
/
/
(SEC) e
2,0 T /)—
VA —
J/,
/)"—
1.5+ J/
—",
’r-
e MCLA i
1.0 1 7 T
T aumn amm— - 4 : } : L —»
| 2 3 4 5 6 7 8 9 10 1

Pigure 6.5.
average response

tize.

The MCLA and DVA algorithms: Effect of N on the

Ar=10 sec., M=1000, Bs=5, Is=Id=0.025 sec.,

T=0.1 sec., Rt=1 sec.
y
R 20!
(SEC) DIA
.51
1.0
MCLA

0.5%

_= — —

I 2 3 4 5 6 7 8 ¢ 10 11 12 13 14 15

Pigure 6.6.
response time.
Re=l sec.

M

x 100

The MCLA and DVA algorithms: Effect of M on the average

N=6, Ar=10 sec., 3s5=5, Is=1d=0.025 sec., T=0.l sec.,

115

CH. 6: THE PERFORMANCE RESULTS

Figures 8.7 and €.2

Figure 6.7. The MCLA and DVA algorithms: Effect of Bs on the average
response time. N=8, Ar=10 sec., M=1000, Is=Id=0.025 sec., T=0.1 sec.,
Rt=]l sec.

{SEC)

1 L]

10 20 30 40 50

P

Is msec)

Figure 6.8. The MCLA and DVA algorithas: Zffect of Ys on the average
Tesponse time. N=6, Ara7, M=1000, Bs=5, Id=0.025 sec., T=0.l sec.,
Rt=1 sec.

116

NIRVON 4L
‘e

B Y

.

R RTVY DIVENTR TR

s U8 AL

JalN D uriMara ar e
.

CH. 6: THE PERFORMANCE RESULTS

The IO time slice is a very critical parameter because response times grow
rapidly as this parameter is increased. Therefore, a good distributed database
implementation should try to reduce this value as much as possible. One obvious
way to do this is by keeping the most commonly used locks or timestamps in
main memory. But it turns out that this is simpler to do for locks than for
timestamps. If the number of locked items is usually small, it is easy to keep
a complcte list of their names in memory. The absence of an item name in the

list indicates that the item is free while the appearance of an item's name in . g

the list means that the item is locked. Thus, the IO time slice can be reduced
practically to 0 (as long as the number of locked items is small enough so that
their names fit in main memory). On the other hand, it is harder to apply the
same idea to timestamps. Since it is usually not feasible to keep all timestamps in
memory, only the most recently used timestamps are kept. If a timestamp is not
found in memory, then it must be paged in from the IO device. If a timestamp
is modified, the new value must be written out to the IO device. The savings
in IO time will depend on the reference pattern of the updates. The average IO
time per timestamp read can be reduced but it will probably be greater than 0.
Thus, for a fair comparison of the algorithms, the parameter IO time slice fcr
the distributed voting algorithm should have a greater than 0 value, while the
same parameter should be 0 for the MCLA algorithm. It is clear from figure 6.8
that this consideration only :nakes the distributed algorithm look even worse.

The effect of the network transmission time T on the average response time
is shown in figure 6.9. One end of the range represents the slower networks like

- the ARPANET [KLEIT75], while at the other end are the much faster ones like

the ETHERNET [METCT76]. Here again the MCLA algorithm performs better
and is less sensitive to the parameter. For the centralized algorithm, the curveis
a straight line with a slope of 1.67 sec/sec. This is the expected value since the
average number of messages sent before a node finishes a transaction is 1.67. {(For -
N = B, the central node does not send any, the other nodes send 2 messages.)
Since with a larger transmission time, updates take longer to complete and items
remain locked a longer time, one would also expect a small nonlinear increase in
response time due to the higher probability of conflicts. However, this effect is
not noticeable for the centralized algorithm,

With the distributed algorithm, the curve is close to a straight line with a
slope slightly greater than 4. (For NV = 6, the number of messages needed before
an update is completed is 3 for voting plus 1 for informing the originating node
plus any messages due to rejections.) In this case the secondary effect due to
increased probability of conflicts (as T' increases) is barely noticeable.

i17

CH. 8: THE PERFORMANCE RESULTS

Pigures 6.9 and 0.10

50 100 150 200 250
T (MSEC)

Figure 6.9. The MCLA and DVA algorithnms: Effect of T on the average
response time. N=6, Ar=7, M=1000, Bs=5, Is=Id=0.025 sec., Rt=]l sec.

R ost

(SEC)

0.21 | DVA \

oll MCLA

Figure 6.10. A case where the DVA algorithm and the MCLA algorithm

have similar performance. N=3, M=1000, Bs=3, Is=0 sec., 1d=0.025 sec.,
T=l.25 msec., Rt=l sec.

118

O
O Meboas ket e sy et St 0 s

amesmeb

as

Ak e e - PR

T N e O ek 0s
. A s

rconete ey b e

CH..6: THE PERFORMANCE RESULTS

Figure 8.10 shows a case where the distributed voting algorithm performs
almost as well as the MCLA algorithm. The parameters were chosen so as to
favor the distributed algorithm, but as we can see the MCLA algorithm still
performs slightly better. The IO utilization is the same for both algorithms (since
1, is 0). The distributed algorithm does slightly better with respect to the number
of messages transmitted. This can only happen in the special case of a 3 node
network. (The distributed algorithm needs only 1 message to gain a majority of
votes plus 2 more to broadcast the update giving 3 messages per update. In the
centralized algorithm, the central node only needs 2 messages while the other two

" nodes need 4 messages, giving an average of 3.33 messages per update) Therefore

we can say that the performance of the distributed algorithm is similar to the
performance of the centralized one only under special circumstances.

Figure 8.11 shows the effect of the parameter retry time (R¢) on the mean
response time of the distributed voting algorithm. If the retry time is made too
small, the rejected request might be retried before the request it conflicted with.

- had a chance to finish. On the other hand, making R; too large eliminates the

possibility of a repeated conflict, but adds unnecessary wait time to the trans-
action. As is scen in the graph, there is an optimal value of Ry Unfortunately,
the savings obtained by choosing the optimum value do not seem to be very
significant. And notice that this graph represents a high rate of conflicts case
{M = 100, B, = 5); for a more reasonable case (M = 1000, B, = 5) the savings
are hardly noticeable. (This graph not shown.) This is expected since R; only
affects the small number of rejected requests. - : B

2.1 Some Conclusions.'

Based on our comparison of the MCLA and DVA algorithms, we can conclude
the following:

1) The MCLA algorithm performs considerably better than the distributed -
voting algorithm except in the cases of extreme IO utilization. In these high load
cases, the average response time for updates in the distributed voting algorithm
is smaller than the one for the centralized algorithm, although both responses
are poor. In most cases, the redundant update problem scems to be solved more
efficicntly and naturally using centralized control strategies.

Of course, other factors must be considered in choosing an zlgorithm, buf
even if the distributed algorithm is chosen for other considerations, it is important
to rcalize that it is going to be a more expensive algorithm, both in terms of

119

CH. 8: THE PERFORMANCE RESULTS

Fizure 6.11

R .
average
response
time (sec)

2.5 4+

1.0

Figure 6.11. The DVA algorithm:

2.0

Rt
retry time (sec)

Effect of Rt on the average

response time. N=6, Bs=5, Ar=10 sec., M=100, Is=I1d=0.025 sec.,

T=0.1 sec.

120

DIPRFTCSNIY RS TAVY 7N K VY

AT 4is s md

it A

e v A caesimat

3
3
1

!
i
i

BN TR WS OB SR L BT 5 IR 1A% 1 aaa SN e vy

F
7!

LT B i

CH. 8: THE PERFORMANCE RESULTS

resources and response time.

2) The distributed voting algorithm is more complex than the MCLA al-
gorithm. The amount of code necded to simulate each algorithm should be a
good indication of the complexity of the algorithm. This is true because the
length of the simulator code is not proportional to the length of the code in an
implementation of the algorithm, but it is rather proportional to the number of
states and special cases the implementation will have.

Not considering code common to both simulators (e.g. random number gen-
erator, event queue handler, etc.), the MCLA simulator was written in 110 lines
of Algol W, while the distributed voting simulator was written in 230 lines, more
than twice the number. This is a good indication that the distributed algorithm
will be much harder to implement and it will probably be more prone to software
bugs. :

3) The critical parameters in our system, i.e. those that the system is most
sensitive to, are /N, the number of nodes, A,, the interarrival time, B, the mean
base set size, I, the IO time slice and 7', the network transmission time. Under

normal circumstances, these 5 parameters define the response time of an algo-

rithm. The number of messages is mainly sensitive to the number of nodes N. . -

4) The simulator can also be useful in tuning an algorithm. The simulator
aided us in choosing a good value of R;. Similarly, it can be used to optimize other
aspects of each algorithm: lock granule size, IO or CPU scheduling algorithms,
the strategy for eliminating deadlocks, etc.

3. PERFORMANGE RESULTS FOR THE ELLIS TYPE ALGORITHMS.

In this section we present some of the performance results obtained for
the three Ellis type algorithms of chapter 3: the original Ellis ring algorithm
(OEA), the modificd Ellis ring algorithm with sequential updates (MEAS) and
the modified Ellis ring algorithm with parallel updates (MEAP). The results were
obtained using the analytic techniques of chapter 4, as well as by simulating the
algorithms [GARCTS].

Figure 6.12 shows the average response time of updates in the MEAS alge-
rithm as a function of the interarrival time A, for several values of V (the number
of nodes) and for the “typical values” of the other parameters. (See section 2.)
Recall that small interarrival times imply high arrival rates and high loads. The
shape of these curves is very similar to the curves for the distributed voting

121

CH. 8: THE PERFORMANCE RESULTS

Figures 0,12 and 6,13

® A
average
response
time (sec)
24+ N=3
14
1 1 L 1] e
L] L] 13 1] L3 L)
50 40 20 20 10 - Q
Ar, average
interarrival
time (sec)
Figure 6.12. The MEAS algorithm: Effect of N and Ar on the average
response time. Bs=5, M=1000, 1s=Jd=0.025 sec., T=0.1 scc.
o A
utilization
0.7.(
0.61 ~e— MCLA, central
4 node
7’
0.5 MEAS, average ./
(all nodes .
7
7
-«——DVA, average
all nodes
O.l-L——"'———— _“/
\MCLA. average
' \ other nodes
3 K3 ——) 1 $ k| 1] L 3 o
U Y T] L] T T T T T T { JE
15 14 13 12 11 10 9 8 7 6 S 4

Figure 6.13.

The MEAS algorithm: IO Utilization.

H=6, M=100C, Bs=5, Is=Id=0.025 sec., T=0.l sec.,

Rt=1 sec.

122

Ar, average
interarrxival time (sec)

JUEREY WRRRURIEY? X 2 NHIVE W T
.

RRARRIAETI,T 13T LRTPRYN 7S I

Qe

AVACATI:. - et

2253 R AUt AN ¢ e LAk do s - Srmtend . § 05 0 m o s I i 4y

CH. 6: THE PERFORMANCE RESULTS

algorithm. (Sce figure 8.2.) However, the response times are considerably larger
than the ones for the distributed voting algorithm under the same circumstances.
For example, if the interarrival time A, is 10 seconds and there are 8 nodes,.
updates are on the average completed in 1.65 seconds with the distributed-voting
algorithm, but they take 4.66 scconds on the average with the MEAS algorithm,
This is about a 200 percent difference. Furthermore, the MEAS algorithm be-
comes unstable at lighter loads. For example, the MEAS algorithm is unstable for
A, = 6 scconds while the distributed voting algorithm can still operate at that
load with an average response time of 1.9 seconds. The difference in performance
with the MCLA algorithm is also very dramatic. (See figure 6.2.)

One of the reasons for the poor performance of the MEAS algorithm is
the extra transmissions required. However, this only accounts for a part of the
difference. For the case of 6 nodes, an update in the MEAS algorithm is delayed
by 12 transmission times T' before finishing (i.e., two trips around the ring). For

the same number of nodes, updates are delayed by 2 and by 4 transmission times

in the MCLA and the DVA algorithms respectively, Thus the increase in response:
time due to transmission delays is only 1.0 and 0.8 seconds over uhe previous
algorithms (because T is 0.1 seconds).

The rest of the difference in response times between the MEAS algorithm
and the previous algorithms is due to the increased IO utilization at all nodes.
Figure 6.13 shows the IO utilization as a function of the interarrival time A, for
the case of a & node network. The IO utilization is greater at all nodes in the
MEAS algorithm than it is even in the central node in the MCLA algorithm.
This is because every node in the MEAS algorithm must perform locking for all
updates. Furthermore, when locks are released with an update, they must be.
read before they are written. (See procedure Perform-update in Appendix 2.)
This is not the case in the MCLA algorithm and this is why the central node
has less IO utilization.

For light loads, the number of messages transrmtted per upda.te is two times
the number of nodes (i.e., two trips around the ring). As the load increases, the
average number of messages transmitted increases slightly because the number of
conflicts increases and some updates must release their forward locks. (Releasing
one forward lock involves, on the average, a message to a fourth of the nodes.) For
example, for a six node network and an interarrival time of 7 seconds, the number
of messages transmitted per update is 12.018. (The rest of the parameters are
the same as in figure 6.12.} This is only slightly above the 12 messages required
when no conflicts occur.

Figure 6.14 presents the effect of M, the number of items, on the average

123

CH. 8: THE PERFORMANCE RESULTS

R
average
response

time (sec)

9

8

 §

Figures 6.14 and 0.15

average
response
time (sec)

T — T T T L T T Tt T T S

t t
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

M, the total number
of items

Figure 6.14. The MYEAS algorithm: Effect of M on the average response
time. N=6, Bs=5, Ar=10 sec., Is=1d=0.025 sec., T=0.l sec.

R
L

9 -

3 4
2 <
1+

1 1 1] 1 1 i) (] 1

L] £y T R 1 + 4 L

1 2 3 4 5 [7 8

Bs, the kase set
parameter

Figure 6.15. The MZAS algorithm: Effect of 3s on
the average response time. N=6, M=1000, Ar=10.sec.,
I1s=18=0.025 sec., T=0.l sec.

124

R R S o A L

T S A AN e Bt A A e+

CH. 6: THE PERFORMANCE RESULTS

response time of updates in the MEAS algorithm. This curve is also very similar
to the one for the distributed voting algorithm. (As we will sec, all curves for
the MEAS algorithm are similar in shape to the curves for the distributed voting
algorithm. Unfortunately, the different scales makes it hard to plot the curves
for both algorithms together.,) Again, the response times are larger and as M
decreases, their value increases more rapidly than in the distributed voting al-
gorithm. As is to be expected, for large M, the average response time is almost
indcpendent of M.

Figures 6.15 through 6.18 show the effect of other parameters on the average
response time of updates in the MEAS algorithm. (Figures 6.16, 6.17 and 6.18
also contain results for the MEAP algorithm which will be discussed later.) Notice
how the MEAS is especially sensitive to the base set parameter, By, to the IO time
slice, I, to the transmission time, T, and to the number of nodes, N. The curve
for the average response time versus the transmission time, T, has an interesting
but slight non-linearity as T approaches 0. This is due to the fact that, as T'
approaches 0, the processing of an update at its originating node after the first
loop around the ring delays the processing of the same update after its second
loop. As T increases beyond a certain threshold, the processing after the ﬁrsb
loop can be completed before the update arrives after its second loop.

The performance of the modified Ellis ring algorithm with parallel updates
(MEAP) is similar to the performance of the MEAS algorithm except for a reduc-

tion in response time proportional to T' (the transmission time) and to N (the = -

number of nodes). This is because under normal circumstances no messages have
to be delayed before processing and because we are not taking into account the
increased overhead due to the longer messages and the handling of the “status”" -
information. (Sec chapter 3.) If the last two sources of overhead were taken into
account, the savings in responsc time might be less. : o

When few conflicts occur, the savings in time are roughly NT seconds because
updates do not wait for the second trip around the ring before completing. As
the load increases, the savings should increase because locks are held for shorter
periods of time and thus less conflicts occur. However, this effect is very small
and is not observed in the results. For example, figure 8.13 shows the average
response time of the MEAP and the MEAS algorithms versus the interarrival fime
A, for N = 6. In this figure, the difference between the algorithms is roughly the
same at all points and equal to 0.6 seconds (since T = 0.1 seconds and NT' = 0.8
scconds).

Figures 6.17 and 6.18 show the effect of T and /N on the average response time
for the MEAP and the MEAS algorithms. These figures confirm our hypothesis

125

CH. 6: THE PERFORMANCE RESULTS

Figures 6.16 and 0.17

R
average
response
time (sec))

9 -

g -

L
0.01 0.02 0.03 0.03

e
-

Is, 10 time slice (sec)

Figure 6.16. The MERS and MEAP algorithms: Effect of Is
on the averagc response time. N=6, Ar=10 sec., M=1000,
Bs=5, Id=0.025 sec., T=0.1 secc.

R
average
response [
time (sec)

84

0.05 0.1 0.15 0.2 0.25 0.3

T, transmission time {sec)

Figure 6.17. The MEAS and MEAP algorithms: Effect of T on the
average response time. N=6, Ar=10 sec., M=1000, Bs=5,
15=14=0.025 sec.

126

CH. 6: THE PERFORMANCE RESULTS

o
3
average
response ;
time (sec) 4; / /
/!
94 /./
- , l
8 ’
7 7/
7 T / /
/7
/
6T / y;
MEAS / MEAP
5 J —>/ -«
/
/7 7
4 -L 7 7
7 7
s
7 s
34 5
Vard
PPl
2+ R id
-
1 T
L 1 2 1 1 1 1 1] -
13 Al L] 1 3 ¥ L3 L] L3 T -
2 3 4 5 6 7 8 9 10

N, number of nodes

Figure 6.18. The MEAS and MEAP algorithms: Effect of N on
the average response time. M=1000, Bs=5, Ar=10 scc.,
Is=1d=0.025 sec., T=0.1 sec.

R
average
response
time (sec)
7
6
5
4+
3
24

[
4
1

3 : 3 1 '
+ + +

50 40 30 20 10

\

Ar, average
. interarrival time (sec)
Figure 6.19. The MEAS and MEAP algorithms: Effect of Ar on the
average response time. N=6, M=1000, Bs=5, Is=I1d=0.025 scc.,
T=0.1 sec.

127

R DR Y A
.

S e

IS

ERYIE U 277 TPRY T Ty

v N sl

X LT

Makaa Al - eives

TS ST e

CH. 8: THE PERFORMANCE RESULTS

that the savings are NT scconds. Figure 6.16 graphs the average response time
versus the IO time slice J,. As can be seen in this figaire, the savings arc inde-
pendent of I, The cllect of B; (the base set paramecter) and M (the number of
items) is not shown because the savings are also independent of these parameters.
The IO utilization at cach node for the MEAP algorithm is the same as in the
MEAS algorithm because the IO requests of each update are the same. Fligure
B8.13 shows this IO utilization as a function of the interarrival time Ay.

Figure 6.20 shows the average response time of the original Ellis algorithm
(OEA) versus the interarrival time A, for a six node network. Notice that for
the OEA algorithm we assume that the IO time slice, I, is 0 because all state
information can be kept in cach node's main memory. When we compare the OEA
algorithm with the MEAS algorithm where locks are kept in an IO device, we

" find that the OEA algorithm performs better as long as the load is not too heavy.

But when a large enough number of updates per seccond has to be processed, the
IO time invested by the MEAS algorithm to lock individual items pays off and
it performs better than the OEA algorithm. As can be seen in figure 6.21, for the
casc where I, = 0.025 scconds, the MEAS algorithm performs better in a very
small interval. However, as I, is reduced for the MEAS algorithm (/, is always 0

~ for the OEA algorithm), the interval becomes larger and when I, = 0, the MEAS

algorithm performs better for all values of A,. (Sce figure 6.20.)

Notice that response times in the OEA algorithm are independent of the

number of items in each database (M). The performance of the OEA algorithm

can be viewed as the limiting performance of the MEAS algorithm with I, =0
as the number of items in each database approaches 1. As M decreases, the
curve of the average response time versus A, for the MEAS algorithm approaches
the curve for the OEA algorithm. For example, the curve for M = 300 is also
shown in figure 6.20, The response times for that case are in between the ones
for the the OEA algorithm and the MEAS algorithm with M = 1000. However,

- the performance of the MEAS algorithm is close to the performance of the OEA

algorithm only for very small values of M {i.e. close to 1).

Finally, figurc 6.22 shows a case where the OEA algorithm performs better
than the distributed voting algorithm for some values of the interarrival time,
Ay. Here again, the OEA algorithm can perform better than the DVA algorithm

. because it docs not need to read and write timestamps to an 10 device. The case

shown in figure 8.22 is a special case and in most other cases, the distributed voting
algorithm performs better. (Notice that in figure 8.22, the base set parametcr B,
is 7 and not 5 as usual.) ‘

128

CH. 8: THE PERFORMANCE RESULTS

¢ ond 8.21

™D

e o
Iigures .

. !
average 1
response
time (sec)
3.0+
2.5+
2.0+
4
4
'
1.5+ MERS, u=3oo:_—’y
’ MEAS, H=1000/
>
N : ; . s N
t t t t t {-
25 20 15 10 5 0
Ax, average
interarrival time (sec)
Figure 6.20. The OEA and MEAS algorithms: Effect of Ar on the
average response time. N=6, Bs=5, I1d=0.025 sec., T=0.l sec.,
Is = 0 (both algorithms).
R
average
response A
time (sec)
74
6
sl MEAS
(15=.025s)
l !
it /
/
34 /
/
7
24 -
--==""
14 OEA
(Is=0)
L 1 [l] 1 | -
T - Ld L3 ¥ L) T »
25 20 . 15 10 S 0o

Ar, average
interarrival time {secj
Figure 6.21. The MEAS and OEA algorithms: Effect of Ar on the
average response timec, for different values of Is. N=6, Bs=S,
¥=1000, Id=0.025 sec., T=0.1 sec., Is in OEA = O, Is in MEAS = 0.025 sec.

129

ERECRVASSTIE |

CH. 6: THE PERFORMANCE RESULTS

Fiaure $.22

R
average
response l ’
time (sec) ’
4 I
I(— DVA
(Is=0.025s)
3 4
2
1l 4+
L 12 1 k3] 1 i —
L] T ¥ 13 L3 T -
25 20 15 10 S [1]

Figure 6.22.

The OEA and DVA. algorithms.

Ar, average
interarrival time (sec)

N=6, M=1000, Bs=7,

Id=0.025 sec., T=0.1 sec., Is in OEA = 0, Is in DVA = 0.025 sec.,

Rt=1 sec.

130

PRSI £ LR TRD AT LA Nt

CH. 8: THE PERFORMANCE RESULTS

3.1 Some Mbre Conclusions.

The results presented in section 3 show that the Ellis ring algorithm and
its variants perform worse than the DVA and the MCLA algorithms under most -
circumstances. Furthermore, the Ellis typc algorithms are more sensitive to the
critical system parameters: the number of nodes, /N, the transmission time, T,
the IO time slice, I, the base set parameter, B;, and the interarrival time A,.

Among the algorithms studied in section 3, the modified Ellis ring aigorithm
with parallel updates (MEAP) performed better than both the modified Ellis ring
algorithm with sequential updates (MEAS) and the original Ellis ring algorithm
(OEA) when tested with the same set of parameters. However, the complexity
of the MEAP algorithm is greater than the complexity of the MEAS algorithm,
which in turn is greater than the complexity of the OEA algorithm. :

4. PERFORMANCERESULTS FOR THE CCA AND WCLA ALGORITHMS.

Curve "CCA" of figure 8.23 shows the average response time of update
transactions with the CCA algorithm, as a function of the transaction interar-
rival time A,, for the set of representative parameter values. Notice that as A,
decreases, the arrival rate of transactions and the load increases. In this curve we

¢ observea sharp knee which occurs when the central node is swamped by requests

to process transactions.

In order to provide a point of comparison, in figure 6.23 we also show the .
performance of the DVYA algorithm. The average response fime of update trans- -
actions with this algorithm is given by curve “DVA" in figure 6.23. This algonthm
does not have a central node which acts as a bottleneck, but surprisingly, its
performance is not as good as that of the CCA algorithm. The main reasons for
this relatively poor performance of the distributed voting algorithm are that (a)
transactions must visit a majority of nodes (instead of one) before being executed,
and (b) the CPU and IO loads produced by a voting operation at a node are
considerable, while in the CCA algorithm there is no IO and very little CPU
ioad caused by the serialization of updates.

Although it is not shown in figure 6.23, both a]gonthms saturate at about
the same interarrival time. When the loads become very high, the analysis is
not very accurate and the simulations are very expensive to run. Fortunately,
we are not very interested in this region because both algorithms perform so
poorly there. For all cases which are not close to the saturation point, the CCA

131

CH. 6: THE PERFORMANCE RESULTS
Fizure 0.23

i
R
average 1 i
response ;
time (sec) i
} 1
1.5+ [t
1 i
i {
DVA —» !]
! !
! !
!
I !
1 !
1.04 / !
/
7 I
4 7
7/
, I
s
WweLA A /
Is=0.01 secz. -~ 7
b -~ ,
— - - WCLA Pl
lIS=.OOSS - 7
— - - - - -
0.5+~~~ ———
______ -—= Twcm,}m
Is = 0 sec.
: f . ' N
T 1} T 1Y T B N
5 4 3 2 1 0
Ar, average interarrival time (sec)
Tigure 6.23. The WCLA and MCIA algorithms.

N=6, M=1000, Bs=5, I&=0.025 sec., T=0.1 sec.,
Is in DVA = 0.01 sec., Re=l sec.

132

Ak e R st e
.

[N SN EY TERT Y Y3 308 3 T PUT P TR FEY-3 S

B L R LE® A TE . SEPYpp

)

CH. 8: THE PERFORMANCE RESULTS

algorithm performs better than the distributed voting algorithm.

The results of figure 6.23 are for the particular set of parameter values shown
in the figure. Extensive tests have been run to study the effcct of the parameters
on the average response time. We have found that the CCA algorithm, just like
the MCLA algorithm, performs better than the DVA algorithm in most cases
of interest. The actual difference in average response time between the two al-
gorithms can be reduced or increased by varying some parameters, buf the basic
rclationship remains unchanged. For a two or three node system and for a small
value of the I, parameter (i.e., the IO time to read or write a timestamp), the
performance of the CCA and DVA algorithms is very similar. As the number
of nodes N, the transmission time T, or I, increases, the difference in average
response time increases and the CCA algorithm becomes more attractive. Notice
that the results of figure 6.23 are for an IO bound situation. However, the resultb '
are similar for a CPU bound case.

Under our constant transmission time assumption, the performance of the

WCLA algorithm is the same as the performance of the MCLA algorithm because -

both algorithms eliminate all unnecessary delays. In figure 6.23 we have also
shown the average response time of these two centralized locking algorithms, for
three values of the I, parameter. Recall that the I, parameter is the IO time
needed to set or check a lock. In the WCLA algorithm the value of this parameter
should include the IO time needed to maintain the table of last transactions that
modified the items (called LAST(Z) in chapter 3). Since this table will usually
be in an IO device, the value of I, wiil probably be greater than zero for the

WCLA algorithm. On the other hand, the I, parameter will usually be very close
to zero in the MCLA algorithm. '

Hence, the lower curve (I, = 0) should only be considered as a lower
bound for the WCLA algorithm, while this same curve is the most likely average
response time for updates in the MCLA algorithm. As can be seen in figure 6.23,
it is possible for the WCLA algorithm to perform worse than the simple CCA
algorithm. This occurs when the locking overhead becomes larger than the data
reading load which was moved out of the central node by the WCLA algorithm.
By using caches, the value of I, for the WCLA algorithm may be reduced, thus
making this algorithm more attractive,

(In a system where communication delays have a large vanablhty, the per-
formance of the WCLA algorithm might be better than the performance of the
MCLA algorithm. (Sce chapter 3.) However, in such cases, the response time
of transactions in all algorithms will be affected, and which algorithm performs
better will depend on the type of the communication delays.)

133

. R s SR
.

D N P F IV SRR ENUFCTVOP Y

L RS PAF BN E T

L SR

PV IPYP IS TENTTIR T R VL SR PR TR TR

CH. 8: THE PERFORMANCE RESULTS

5. PERFORMANCE RESULTS FOR THE MCLA-h ALGORITHM.

5.1 Size of the Hole List,

Before we study the performance of the MCLA-h algorithm, it is a good
idea to estimate the size of the hole list at the central node. We assume that
there are no unnecessary delays for non-conflicting updates. (That is, assume -
that A = o0.) Let S be the average time that a hole remains on the hole list at
the central node. Using Little's equation, we can obtain the average size of the
hole list, H, as :

H =5\

where N\ is the rate of update lock grants at the central node. (/N is the number
of nodes in the system, A is the arrival rate of updates at each node, and we
assume that the system is stable. IV can also be interpreted as the arrival rate
of holes to the hole list.) Since we are only interested in an estimate, we use R,
the average response time of updates, instead of S. (R is computed sssuming
that there are no unnecessary delays.) Since R will always be larger than S,

H<ENN : (1)

Using the values for R obtained in chapter 5, we can compute estimates for
H for some typical cases. These cases are shown in table 6.1. As can be seen
in table 6.1, the average size of the hole list for the typical cases is quite small. .
This suggests that a MCLA-h algorithm with a small value of & might perform
just as well as the MCLA-infinity algorithm which has no unnecessary delays.
For example, in a 6 node network with an update arrival rate of 0.2 updates per.
second per node (H = 1.69), an h of 2 or less would not give us good results, but
an h of 5 should be enough to allow most updates to proceed without unnecessary
delays. _
As the number of nodes, N, increases, we expect the average hole list size
to increase. (Sce equation (1).) However, as IV increases, the maximum possible
value of N decreases because the system can handle less updates per node. This
is why the increase in H in table 6.1 as N goes from 8 to 9 is small. We therefore
expect that a relatively small value of 4 will still be adequate in larger networks.

If the total number of update arrivals N\ is held constant, then the value of
H docs not increase as N is increased. This is true because in the MCLA algo- .

134

“

- CH. 6: THE PERFONRMANCE RESULT

TABLE 6.1
ESTIMATES FOR THE AVERAGE HOLE LIST SIZE (H).

For Bs = 5, M = 1688, Is = Id = 8.825 sec., T = 8.1 sec.
(Assuming that no unnecessary delays occur.)

! [
| N A RO
[mmesomeoes [~ovmmnn |-mmnmnn |
] 6 | 1/15 | 5.886 | 8.32 |
6	/7	1.818	8.87
6	1/5	1.415] 1.69	
9	/16] 1.885	£.96	
9	/7	1.553	2.88

N is the number of nodes.
A is the arrival rate of updates at each node (= 1/Ar).

R is the average response time of updates (from chapter 5).

B is the estimated upper bound for the size of the hole list.

LB B T
.

04 v mtadibad s00 4 wRUPLAL A S ERAS N G L v u

PEXETT IFELTETEN

CH. 8: THE PERFORMANCE RESULTS

rithm, the average response time of updatcs docs not increase if N'A is constant.
(See equation (1).) '

5.2 The Simulator for the MCLA-h Algorithm,

The MCLA-h algorithm was not analyzed with the technique of chapter 4
because the analysis seemed to be too complex. Instead, a simulator, similar to
the ones used for the other algorithms, was written. Asin the previous simulators,
we assume that the database is completely duplicated at every node, we assume
that there are no read-only transactions and we assume that there are no failures.
We alsc assume that the message transmission delays are constant and equal to
T seconds. This automatically implies that there are no excessive transmission
delays in the system. Therefore, when a “grant” message arrives at the update's
originating node, we are guaranteed that all necessary previous updates have
been scen at that node. Thus, with the MCLA-infinity algorithm there are no
delays caused by sequence numbers. In a MCLA-h algorithm with finite A, there
might be delays in the central node when a hole list size exceeds the limit A,
but once the grant message is sent, the update will not be delayed further due
to sequence numbers. These observations simplify the design of the simulator
because with constant transmission time, some sections of code in the MCLA-
h algorithm are not needed. (In particular, Procedure Perform-update(A,n) in
appendix 1 can be simplified to : .
Procedure Perform-update{ update A; node n);

if n = c then central-update(A,c)

else update local database as indicated by update-values(A);)

Finally, we assume that there is no IO or CPU overhcad due to the handling
of the hole lists. Our predictions indicate that the hole list will be small and will
therefore fit in main memory. The additional CPU time needed to handle these
small lists should be very small. (If this last statement is not true, the value
of C;, the CPU time slice, can be increased to compensate. However, with our
parameter values, any small increase in C; will not alter the results significantly.)

5.3 The Results.

We now present some selected results obtained from the simulator. Figure
6.24 is a graph of the average response time of updates, R, as a function of the

136

EAPRTEY PR LR E I8 ST LTS A A At A

CH. 6: THE PERFORMANCE RESULTS

update interarrival time at each node, A, (A, = 1/\), for several values of the
hole list copy size limit A, in a six node network. The other simulation parameters
are set to their "typical” values. (See section 2.) High update loads are to the
right of the figure while light loads {low update arrival rates) are to the left.

The curve for h = oo is the same as the one given in figure 8.2 for the MCLA
algorithm. Notice that for an & larger than 3, the curves for the average response
time are almost indistinguishable from the curve for A = oo. This means that in
this case, a value of h of 4 is sufficient to obtain the best performance possible.
A hole list limit of 4 is reasonable and should not produce much overhead when
appended to “grant” and “perform update” messages. (The value of 4 for A
confirms our guess for a good and small A. See section 5.1.) '

Figure 6.25 shows these same results in a different way. In this figure, we
plot the average response time as a function of & for different valucs of Ay, the
update interarrival time. Notice that for some high load cases (e.g., small A,),
the value of R is not shown when k is small. In these cases the system is saturated
and the value of R is not defined. Figure 6.25 shows that the value of b becomes a
critical system parameter as the system becomes heavily loaded. However, even
in these cases, an h of 4 or 5 is sufficient to bring the response time down close
to its minimum value, - '

Figure 6.26 gives the average size of the hole list, H, (obtained from the Iy

simulations) as a function of the hole list size limit 4 for several values of Ay,
the update interarrival time. (Again, in some cases where h &nd A, are small,
the system is saturated and H is undefined.) The values of H for the case of no
unnccessary dclays (e.g., large h) agree well with the bounds predicted above.
(See table 6.1.) For example, for A, = 5 seconds, we predicted that H would
be less than 1.69, From figure 6.26, the true value (for large h) is about 1.25.
As the size of h is decreased, the number of unnecessary delays increases. This
increases the average response time and thus the average size of the hole list

~ grows proportionately. (See equation (1).) (Notice that H can be larger than h_

because H is the average hole list size at the central node. The size of this list is
not bounded; only the size of a copy of this list placed in a message is restricted
to size h.)

The fraction of the updates that are delayed at the central node due to large
hole lists is shown in figure 8.27 as a function of & for different values of A,.
(When the valué is not shown, the system is saturated.) Notice that for h larger
than 5, the number of delayed updates is negligible for all values of A, shown.

137

CH. 6: THE PERFORMANCE RESULTS

E3
average [\
response
tice(sec

3.07T

2.5 T

1.5 +

1.0

Pigure 0.24

: 3 3 I i] 1 3 3 3 1

T T T T ¥ T T t t t

14 13 12 11 10 9 8 7 6 5 4 3
Ax, average interarrival time (sec}

Figure 6.24. The ¥ClA-h algorithm: Effect of Ax and h on

the average response time. The delay at central node strategy
is used. These are simulation results. N=6, ¥=1000,

Bs=5, Is=I1d=0.025 sec., T=0.1 sec.

CH. 6: THIE PERFORMANCE RESULTS

Figures 0.25 ond 8.20

4
R
average q_AZ_-LS sec.
response
time (sec)
2.5 T
Ar=6 scc.
-
2.04L
Ar=5 sec.
—_—
1.54
Ar=7 sec.
1.0 ’/_ Ar=10 sec.
H 1 1 1 1 1 4. 1
1 t t t t + t + f { —t
9 8 7 6 S 4 3 2 1l [¢]
h, hole list size limit
Figure 6.25. The MCLA~h algorithm: Effect of h.
N=6, M=1000, Bs=5, Is=Id=0.025 scc., T=0.1 sec.
"
average
size of L
hole list
34
2 4
{ Ar=4.5 sec.
¢ Ar=5 sec. _/
1+ }nr=6 sec. ,/
§ Ar=7 sec.
§ Ar=10 sec. _
+ + { + } { $ + + t Lo
9 8 7 6 S 4 3 2 1 0

h, hole list size limit

Figure 6.26. The MCLA-h algorithm: Average size of the
hole list. N=6, M=1000, Bs=5, Is=Id=0.0Z5 sec., T=0.l sec.

139

CH. 6: THE PERFORMANCE RESULTS

Figure 6.27

Praction of
updates delayed
due to large
hole lists |

0.8 T

h, hole list size limit

Figure 6.27. The MCLA-h algorithm: Fraction of delayed
updates. MN=6, M=1000, Bs=5, Is=1d=0.025 sec., T=0.l sec.
(The values of Ar given in the figurc are in seconds.)

140

SR T T

5" NTPA

PR S

< enth ot R UL R SALSEIAT L 171, 0 T e e s

TAYEPNE

Fa ot M

SR Tl

CH. 8: THE PERFORMANCE RESULTS

5.4 Results for a Hyperexponential Base Set Distribution.

The results of the previous section were obtained with a discrete exponential

- distribution for the number of items referenced by an update. (See chapter 4).

With this distribution, updates with large base sets (e.g., updates that reference
many itcms) do not cccur very often.

The MCL-A-h algorithm with a small value of A is very sensitive to updates
with large base sets because each such update produces a hole that remains on
the hole list at the central node for a long time. Thus, a small number of updates
with large base sets can easily cause the hole list to exceed its limit A and can

cause delays to occur with the rest of the shorter updates. To study the effect

of updates with large base sets, we consider a different base set distribution: a

discrete hyperexponential distribution.

With a discrete hyperexponential distribution, a certain fraction, p, of the
base sets are generated from a discrete exponential distribution with mean X
while the rest of the base scts (1 — p) are generated from a discrete exponential
distribution with mean Xz. (0 < p < 1.) For our study, we make a small fraction
of the updates (p) have a large base set (with mean Xj), while the majority of
the updates have smaller base sets (with mean Xj). In order to present the same
average load to the system, we will require that the average size of the base sets
of all updates {i.e., pX] 4+ (1 —p)Xz) be the same as the average size of the base
sets with the original discrete exponential distribution. As was shown in chapter
4, this mean was : ' -

original mean = [1 — exp(—1/B,)| ™ 2
(where B, is the base set parameter in the performance mddel), so we need
PXi (1 —p)Xp = [l —exp(—1/B)] 3)

To find the required value of X] we need a second equation. We therefore
define the parameter q to be the factor by which X] is larger than Xp. That is,

)(1 - qXZ- v | (4)
This gives the value of X:
' e —1 : L

p+(1—p)la

141

LG leA TR N L

fere oo DI A AT RATIACAMCAR Bkt S, (L DD e e

STCLIN AL D

o sk

CH. 6: THE PERFORMANCE RESULTS

Having computed Xj, we can find X, from equation (4).

The values of Xj and X5 we have found are the means of the two discrete
exponential distributions. The mean values for the continuos exponential dis-
tributions that are used for generating the discrete distributions, 5,1 and By,
are different and can be computed by inverting equation (2):

By = —[m (1- x;‘)]—l,
By =—|In (1 - xl—l)]—l.

The MCLA-h algorithms were sxmulated using the new hyperexponentlal

distribution for the basec sets. There were four cases studied:

1) p=0.1, ¢ = 10. That is, 10 percent of the updates have larger base sets.
The mean size of the base sets of these updates was 10 times larger than the
mean size of the base sets of the rest of the updates. For the case of B, = 5,

= 0.1 and ¢ = 10 implies that Xj = 29.03 and X; = 2.903. :

2) p = 0.05, ¢ = 10. In tkis case, only 5 percent of the updates ha.ve the -
larger base set. The average size of the large base sets is X; = 38.04 whlle the
average size of the smaller base sets is Xy = 3.804.

3) p=20.1, ¢ =>5. Ten percent of the updates have larger base sets, but the
mean size of these larger base sets is only 5 times larger than the mean size of

~ the smaller base sets. In this case, X; = 19.70 and Xp = 3.940.

4) p = 0.0. In this last case, there are no updates with larger base sets.
In other words, all base sets are generated from a single discrete exponential
distribution with mean X; = 5.516. This is the original dlstnbutlon that was
used to obtain all previous results, .

Notice that in all cases above, pX] + (1 — p)Xz = 5.516, the mean of the
original discrete exponential distribution.

The four cases were simulated for an interarrival txme A, of 7 seconds. The
rest of the simulation parameters were not changed. Figures 6.28 through 6.30
show the results.

In figure 6.28, the average response time of updates, R, is shown as a function
of h, the hole list size limit for the four cases. (This figure should be compared
with figure 6.25.) Even though in all four cases the mean size of the base sets
is constant, the response times are considerably different. This difference is par-
tially due to the fact that the variances of the different base set distributions
are not the same. As was expected, the MCLA-h algorithm is more sensitive

142

CIH. 0: THI PERFORMANCE RESULTS
Figures §.28 and 0.28

= 4
average
response
time (sec)

4p=0.05,q=10

2 -
‘ p = 0.1, q-= 5
p=0
N ¢
N Z N s 3 : 5 s " 3 o
+ } ¢ $ t £ ¥ + t P>~
9 8 7 6 S 4 3 2 1 L]
h, hole list size limit
Figure 6.28. The MCLA-h algorithrm with hyperexponential
base sets: Effect of h, N=6, Ar=7 sec., M=l000, Bs=5,
I15=Xd=0.025 gec., T=0.1 sec.
H
average
size of
hole list
24
‘P — — - !—'//—/"/
14¢p = 0.005, g = 10
$4p=0.1,q=5 //
tp=o0
i —t L] $. 1 1 1 1. 3
L] T L] = i T . L) L) I 2
9 8 7 6 5 4 3 2 1 o]

h, hole list size limit

Figure 6.29. The NCLA-h algorithm with hyperexponential
base sets: Average size of the hole list. N=6, Ar=7 sec.,
M=1000, Bs=5, Is=1d=0.025 sec., T=0.1 sec.

s AT AR S L T e O b Lt e

Koo o 2o M

gy

T

CH. 8: THE PERFORMANCE RESULTS

to h when we use hyperexponential distributions. However, even in these cases,
a relatively small value of h (c.g., 8) produces average response times close to
the ones obtaincd with A = oco. As was also expected, as p (the fraction of the
updates with large base sets) or ¢ (the factor by which the larger base sets are
bigger) are decreased, the average response times and the sensitivity to A both
decrease. _ '
The average size of the hole list, H, is shown in figure 6.29 as a function of the
hole list size limit h. As was obscrved in figure 6.26, as the average response times
grow, the value of H grows proportionately. Figure 6.30 shows the fraction of
the updates that are delayed at the central node because their hole lists exceeded
the limit h. As was expecied, as p or g grow, the number of delayed updates
increases, : '

5.5 Some More Conclusions.

If the distribution of the number of items in the base set of updates is discrete
hyperexponential, the average response times of updates increase. This increase
is mostly due to the increased variance of the hyperexponential distribution. -

For a given value of the hole list size limit, &, as the fraction of updates
with larger base sets (p) increases or as the mean base set size of these updates
(g) increases, the response time increases. This increase is due.to the fact that
the updates with larger base sets produce holes that remain on the hole list for -
longer periods of time. This causes the hole list to overflow (i.e., its size exceeds
h) and causes updates to be delayed. However, a relatively small value of 4 (e.g.,
6) makes this increase in response time negligible.

6. COMPARISON OF STRATEGIES FOR LIMITED HOLE LIST COPIES.

In section 1.9 of chapter 3 we described several strategies for handling limited
hole list copies. One of these strategies was to delay sending the “grant” message
for a transaction until the hole list copy of the transaction had shrunk to a size
smaller than the limit h. We called this the "delay at central node” strategy.
Another solution was to simply truncate the hole list copy to the right size. This
was the “truncating” strategy. ' :

In appendix 7 we analyze the delays involved in the “delay at central node”

144

CH. 0: THE PERAFORMANCIE RESULTS

Figure .30

fraction of

delayved uwpdates
due to large \
hole liscs

p=0

h, hole list size limit

Figure 6.30. The HCLA-h algorithm with hyperexponential
base sets: Fraction of delayed updates. =6, Ar=7 sec.,
M=1000, Bs=5, Is=1d=0.025 sec., T=0.1l sec.

B ecm s s ae s

Y v T as B U AR RIS O3 G, s L DT e

CH. 8: THE PERFORMANCE RESULTS

and the “truncating” strategies and we compare these delays. In the appendix
we show that if the central node docs know what holes will disappear first from
the hole list, then the “truncating” alternative is superior, We also show that if
the central node cannot predict what holes will disappear first, then the “delay
at central node" alternative is superior in most cases.

7. THE SIZE OF THE “TOTAL-WAIT-FOR" LIST.

In section 1.10 of chapter 3, we described a centralized locking algorithm
(TWCLA) which used total-wait-for lists. The TWCLA algorithm is a centralized
locking algorithm like the MCLA algorithm. Both of these algorithms eliminate
all unnecessary delays (at least with our performance model), so we expect the
performance of both algorithms to be similar. Hence, we will not study the
performance of the TWCLA algorithm in this thesis. -

In this section we will only estimate the average size of the total-walt-for list
at the central node in the TWCLA algorithm. It turns out that the average size
of the total-wait-for list is roughly the same as the average size of the hole list.
This means that the performance of the TWCLA algorithm with limited total-
wait-for lists should also be similar to the performance of the MCLA algorithm
with limited hole lists.

The average size of the total-wait-for list, F, can be estimated as follows:
Assume that the system is stable and let S be the average time that an element
remains on the total-wait-for list. The sequence number of update A is added .
to the total-wait-for list when A releases its locks. Assuming that the process of
granting all locks to updates at the central node is a Poisson process with arrival
rate N\ (sce chapter 4), the time to the next grant is 1/(N\) (because of the
memoryless property). Say this grant is for update B. Then A'’s sequence number .
will remain on the total-wait-for list at most until B releases its locks. (Notice
that a third update C could obtain its locks after B did but could finish before
B did.) The average time for B to release its locks will be less than R, the total
average response time of updates. Thus,

5<yx tF
and by Little's formula, .

F < (VNS = 1-+F(NN).

146

R O N L AN

CH. 6: THE PERFORMANCE RESULTS

Therefore, we expect the average size of the total-wait-for list to be about
the same size as the average size of the hoie list. (See equation (1).) However, it
secms that the size of the total-wait-for list will not be as sensitive to updates
with large base sets as the hole list was. As long as there are updates with small
base sets finishing in “short” times, the updates with larger base sets cannot
cause the total-wait-for list to grow. Some simulations are necded to confirm this
hypothesis.

This concludes the presentation of the performance results for the update
algorithms. '

147

AL A

At 2

3 a4

CHAPTER 7

CRASH RECOVERY

This chapter starts the second part of the thesis. In this second part we will
climinate some of the restrictions that were made for the performance analysis
of thc first half of the thesis.

We start by considering failures and their effect on the system performance.
We will show that it is possible to design a resilient centralized locking algorithm
which does not use backup central nodes and which involves little additional
overhead during normal operation as compared to the original algorithm. When a
failure occurs, the resilicnt centralized locking algorithm will temporarily operate
incfliciently. However, after the system adapts to the new state, the algorithm
will operate as efficiently as before. If we assume that failures are rare, the average
performance of the resilient algorithm will be similar to the performance of the
original centralized locking algorithm. Thus, the centralized locking sfrategy
continues to be an attractive alternative even in the presence of failures.

In section 1 we comment on the state of the art in crash recovery for dis-
tributed databases. Next, in scction 2, we describe the types of failures that
can occur and we state which typcs we will not consider in this thesis. Bcfore
describing the resilient centralized locking algorithm, in section 3 we discuss some
basic concepts that apply to any resilient update algorithm. In section 4 we
outline the resilient centralized locking algorithm, and in section 5 we briefly
compare its performance to the other algorithms we have studied, assummg that
these algonthms are also modified to make them resilient.

1. STATE OF THE ART IN CRASH RECOVERY.

Many crash recovery techniques and algorithms for distributed databascs
have rccently appeared in the literature [e.g,, GRAY77, STON7S, ROSETS,
MENATS8, BADAT8, LAMP, THOMT6, ALSB76, BERN78, ROTHT77]. Before

148

[EORIUPI

ARV R LY SRR T

DR RV L E T PTEIY RV AVE (O e

DRy T AP ST

AR RS IR P

CH. 7: CRASH RECOVERY

describing any new algorithms, it is important ta understand what has been
achicved up to now in this arca, what is still missing and what this chapter
attcmpts to accomplish. .

By examining the current literaturc, we can reach several general conclusions:

(1) There arc many types of failures that can occur in a distributed database
system. Any resilicnt algorithm should be able to deal in a proper way with at
lcast a good number of these types of failures. We will discuss some of the types
of* failures in section 2.

(2) There are many available strategics for dealing with the different types
of failures. For example, there is a “two phase commit protocol”, there are
“time-outs”, there are "transaction logs", and there are “message pipes”. (These
tcchniques do not solve the same problem.) We refer the reader to the literature
for descriptions of these strategies.

(3) If onc considers one type of failure and one recovery strategy in a simple
algorithm, then the incorporation of resiliency to the algorithm is not hard, it .
simply has to be done carcfully.

(4) However, making a complex algorithm resilient to different types of
failures which can occur simultancously is much much harder. The problem is not
conceptually hard; it is simply that close attention has to be paid to innumerable
details. Some of the published papers are clear testimony to this fact.

(5) But the worst part of the problem is that none of the complex resilient
algorithms has been formally proven correct. After reading pages and pages of
dctailed code, the reader is always left with the fecling that there might be a case
that has not bcen considered. Scveral such cases or "bugs” have already been
found in published algorithms. Once found, a bug is relatively casy to fix by
including additional tests in the algorithm. But until the algorithms are formally
proven correct (which might take some time considering the complexity of the
algorithms), there will always be the possibility of discovering more bugs.

Considering all this, in this chapter we will not attempt to present still
another detailed resilient distributed algorithm. Unless we could prove the cor-
rectness of such an algorithm, the algorithm itself would not be a significant
contribution. The main thrust of this thesis is the performance of update algo-
rithms for distributed databases. Thus our main interest is not how to design
resilicnt algorithms, but how these resilient algorithms will perform. Fortunately
for us, it is not necessary to give all the gory details of an algorithm to understand
how it will perform. Therefore we wiil simply give a “top level” description of
the resilicnt centralized locking algorithm we are interested in. We will also give
arguments to convince the reader that it is possible to implement the algorithm

149

1k

A

L XYV AN DAty W

——— T etate 7

CH. 7: CRASH RECOYERY

correctly.

Another rcason for not being as interested in the low level implementation
details of resilicnt update algorithms is the following one. The redundant up-
datc algorithm is only part of thc complete distributed databasc system. Crash
recovery techniques should not be designed for each part of the system independ-
cntly, but should be integrated in & uniform fashion into the complete system.
Thercfore, there is little usc in going through the implementation details of crash
recovery when we are only studying the redundant update algorithms. In this
chapter, the only rcason for considering crash recovery techniques for an update
algorithm independently of the rest of the system is te convince the reader that

1) it is possible to have a resilient centralized locking algorithm, and
2) this algorithm performs well. '

If we can show that the above is true, then we can reasonably expect the
centralized locking algorithm incorporated into a complete system with crash
recovery to perform well, '

2. TYPES OF FAILURES.

Tn this scction we will classify the possible types of failures in a distributed
databasc system. A good understanding of the possible failure medes will be
helpful in the following sections. The types of failures that follow arc not disjoint.
That is, a single failure can be classified into several categorics. (For another
discussion of possible failures and their problems, sce [ROTHT7].)

(a) Node Failure. This occurs when a node in the system “crashes” and
temporarily ceascs operation. Node failures can be further grouped into “soft”
and “hard" failures. In a soft crash, the node does not lose its vital data and it
is possible for the node to get up-to-date by simply performing the updates it
misscd while it was down. In a hard crash, the node loses some data (e.g., values
in thc database) and backup techniques must be used to repair the damage.

(b) Communication Line Failures. This occurs when messages are not trans-
mitted properly. If we assume that the distributed database system uses a com-
munications sub-system, then this sub-system will take care of many of the
failures. Some common failures that are “solved” by the communications sub-
system arc missing messages, out of order messages (both solved with sequence
numbers), and physical line failures (solved by re-routing). In some cases, the
communications sub-system will be unable to deliver or receive messages and one

150

IRRTICD X VA 20 O

S RERAMA G M AR et s <A Y vt

e e et ————an- 10 doe 4

CH. 7: CRASH RECOVERY

or morc nodcs will be temporarily isolated from the rest of the network. In such
cascs, we say that a network partition has occurred.

(c) Detectable Failures. If all nodes in the system are able to discover a
failure (node or communication) before the failure is corrected (the node brought
up or the communication re-established), then the nodes can take appropriate
action and the failure is called “detectable”. Failures are usually detected by
time-outs or through “alerting” messages from other nodes. A failure that is
detected too late (i.e., an undetected failure) can cause the database consistency
to be violated. (For example, sce section 4.7.)

(d) Malevolent Failures. In order to be able to recover from failures, we must
assumec that all nodes coopcrate and follow the system protocols. If a node does
not do so, it can cause a malevolent failure. These failures arc almost impossible
to correct. IFor example, if a node starts broadcasting “perform update” (or
“accept update”) messages with garbage in them, then all databases will contain
garbage. As another example, consider what would happen if the central node
in the MCLA centralized locking algorithm started granting locks to all update
requests without checking for conflicts.

(e} Multiple Failures. The failures mentioned above can occur oncat a tlme or
multiple failures can occur at once. Algorithms that recover from multiple failures
are more complex because the number of cases that must be considercd increases
tremendously. Furthermore, the case of failures occurring during recovcry from
a different sct of failures must also be considered.

In this chapter, we will not consider certain types of failures. We will nof
consider malevolent failures because crash recovery techniques are not adequate -
for this type of failures. Techniques from the area of protection and sccurity
are probably more useful. We will only consider communication failures that
partition thc network. (Notc: A partition might just have one node.) We as-
sume that the communication sub-system will cflectively deal with the other
communication failures. The resilient algorithms we discuss in this chapter will
attempt to recover properly from all the other types of failures mentioned.

3. BASIC CONCEPTS.
In this scction we will discuss some basic concepts common to all resilient

update algorithms. For simplicity, we are still assuming a completely duplicated
database at each node and we are also assuming that all transactions are updates.

151

SRR MEAL L, T I e

o DV

s o

CH. 7: CRASH RECOVERY

Howcver, many of the idecas and concepts we will present can be extended to
thc more general case of partlally duplicated data and read-only and upda.te
transactions. :

3.1 The Principal Idea.

The principal idea behind the resilient algorithms is to reduce the overhead
to a minimum during normal opcration, Of course, some additional steps must be
performed during normal operation in order to allow recovery from a crash. But
thesc additional operations should increase the number of messages transmitted
and the IO and CPU overhead as little as possible. Only when a failure occurs will.
the algorithms temporarily operate less cfficiently. But after a brief recovery and
rcconfiguration period after the crash, the algorithm should return to its normal
opcration, even if nodes are missing. If we make the reasonable assumption that
failures do not occur frequently, then the overall performance of the algorithm -
will not be allected by these rare and brief periods of inefficient operation.

3.2 Logs.

Consider the crash of a single node in any update algorithm. Since this node
will bc out of operation for a certain period of time, it will miss a set of updates.
This means that somehow the rest of the network will have to save these updates.
There are many altcrnatives as to how and by whom these updates are saved.

Onc altcrnative is to assume that the communication sub-systcm will guar-
antec delivery of a message that has been given to it. (The mail system in the
ARPA net is an example of such a communication system.) Thus, all missed
updatc messages are saved by the communication sub-system and when the node
comes up after the crash, it autematically starts receiving the messages as if
nothing had happcned. Although this can be 2 useful technique in some systems,
we will not consider it here because we would like to solve the problem of missing
updates explicitly. Therefore, we assume that the communication sub-system
will attempt to send a message and will later inform the sender either “Yes, I
sent it" or “No, I could not send it".

If the communication sub-system does not save updates, the nodes them-
sclves must save them. Thus we sec the need for “logs”. A log is a collection
of performed updates that is “safely” kept by a node. Each log entry contains

152

P LV TSWE VAL AW TR Fil By S U ¥ U NS TN e st ey e e d

1rat N b AT are ln

REL L ¥ I T SEIAPS FENprRPY SO

CH. 7: CRASH RECOVERY

the database values that were modified by the update plus some scquencing in-
formation (c.g., 8 scquence number or a timestamp). Now the question is: What
nodes save what updates? '

Onc answer to this question is to have cach node only save the updates
that arc “finalized” at that node. A node finalizes an update when it decides
that thc update should be performed. In the centralized locking algorithm, a
nodc would only save the updates that originated there, while in the distributed
voting algorithm, a node would only save updates that are accepted at that node,
This strategy saves space in logs since each update only appcars in one log. The
obvious disadvantage of this scheme is that when a node crashes, its log is not
available and the updates in that log cannot be accessed by another recovering
node. ‘

A second alternative is to have all nodes save all updates they ever perform,
including updatcs that were finalized at other nodes. Although this is more
wastcful in terms of space and time, a recovering node will always have access
to all the updates it missed (except if all other nodes are down or unavailable).

A third alternative is to name a subsct of reliable nodes to be the keepers of
the logs. Only these nodes would save all updates; the rest of the nodes would
not save any of the performed updates. Hopefully, at least onc of the log kecpers
would be up at all times. Unfortunately, before completing an update, a node
would have to wait for a confirmation from the log keepers that the update has
been properly saved. (If the number of log keepers is larger than or equal o the
numbecr of nodes required to form a majority, then one of the logs will always be
available and no confirmation is needed. The reason why this is true will become
evident after rcading section 3.4.)

In some systcms it might be convenient to keep a record of all previous
updates. For example, the log could be stored on magnetic tape which provides
incxpensive, reliable and abundant storage. However, in other systems it might
not be possible to keep a continuously growing log. Fortunately, updates can .
be removed from the log when we are positive that all nodes (active or down)
have performed an update. There are several ways to do this trimming of the
logs. One way would be to have the node in charge of cach log periodically send
out a message to all nodes requesting a list of performed updates. Then each
update that has been performed at all nodes can be removed from the log. In the
MCLA-h algorithm in particular (see chapter 3), there is an even simpler way
of trimming the log. Suppose that update A, with sequence number g, is in the
log at node z. Then suppose that a “perform update” message from node y for

-update B (with sequence number b) arrives at node z. Furthermore, assume that

153

Rei? 2 P A R TY L AN

O P N S

M iae 3 45 Fia

PRy Y

47 2 I —t

CH. 7: CRASH RECOVERY

b > a and assume that A is not in B's holc list. In this case, update A must
have been performed at node y and the “perform update” message for B acts as
a confirmation that A has becn performed at y. When node z reccives similar
messages from all nodes, apdate A can be removed from the log at node z.

Our comments on saving performed updates for crashed nodes apply to any
update algorithm. Thus, we can expect any resilient update algorithm to have
some sort of logging mechanism, and the overhead produced by the logs will be
very similar in all algorithms. ‘

3.3 Broadcast of Updates.

Another common problem to all update algorithms is the reliable broadcast
of an update to all nodes once the update has been “finalized”. Recall that an
update is finalized when 2 nodc decides that the update should be performed.
This happens when a node accepts an update with a majority of votes in the
distributed voting algorithm. In a centralized locking algorithm (e.g., MCLA),
an update is finalized when a node obtains locks for all the items referenced and
computes the update valucs,

No matter what algorithm was used to decide if an update can be per.ormed

once we do decide {o perform it, we would like either that all nodes perform

the update or that no nodes perform it. There are two basic alternatives for
accomplishing this.

The first alternative is not to perform any update at any node until we
can guarantce that that update will eventually be performed at all nodes in the
system. There are many ways to achieve this, but most of them are variations
of the “two phase commit protocol” [GRAY77]. Under this protocol, a node that
has finalized an update and wishes to perform it, first sends the new update
values to all nodes. The nodes save these values without updating the database.
When the finalizing node receives acknowledgments from all nodcs, it can be sure
that all nodes received and accepted the values, and only then docs it transmit a
“commit” message to all nodcs. Upon receipt of this second message, nodes ac-
tually perform the update on the database. By taking the proper precautions, this

protocol can guarantee that cither the updateis cventually performed everywhere

or the update is not performed at all. The disadvantage of this two phase commit
protocol is that 3(N — 1) messages arc needed in order to broadcast an update
instead of the minimum of {N — 1) messages needed without the protocol (where
N is the number of nodes). (In some algorithms, the finalizing node only has to

154

a

FecAuews. s

e e — A APVAR £

ewaru.inae

CH. 7: CRASH RECOVERY

wait for a majority of acknowledgments.) In scction 4 we will discuss how this
protocol can be used in the centralized locking algorithm.

The sccond alternative to the problem of reliable broadcast of an update is
to allow “undoing” of updates. Undoing an update A at node z is not especially
hard. In the log entry for A (stored at z or at some other node), we simply add
the old values of the updated items. (The old values have already been rcad by
whatever node computed the new valucs, so there is little overhcad in adding
these valucs to the log.) Update A can then be undone by writing the old valucs
of the itcms into the database. Notice that other updates with larger sequence
numbers (or larger timestamps) than A's and whose base sets have elements in
common with A's base set, must also be undone.

If we can undo updates, a node can perform an update without knowing
for sure if the update will be performed at all nodes. If later on the node dis-
covers that an update it performed was not performed at the other nodes, it will
undo the update. This means that a node that finalizes an update can simply
scnd (N — 1) “perform update” messages to all nodes and without waiting for
acknowledgments can proceed to update the local database and to mark the
update as finished. However, this also means that transactions at that node will
see valucs in the database that will possibly be undone in the future. Because
of this, undoing updatcs does not seem to be a satisfactory alternative for most

cascs.

(Notice that in some special cascs undoing updates may not be necessary, .
even if we do not usc a $wo phase commit protocol. For example, if all transactions
are commutative (i.e., the order in which they are performed is unimportant),
then a node that discovers an update transaction which was not performed at
all nodcs, does not have to undo the transaction. The node simply makes sure
that all nodes do perform the update. The fact that the update is performed in
a different order (with respect to other updates) is not important. See chapter
8.) '

At this point some readers might think that the distributed voting algo- .
rithm can opcrate safely without update undoing or without a two phasc commit
protocol, thus making it supcrior to the centralized locking algorithm. As we will
sec in the next two scctions, this is not true if we want the algerithm to opcrate
efficiently even when nodes are inaccessible. In other words, the distributed voting
algorithm (as well as the other algorithms) can operate without undoing updates
and without a two phase commit protocol but the price that must be paid is
incfficient operation when one or more nodes are down.

155

2TAR

s+ a e - — -

CH. 7: CRASH RECOVERY

3.4 The Majority of Nodes Requirement,

Suppose that the communication sub-system fails and partitions the nodes
of the nctwork into indcpendent groups. A node in one of these groups can only
communicate with nodes in the same group, and from their point of view, it
scems that the rest of the nodes crashed. We now address the following question:
In what groups will we allow new updates to be performed?

If we do not allow updates to be undone, then we cannot permit a group

smallcr than a majority to perform any new updates because such a group cannot
guarantce that their updates will be performed at the other nodes. (In an /N node
nctwork, a majority consists of (IV/2)+1 nodesif N is even or (N +-1)/2 nodes if
N is odd.) For example, consider a six node network that is partitioned inte two-
groups with three nodes each. If we allow each group to continue performing new
updates, the databases in the two groups will diverge (i.e., will contain different
valucs) and there will be no way of re-uniting the network wnthout undoing some
updatcs. .
On the other hand, if we allow updates to be undone, then every group of
nodes in a partitioned nctwork can perform new updates. However, when the
nctwork is re-united, many of the updates will have to be undone. Performing
updates that are possibly going to be undone is a wasteful strategy. Furthermore,
coordinating the undoings as the network is united is a very messy and hard
problem. Therefore, even if updates can be undone, it is wise not to perform new
updatces in groups of nodes that are not a majority.

Thus, in general, we will not permit groups of nodes without a majonty to
perform any new updates. On the other hand, if there is a group with a majority
of nodes, then we will require that that group perform new updates. This is in.
line with our philosophy that a system should operate as efficiently as possible;.
cven after failures have isolated some nodes.

3.5 Cancelling Updates.

If a majority group of nodes is to operate cfficiently, it is necessary for the
group to be able {o cancel or invalidate any updates that had been initiated but
never compleied by nodes outside the group,

For example, consider the casc where a node z becomes isolated (due to a
crash or to a communications [ailure) from the majority group. Also assume that-
the system is using a centralized locking algorithm (e.g. the MCLA algorithm)

156

P 2 L e A TR

S1 L2 TPORVIRE AT T Y T Y MIVE GRS Y VD

CH. 7: CRASH RECOVERY

and assumec that z is not thec central node. When node z was cut off, it was
holding locks for some of its updates in progress. Since node z is isolated, its locks
will be held until z can communicate again. And since we cannot allow other
updatcs in the main group to be delayed indefinifely because of node z's locks,
we need a mechanism for reclaiming the locks. This mechanism must also insure
that the updates that lost their locks (i.e., were cancclled) are not periormed atb
ail, even when node z come up again. We will describe such a mechanism when
we describe the resilient centralized locking algorithm.

The nced to cancel updates also ariscs in other update algorithms. For ex-~
ample, consider the distributed voting algorithm with five nodes. Suppose that
an update A arrives ab node 1 and then proceeds to obtain OK votes at nodes
1, 2, and 3. At that point, node 3 accepts update A (c.g., finalizes it) but at
the samc instant node 3 js cut off from the rest of the system as in the example
above. Since node 3 does not have a chance to transmit any messages informing
tke other nodes of the acceptance of A, node 2 will later time out and will scnd a
vote request for A to say node 4. However, because of a second update B which
conflicts with A and which has received OK votes at nodes 4 and 5, update A
receives deadlock rejéct votes (DR) at nodes 4 and 5. Now update A has two OK
and two DR votes and nceds another vote to decide its fate. Update B is delayed
at node 1 waiting for update A io complete, and similarly other updates can be
waiting for A and B. So unless the four up nodes do something about update A,
the system will slow down. The only solution (if we do not allow undoing) is for
the four up nodes (1, 2, 4 and 5) to together decide to cancel or reject update
A, thus permitting other waiting updates like B to complete. The four up nodes
can cancel A because they constitute a majority of nodes. '

Notice that this cxample illustrates the need for some sort of two phase
commit protocol in the distributed voting algorithm (unless updates can be un-
done). If node 3 performs update A locally before making sure that the rest of
the nodes have gotten its “accept” message, then node 3 will be performing an
updatc that will later be cancelled by the other nodes. (Notice that it might be
possiblc to modify the distributed voting algorithm in order to simplify the two
phasc commit protocol. When an update is accepted, a majority of nodes must-
know of the existence of the update. Thus, if done properly, the voting phase
might serve as the first phase of the two phasc commit protocol.)

Similar cxamples can also be constructed for zll the other algorithms described
in chapter 3. Hence, it sccms that all update algorithms will need some form of
two phase commit protocol and some type of update cancelling protocol {unless.
we allow update undoing).

157

P ST A

NEOAR B A P

NSRRIV ITR VA 723) W N S

b e e iy (T BRI NN AN

CH. 7: CRASH RECOVERY

4, THE RCLA-T ALGORITHM.

In this scction we will present a resilicnt centralized locking algorithm that
is cflicicnt during normal system opcration. We will call this the RCLA-T algo-
rithm because this algorithm uscs a variant of the two phase commit protocol
and docs not undo any updates. This algorithm will work with any of the logging
schemes we have described, but for simplicity we assume that all nodes log all
the updates they perform. Updates will be performed under this algorithm as
long as a majority of nodcs are up and able to communicate with cach other.

The RCLA-T algorithm does not use any explicit “backup” central nodes.
A backup central node would be a special node that is kept informed of all of the
central node's activitics, so that in casc the central node fails, the backup node can
immediately replace it. The idea of using backup central nodes is very intuitive
but has a big disadvantage: keeping the backups up to date on the central node’s
activitics introduces additional overhead and delays cven during normal system
operation. The RCLA-T algorithm eliminates this type of overhead by not using
backup nodes. The price that must be paid for this is higher overhead when the
ccntral node fails and must be replaced. We prefer this alternative because we are
assuming that failures do not occur often. Instead of using backups, the RCLA-
T algorithm allows any node to become a new central node after the failure of the
old central node. Before starting operation, the new central node must complete
any pending work started by its predecessor. The details of this will be given in
scction 4.4. .

As we will see, the RCLA-T algorithm can recover from hard crashes where
important state information is lost. However, the recovery from these crashes is
morc involved. In order to simplifly the presentation, for the time being we assume
that no hard crashes occur. Then, in section 4.7 we consnder the modifications
nceded to recover from these hard crashes.

4.1 The Two Phase Commit Protocol for Performing Updates.

Under normal operation, the RCLA-T algorithm is simply the MCLA-h
algorithm with two modifications: logs of performed updates are kept and a two
phase commit protocol is uscd to perform an update at all nodes after the update
has been finalized. (Recall that the MCLA-h algorithm wes described in chapter
3)

Informally, the procedure for the two phase commit protocol is as follows:

158

O Y A

AL AL 2 AL

S T

Loat i twnmesr M2 T W e

CH. 7: CRASH RECOVERY

When node z receives the locks for update A from the central node, it procecds
to compute the update values. (Sce appendix 1.) Then, before performing A
locally, node z sends “intend to perform: A" messages to all nodes. The contents
of this message are similar to the contents of the “perform update” message in
the original algerithm, except that now when the other nodes receive the “intend
to perform A" message, they do not perform update A. Instead, they save A and
its ncw update values in a salc place, they acknowledge receipt of the “intend
to perform A" message to node z, and they await a “commit A” message. Na
nodc will perform A without having scen this second message. Bub all nodes
will “remember” A until either they see the “commit A" message or they realize
that A has been cancelled. The saved “intend to perform A” message is called a
“pending” message at the node. Later on we will see other types of pending or
saved messages.

After node z sends the N — 1 “intend to perform A" messages (where N is
the number of nodes), it waits until it receives a majority of acknowledgments
from the other nodes. (Since node z has obviously scen the “intend to perform
A" mcssage, it only waits for |[N/2] acknowledgments from the other nodes.)
After rcceiving a majority of acknowledgments, node z can guarantee that A will
be performed and can procced to update the local database copy and to send the
N — 1 “commit A” messages. (Node z can ignore any acknowledgments for the
“intend to perform A" message that arrive later.) After sending the “commit A"
mcssages, node z is done with update A.

Node z can perform updatec A when it has only heard a majority of confir-
mations of its “intcnd to perform A" message because at that point node z can
guarantce that update A will eventually be performed everywhere in the system.
Update A will eventually be performed everywhere for two reasons: (1) Update
A can no longer be cancelled, and (2) all nodes implicitly know about update
A because of the sequence number mechanism. (See chapter 3.) As we will see
in scction 4.2, update A can only be cancclled in a majority of nodes have not
heard anything about A. Since at least onc member of any majority whatsoever
has seen the “intend to perform A" message, then we know that update A can
no lenger be cancelled. Furthermore, update A was assigned a unique sequence
number by the central node, so every node in the system is expecting to see
“intend to perform A" and “coemmit A" messages. If these messages do not arrive
at any node y, then that node will take the necessary actions to insure that A
is performed at y. Again, since at lcast one node in any working majority of
nodcs has scen A, then node y will be able to get the necessary information to
perform A from that node that has scen A. Therciore, update A will eventually

159

"m e gevrte

vl g A
marsa e b e

SENL RN R

CH. 7: ORASH RECOVERY

be periormed at all nodes.

The two phase commit protocol described above and the logs are the only
iwo crash rccovery mechanisms that produce overhead during normal system
opcration. The rest of the mechanisms we will deseribe for the RCLA-T algorithm
arc invoked when a failure occurs and arc only used for short periods of time
while the system adapts itself to the new situation. The system uscs time outs
and invokes the failure mechanisms whenever it notices-that something is not

functioning properly.

4.2 Update Cancelling Protocol.

We now describe the procedure for cancelling updates. The procedure could
be called a three phase commit protocol. The reason that three phases are needed
is that when the procedure is initiated by the central node, it does not know
whether the update can be cancelled. Thus, a first phase is required to find out
if an update can be cancelled. After this phase, two more phases are required to
actually perform the cancellation. "

The cancelling procedure is invoked by the central node when it notices that
onc or more nodes are not responding. The central node can also be asked to start
this procedure by other nodes that have waited too long for a certain update. In
the following discussion, we assume for simplicity that one update only is being
cancelled. This procedure can be generalized to allow the cancellation of several
updatcs at a time,

Initiaily, the central node realizes that update A is missing and decides to
try to cancel it in order to reclaim A's locks. The central node send a “propose
to cancel A" mcssage o all nodes in the system and waits for confirmations.

When a node z receives the “propose to cancel A" message, it checks to see
if it has “"scen” update A before. A node z has “seer” update A if node z has
gobten a “intend to perform A" message or if node z has actually performed A.
If node z has scen update A, it immediatcly sends a “have seen A” message to
the central node informing it of this fact. (Node z also scnds the central node
the update values for A.) Upon receipt of this message, the central node aborts
the cancel proccdure. The procedure for aborting is described later on in this
scction,

If node = has not scen update A, then it sends a “have scen proposal to
canccl A" message back to the central node. With that message, node £ makes
a commitment not to acknowledge any “intend to perform A" messages it might

160

LR TN AA L LT Tt s s e

i il T LY

o o < age s W VN LAY A IVA G B AR A A S 5.

CH. 7: CRASH RECOVERY

receive later. Thus, node z must remember the pending “propose to cancel A"
message until it hears from the central node again.

When the central node receives a majority of "have scen proposal to cancel
A" messages, it knows that it is impossible for update A to be performed and
hence A can be cancelled. However, since failures could occur before the protocol
complctcs, the central node must still use an additional two phases to actually
cancel update A. Therefore, the central node scnds “intend to cancel A" messages
to all nodes. When receipt of these messages is acknowledged by a majority of
nodcs, the central node sends out a "cancel A” message to all nodes.

A node that receives and acknowiedges a “intend to cancel A" message knows
that update A cannot be performed. When the central node receives a majority of
acknowledgments for the “intend o cancel A" message, it knows that a majority
of nodces know that update A cannot be performed. Only at that point can the
central node guarantee that in any possible majority of nodes, at least one node
will know that A cannot be performed. In other words, if the central node fails
after this point, any other node that becomes the central node will be able to find
out that A cannot be performed and will thus finish the cancelling procedure that
was not terminated. (This aspect will be described in more detail in scction 4.4.)
So after receiving a majority of acknowledgments for the “intend to cancel A”
message, the central node can send out the “cancel A" messages which actually
cancel the update.

The cffect of the “cancel A" message received at node z is very 81mllar to the
effect of a “commit A" message, except that no actual values are stored in the
database. That is, update A is rccorded as a null update, its scquence number
is added to the list of performed updates and a log entry for A is made. The
log entry for A indicates that update A is a null update. After having sent out
the “cancel A” messages, the central node releases A's locks and makes them
available to other updates.

As we stated previously, the central node may decide to abort the cancel
procedure during the first phase if it discovers that update A has been seen by
a node. (The cancel procedure will not be aborted after the sccond phase has
started.) In addition to aborting the cancelling procedure, the central node should
make sure that all nodes perform update A. Since the central node now has a copy
of the update values needed for performing A (obtained from the node that had
scen A), it uses the following two phase protecal to abort the cancelling procedure
and to perform A at all nodes: First a “force performance of A" message is sent
to all nodes. This message is similar to the “intend to perform A" message except
that the “force performance of A" message overrides any “propose to cancel A”

el

ety

PO N PPy LS

e EN R NI

CH. 7: CRASH RECOVERY

pending messages ab the nodes. In other words, any node that had a “propose
to cancel A" pending message simply forgets about this message and remembers
thc new message. If both a “force performance of A" and a “intend to perform
A" messages arrive at 8 node (in any order), the node only has to remember the
“forcc performance of A" message because it implics the existence of the “intend
to perform A" message. After a node has processed the “force performance of
A" message, it sends an acknowledgment to the central node. When the central
node receives a majority of acknowledgments, it sends out “commit A" messages
which cause A to actually be performed at all nodes.

There are a few details we have omitted in our description of the cancelling
protocol. It is possible that a node z that has scen update A, receives an “intend
to cancel A" message from the central node. This can occur is the “have seen
A" message sent by node z arrives at the central node after the central node has
gene into the sccond phase of the cancelling protocol. When node z receives the
“intend to cancel A" message, it can acknowledge the message and node z can
pretend that it never saw A because at that point node z knows that update A
cannot be performed.

It is also possible for a node to receive an “intend to perform A" message
after it has received a “cancel A" message. This can occur if A's originating
nodc is not aware that update A has been cancelled and is still trying to perform
it. We solve this problem by requiring nodes not to acknowledge an “intend to
perform A" message if A has already been performed (i.e., cancelled).

If the centra! node cannot get a majority of acknowledgments in the first
phase, but gets no “have scen A” mecssages either, then the central node has
lost its majority of nodes and should go into central node recovery procedure
described in scction 4.6. Similarly, if the central node fails to get a majority of
acknowledgments for its “intend to cancel” or “force performance” messages, it
has also lost its majority. Aftcr we describe how a new central node is elected, we
will describc how an unfinished cancelling procedure is terminated by the new
central node. '

4.3 State Diagrams.

We summarize the two phase commit protocol and the cancelling protocol
by giving the “state diagrams” for the nodes. Table 7.1 presents the diagram
for the central node, while table 7.2 gives the state diagram for any non-central
node. In these diagrams we list the possible states of a node (with respect to

162

TABLE 7.1
STATE DIAGRAM FOR THE CENTRAL NODE

(The top entry in each square is the next state; the bottom entry
is the message that must be sent out to all nodes. "#" means that the
event cannot occur in that state.)

EVENT jiarrival |[Majority |[Majority iarrival |Majority

| I
== {1 of | of acks | of acks | of of acks | {
|1 "please | for | for | "have for |"failure"|
STATE || cancel®™ | "propose| "intend | seen" "force | |
] I | to | to | per- ! I
v H | cancel" | cancel’ | formance"| |
-------- Rt R R e el R bl
-------- [il B I e Rl R L |
[l may | * | * | * * | |
{{ cancel | {] } see |
1d]e . lo e s olo . s oIc LI] -|u e o e oIAO * e (1) !
| "proposel | | | | below |}
| to | |]
| cancel® | | |
------- D et Rt B B Lt
| may will | % | will | %
may | cancel | cancel | | perform | | see
cancel |]. . « « o|. « o .. I .« e e e s (2)
| none "intend | | "force below
| to] | per-
| cancel" | ,formance" |
-------- R R Rl R LDttt el Rttty
] will % | can- | will * will
will || cancel | celled | cancel | cancel
T 111o2-% I 1N IS L P [Y .
| none | "cancel™| none "intend
[| | | to |
I ! ! | cancel" |
-------- et e B R L R L] EX S el |
|} can- | *] * can- * | can- |
can- || celled | | celled | celled |
celted {f. . . « .} ¢« o o | | R I
| none ; none | } ”cancel"}
........ T L T LT
i will * | * will | per- 4 will
will | perform | perform | formed 1 perform
perform|]. « « ¢« ole ¢« o ¢ de o e e fe o v e e e e w e e e e
| none | | | none | "commit"| "force
|) | | I | per-
I { ; formance"} '
........ ‘-----_....- enmbennne | cvecavveen | revevnnee]l conosvacne | cvmvcecacac|
|1 per- * | * per- | * per-
per- { formed | formed | formed
formed {{. . . « o|lc « ¢« . . l. D I [N
|{ nrone | none | "commit"
-------- R B D R Rl Bt Lt
{1) 1In this case, there are two possible next states. The successor

central node can either remain "idle” (and not send out any
messages) or it can go to state "will perform®™ (and send out
"force performance" messages).

in this case there are also two possible outcomes. The
successor central node can either go to "will cancel®™ (sending
"intend to cancel” messages) or it can go to "will perform"
(sending out "force performance” messages).

(2)

163

TABLE 7.2
STATE DIAGRAM FOR THE NON-CENTRAL NODES

(The top entry in each square is the next state; the bottom entry
is the message that must be sent out in response to the event.
The response message is sent to the node that sent the message
causing the event.
that state.)

EVENT

seen

per-
formed

will
perform

- -

may
cancel

will
cancel

- on s on -

jarrival

{ of

Il "intend |
to

| perform"|

- - -

may

"+® means that the event cannot occur in

arrival
of
"commit"

per-
_ formed

formed

s e+ e

per-

e & & o

per-

per-

!
l

oo o

arrival
of
"force
per-
formance®

e eeeeee

will
perform

will

per-

o

.....

[N

bos

arrival
of
"propose

may

per=

formed

"have
seen"

arrival
of

"intend
to

cancel"

will
cancel
éck
will |
cancel |

- -

will
cancel

.....

arrival’
of
"cancel"

- -

can-
celied

none

- -

- -

can-
celled

- -

.....

can-

SSLAT Y AT et e

P DN DN IOD M A L L

N ARt i S 0 TSRO 1Yt DO WA A A 1 20 o

CH. 7: CRASH RECOVERY

onec update) on the left. Across the top, we give the possible events that might
occur at the node. Each square in the diagram represents the action that must
be taken by the node when it'is in the given state and the listed event occurs.
For example, il a non-central node is in state “scen” (i.e., it has scen the "intend
to perform” message for the update) and 2 “intead lo canccl" mcssage arrives for -
that update, then the node must send an acknowledgment to the central node
and must move to state “will cancel”. If a square is marked with an asterisk, this
mcans that the listed cvent should not occur when the node is in the given state.
(Since we have assumed that there is no loss of state information, if the actions
in a squarc are interrupted by a failure, then these actions will be complcted
correctly when the node comes up again.)

. In the state diagram for the central node, there is a special column marked
with the event “failure”. The meaning of this column will become clearer after
having rcad section 4.4. At this point, simply notice that squarcs in this column
have a slightly different meaning from the other squares. The next state indicated
in these positions is the state that the successor central node must assume after
a crash of the old central node. Also notice that in some cases there are two
possible next states. Which next state is assumed by the successor node after
the crash depends on the nature of the crash. Finally, observe in the central
node state diagram that the central node always advances towards “performed"
or “cancclled” states, and never goes back to previously visited states.

4.4 The Election Protocol,

We now describe the mechanism for electing a new central node when the
old one fails or is isolated from the majority of the nodes. There are two basic
stcps in this procedure: (1) Elect a new central node that can communicate with
a majority of nodes and (2) The new central node collects “state” information
from all active nodes and completes all unfinished updates or cancellations. After
these two steps, normal system opcration can resume.

There are many alternatives for the election procedure. Some of these al-
ternatives can be quite involved if they are to work while new failures appcar
and old failures disappear. Fortunatcly, the election procedure does not have
to be particularly efficient, as long as it guarantecs that onc and only one new
central node will be elected in the system.

The solution we present here is not the most efficient but is relatively simple
and safe. If the system does not change while the clection procedure is in progress,

185

DRECE 2R AV IR (0 S

REERPREOAFRFN 7 X1 TV VRN

1 LRI RN Vb o e i ks

CH. 7: CRASH RECOVERY

then our clection procedure will certainly produce a new unique central node.
If the environment is changing, the procedure might fail fo elect 8 new central
node. In this case, the procedure is repeated until it succeeds. If the system
remains unstable (e.g., new failures appear or old failures disappear constantly),
then a new central node might never be elected during the unstable time.

The clection procedure is based on the use of node identification numbers
and ccntral node version numbers. We assume that all nodes in the system have
a predefined identification number. These integers are unique and permanent and
will be used as priority numbers in the election procedure. (Actually, we could
do away with node identification numbers by modifying the algorithm slightly.
However, we believe that these number make the algorithm more intuitive.)

The central node version number is an integer that identifies an instantiation
of the central controller and is used to distinguish between different instantia-
tions. The version number is appended to ali update sequence numbers generated
by the central node. It is therefore possible to distinguish updates whose locks
were granted by different central nodes by simply comparing the version numbers
in each update. During normal operation, all active nodes have a copy of the
ccntral node's version number and will reject any messages regarding updatces
with another version number. When a new central node is elected, it will choose
a version number that is larger than any previously used version number and it
will distribute this new number to all active nodes. Notice that sequence numbcrs
for a given version number can start at zero.

If we assume that failurcs of the central node are not very common, then
a small number of bits should be enough to represent version numbers. Hence
the incrcased overhead in transmiiting these numbers should not be significant.
Notice that if scveral scquence numbers are sent in a single message (e.g., a hole
list), they must all have the same version number and only one copy of this
number is needed in the message. It is possible to design an algorithm that rcuses -
version numbers. A version number can be reused if we are positive that all
nades, active or not, have performed all updates authorized during the existence
of that version number. For simplicity, we do not consider this algorithm and
we assume that version numbers are used in increasing order without recycling.

4.4.1 The Election Protocol - First Pért.

The first part of the election protocol clects a new central node. The basic
idca here is to have “candidatc” nodes attempt to become the new central node,

~ A node z is a candidate if it can communicate with & majority of other nodes

168

vl s AR P L

onmead SPAATAMOREA D ks 2

CH. 7: CRASH RECOVERY

that have also lost contact with the central node and node z has the largest
nodc identification number of the set. Under certain circumstances, scveral nodes
might attempt to become central nodes simultaneously. Therefore, attempts to
become a new central node can fail and must be repeated if necessary. ‘

In the following discussion, lct us assume that due to failures in the com-
munications system, it is possible to have one way communications only. That is,
a node z might be able to communicate with ncde y, but node y may be unable to
communicatc with node z. The three other cases are that both nodes z and y can
communicate with each other, that neithcer one of the nodes can communicate
with cach other, and that y can communicate with z but not viceversa.

The election of a new central node works as follows. When a node z dis-
covers that it cannot communicate with the current central node, it immediately
suspends all normal activitics and goces into failure mode. (We may allow some
restricted recad-only transaction to run in {ailure mode.) Then, every f; seconds,
node z will send out a “What is going on?" message to all nodes. When another
node y receives such a message, it will acknowledge the message and will inform z
if it {y) can communicate with a central node. (Node y could also be sending out
its own "What is going on?" messages simultaneously.) Thus, every ¢; seconds,
node z constructs an “active table” which indicates what it can communicate
with. If this active table indicatcs that node z can now communicate with a-
node that calls itsclf the central node, then node z initiates the crash recovery
procedure described in section 4.5. If on the other hand, node z dizcovers thaé
it can communicate with a majority of other failed nodes and that node z has
the hizhest node identification number, then node z becomes a candidate and
attcmpts to become the new central node. If node z is not a candidate and
cannot communicate with a central node, it waits ¢; seconds and constructs a new
active table. (To sec how several nodes might believe that they are candidates,
consider a three node system that is electing a new central node. Node 3 (highest
priority) can communicate with all other nodes and thinks that it is a candidate.
Node 2 can only communicate with node 1 and therefore also believes that it is
a candidate.) ' '

A candidate node attempts to become the new centra! node by sending out
the message “Node z proposcs to become new central node” to all nodes in z's
active table. When a node y reccives a “Node z proposes to become new central
nodc” message, it will send out a confirmation (which we czll a a vote) to node z
if nodc y thinks that node z can become the new central node. The vote will only
be sent if y has not “rccently” sent a vote to some other node. (What we mean
by rccently will be explained shortly.) In other words, node z is attcmpting to -

167

PRSI L% 71Xt 11 3 Lo KA

it vy et 9o T AT e ARy o s

PR

CH. 7: CRASH RECOVERY

*lock” all the nodes and only if it succeeds in locking all of them, will z becomie
the new central node. Every node y sending a vole will also include the latest
version number seen by it. This way, if node z becomes a new central node, it
can pick a version number larger than any scen by the nodes.

If nodc z docs not get votes from all nodes in its active table, it must rclease its
“locks” by sending a “I did not make it” message to all nodcs. Unfortunately, be-
causc of some new failure, these messages might not reach their destinations. We
thercfore need a default mechanrism for freeing nodes after they have confirmed
or voted for a “Node z proposes to become new central node” message. We will
say that a node y that sent such a vote will honor it for only {3 seconds. During
these 3 scconds, node y will await news of the election from node z and will
ignore all other messages. When fp scconds go by without hearing from node z,
node y will be {rce to send another vote to some other node that requests it.

If nodec z can send out the “Node z proposes to become new central node”
messagcs, receive all the votes, inform all the nodes that it succeeded, and receive
a second acknowledgment from the nodes, all in less than £; seconds, then node
z can be sure that it became the new central node. If node z cannot do all this in
Icss than 1, scconds, then it must assume that it failed and node z should send
out “I did not make it" mcssages. Notice that as long as node z docs not take
any actions regarding the updates, it is free to quit. If node z quits, nodes that
scnt a vote to z will time out after 2 seconds; nodes that sent a vote to z and
though that z had become the new central node, will simply go into failure mode
again when they realize that node z is not the central node.

If the clocks or timers at the nodes do not advance at the same rate, then
the limit for node z to become the central node will be less than ¢. Let d be the
maximum number of scconds that any two clocks can diverge in ¢ real scconds.
Then, if node completes the election in less than ¢, —d seconds, it can be sire
that no node voted for another candidate.

After node z obtained votes from all nodes, it selects a version number.
The version number it sclects is one plus the largest version number reported
by the voting nodes. Then node z informs all active nodes of its success in the
clection and gives them a copy of the new version number. After getting a new
acknowlcdgment from all nodes, node can guarantee that it is the only central
node and that all active nodes have the new version number. Furthermore, any
future central node will use a larger version number because a majority of nodes
have scen the current one, | .

If node z fails before distributing the new version number to & majority of
the nodecs, then it is possible that the samec version number will be chosen in a

168

- -

R SRR SN T 10 ST e

R 7 T AT I PR PR e T

WAL D LB ey

o eney

CH. 7: CRASH RECOVERY

futurc election. This is no problem because in that case, the version number had
not been uscd for anything yet. However, after z distributes the version number
to all active nodes, it is surc that no other central node will use that number and
therefore node z can start the second part of the election procedure.

442 The Election Protocol ~ Second Part.

Before node z, a newly elected central node, can authorize any updates, it
must make surc that all old updates are cither completed or cancelled. This is
the second step of the election procedure. :

Suppose that the current version number is ¢. Then node z requests ali
“state” information for version ¢ —1 from all active nodes. The state information
for node y includes {(a) the list of all version ¢ — 1 updates performed by y and
(b) the list of all pcnding “intend to perform A", “propose to cancel A”, “intend -
to cancel A", and “force performance of A" messages saved by y for any version
¢ — 1 update A. If both lists are cmpty for all nodes, thea the central node for
version ¢ — 1 [ailed before any updates were committed, so node z then requests
the state information for versions ¢ —2,7—3,... until it finds non empty lists.
Say that the version with non empty lists is version j. Since the central node -
of version 7 authorized some updates, it means that it made sure that all pre-
vious versions were completed corrcctly and hence node z only has to check the
correct completion of unfinished updates of version 7. Even though all updates
from versions 7 — 1 and earlier have becn completed correctly (c.g., a majority
of nodcs have performed them), some of the active nodes might nct have scen
them. Therefore, the central node z must first make sure that all active nodes
arc brought up to date up to version j — 1. This is done using the protocol that
is. described in scction 4.5.

In summary, this is the situation before the second part of the electxon pro-
cedure begirs. All active nodes are in election mode and have halted all normal
operations. Also, all active nodes in the current majority have completed all
updates in versions 0 through 7 — 1. The new central node, z, must make sure
that all updates in version j arc either performed or cancelled by a majority of
nodes. To accomplish this, node z has all the state information of the active
nodes. However, node z realizes that other previous central nodes with version
numbers § 1,7 +2,...7 — 1 have also attempted to complcte all updates in
version 7. These other central nodes did not finish their job (clse they would have .
authorized some updates for their version). This means that the state information
coilected by node z from the other nodes not only contains pending messages that

169

ceacmle sk WRIEIBLH A AL T

A TE P b

CH. 7: CRASH RECOVERY

originated at central node j, but may also contain pending messages regarding
a version j update that originated at central nodes 41,5+ 2,...4—1 as they
were trying to complete version 7 updates, . ‘

In order to make node z's job simpler, we would like to be able to distinguish
what central node generated cach pending message found. This can be done if we
require that cach central node sets a special flag in cach message it sends during
the election procedure. Each special message will include the current central
nodc's version number as well as the version number of the update that it is
trying to complcte. Thercfore, when node z collects all the state information,
it can sort the messages by the version number of the central node that sent if.
(All mcssages should deal with updates of version j only.)

The next step of the second part of the election procedure is to decide what
to do with each update of version j. The new central node, z, considers each
update at a time, independently from the others. The decision for update A is
based only on the state information that involves update A. We now describe
the proccdure that node z follows in order to decide what to do with update A.

STEP 1. (Check if A has been performed everywhere.) The new central
node, z, has collected all the state information for update A. If all the active
nodes have performed-A, then node z does not do anything else with update A.

STEP 2. (Check if A has been performed somewhere.) If update A has
been performed at one or more active nodes (but not all), then the new central
node must make sure that A is correctly performed at all nodes. This is done
using the update values for A found in any log and with the two phase commit
protocol that forces the performance of an update. (See scction 4.2). Node z
sends out "force performance of A” messages, and when a majority of these are -
acknowledged, it sends “commit A" messages and is then finished with A. Any
pending messages involving A at the nodes can be ignored because we know that
A must be performed. Notice that the update values for A found in an “intend to
perform A” pending message could be different from the log valucs. The values
in the pending message should be ignored. {(Exexcise for the reader: How can this
situation occur?)

STEP 3. (Dccide what to de with A. Initial step.) Othcrw:se, update A
has not been performed at any active node, and the new central node, z, must
dccide what to do by examining the pending messages involving A. It starts by
looking at thosc messages the were sent by central node version ¢ — 1, and will
then cxamine the messages from versions ¢+ — 2,7 — 3,... in turn, until node «

‘can decide what to do. (Recall that ¢ is the current version number.) Let & be

the version number of the central node that sent the messages we are currently

170

R | CH PRECEN

PRSP P IRCITN

CH. 7: CRASH RECOVERY

examining. That is, initially sct k to ¢+ — I,

STEP 4. (Analyze messages from central node version &.) Unless & is equal
to 7, there are only two types of pending messages that the new central node
can obscrve. (Recall that 7 is the version number of the updates we are trying
to complcte.) This is true because the second part of the election procedure only
“intend to cancel A" or “force performance of A" messages are sent. Notice thab
“commit A" and “cancel A" messages are not pending messages. If any of these
mcessages exist at a node, the node reports to node z that it has performed A. (The
casc where k = j is considcred in step 5.) Furthermore, it is impossible to have

" both “intend to perform A" and “ferce performance of A" messages originating

from central node version k because no central node will ever decide to both
cancel and perform update A. Therefore, we only have three cases to consider. -
These are described in steps 4 A, 4 B, and 4 C: '

STEP 4 A. (No messages.) Central node z does not observe any “intend
to cancel A" or “force performance of A" messages from central node version
k. Since no update is cver cancelled or performed without a majority of nodes
knowing that this is going to happen, node z is sure that central node & did not
perform or cancel update . In this case, node z cannot decide anything yet and
thercfore sets & to kK — 1 and rcpeats step 4 in order to discover if any previous
central node did anything., ‘

STEP 4 B. (An “intend to cancel A" message observed.) Central node z

obscrves at least one “intend to cancel A" message that was sent by central node
version k. This means that central node version & had decided to cancel A and

was therefore positive that A had not been previously performed at any node.

Even though central node version & did not complete the cancelling procedure, -
we trust that it was doing the right thing before it crashed. Node = alsc krows
that no later central node with version numbers k- 1,k+2,...7— 1 performed
A cither (otherwise, this procedure that node z is executing would have stopped
belore reaching version k). Therefore, node z is positive that update A was never
performed, so node z will complete the cancelling procedure. However, there
is no nced for the first phase of this procedure because node z already knows
that A has not been performed and it knows that A cannot be performed in thie
futurc becausc all nodes have halted normal operation. (That is, no “intend to
perform A" messages will be acknowledged.) Therefore, the new central node =
scnds “intend to cancel A" messages to all nodes. When node z gets a majority
of acknowlcdgments, it can guarantee that any successor central node will see
one of the “intend to cancel A" messages and hence the successor central node
will complete the cancellation of A. So node z can then send out the “cancel A”

171

e ea ANy 1o
ST AT L L

WA AR 20

i Lk e e

CH. 7: CRASH RECOVERY

mcssages to complcte the procedure for update A.

STEP 4 C. (A "force pefrormance of A” message observed.) Central node z
obscrves at Icast one “force performance of A" message that was scnt by central
node version k. This case is similar to the case of step 4 B, except that now node
z is positive that update A was never cancelled. Thercfore, node z will make
surc that A is performed at all nodes by following the two phase commit protocol
to force the performance of A, After getting acknowledgments for a majority
of new “force performance of A" messages, node z can guarantee that A will
be performed by zny successor central node, so it scnds out the “commit A"
messagcs to all nodes and is finished with update A.

STEP 5. (Analyze mcssages from central node k = j.) Step 4 is repeated
for valucs of K = 7 —1,7—2, and so on until a pending message sent by central
node version k is found. At that point, the new central node z can decide what
action to take with A and finishes the procedure. However, if no mcessages are
found, node z can rcach the last value of £ = 7. In this case, we can still decide
what action to take. '

When k = 7, there are other messages that can be observed for this version
number in addition to the “intend to cancel A" and the “force performance of A"
messages. These are the “propose to cancel A" and the “intend fo perform A"
messages. However, if node z observes at least one “intend to cancel A” message,
it can be sure that A has not been performed under version k = j. Since A
was not performed under any other version, node z can proceed as in step 4 B
above and cancel A. Similarly, if at least onc “force performance of A” mcssage
is found, update A is performed as in step 4 C. If neither one of these messages
is scen for version k = 7, then node z knows that no previous central node took
any specific action on update A. If any “intend to perform A" messages are found

- (sent during version j), then A might have been performed and the node z forces .

the performance of update A as in stcp 4 C above. If no “intend to perform A”
messagces are scen, then A was not performed, so node z cancels A as in step 4
B. This concludes processing of update A.)
The process just described ensures that all updates whose existence is known
by the central node are either cancelled or performed at all nodes. However,
there might be some updatces that were authorized by the central node version
7 but that the new central node z does not know existed. Let s be the largest
scquence number of version j that was observed by node z in the collected state
information. Then, node z knows that updates with sequence numbers 0 through
s existed and the above procedure will deal with them. But it is also possible
that updates s1,542,... were authorized by central node version j and were

172

LSRRI 3 & RPT T 2 S U LSy

ARSI

CH. 7: CRASH RECOVERY

in progress at some of the nodes that are isolated from the current majority of
nodes. '

Since the new central node z knows that none of the updates with scquence
numbers s+ 1,5+2,... were ever performed (clse node z would sce some record
of them), node z can cancel them all. Node z cannot cancel them individually
because it does not know how many of these updates there are. But by execut-
ing a first dummy update in version 7, all messages of previous versions will be -
automatically made void by the version number mechanism. (Recall that under
normal opcration, nodes rcject any messages from older versions.) The dummy
first update will also serve to (1) make sure that any node that recovers later will
perform updatcs with sequance numbers 1 through s from version 7, and (2) make
surc that no other future ceniral node should worry about correctly completing
the updates of version j (or older).

Therefore, the last step in the second part of the elcctlon procedure is for
the new central node z to perform a dummy “update” with scquence number
¢ under version ¢. This update will not really be an update to the database,
but will cause the largest secquence number s and the old version number j to
be written in the logs. The log entry will later be used by recovering nodes to
find out what updates from version j they missed. And by performing the first
update in version 7, we make a permanent rccord that all updates in versions -
¢ — 1 and earlicr have been performed correctly. Since updates s - 1,5 42,...
were never completed, this is a defacto cancellation of these updates.

The update with sequence number 0 and version number ¢ is performed with
the majority two phase commit protocol. (Sce section 4.1.) After update 0 is
performed, a node can go back to normal operation. The node can then throw
away any pending messages from versions older than ?. When the central node
performs update 0, it sets all item locks free and it can then start granting locks '

to new updates.

4.4.3 Some Comments on the Second Step of the Elcction Protocol.

When we discussed the mechanism for completing unfinished updates, we
said that steps 1 through 5 werc performed for cach update individually. However,
it is also possible for the new central node, z, to first decide what to do with every
update, and then to send out a message which includes all the “intend to cancel”
and “force performance” messages for the updates. An acknowledgment of this
compound message by a node is equivalent to all the individual acknowlcdgments.
Then all the “commit” and “cancel” messages can be sent out together.

173

BT R

LT P T P

S

BRI £7 3

CIH. 7: CRASH RECOVERY

Now lct us bricfly consider what happens if new failures occur during the
sccond step of the election procedure. If a non central node fails or is isolated,
it will simply be climinated from the central node's list of active nodes. If this
causcs the central node to losc a majority of nodes, then the central node will
go into failure mode. During the election, no new nodes will be allowed to join
the majority. Since any messages from those nodes have old version numbers, it
casy to ignorc the messages until after the election. If the new central node fails
before initiating update 0 of the new version , the fixing up of version j will be
continucd by any successor central node. And since two phasc commit protocols
arc being used by the new central node, there is no problem with leaving partially
complctc updates or cancellations. If node z, the new central node, crashes before
a majority of nodcs see update 0 version ¢, then the successor central node might
or might not sce this update. If the successor node does not sec update 0, it will
have to go back and check version j. There is ro problem with this since no
rcal updatcs in version 7 had been authorized yet. If the successor central node
docs sce an update 0 version ¢ that has not been perforined =t all nodes, then it
will not check version j (which was not nceded anyway} and will make sure that
updatc 0 is performed at all nodes. Finally, if update 0 was completed by node
z, then any successor central node will see it and will know that recovery from
versions # — 1 and earlier was complcted correctly. :

4.5 Non-Central Node Recovery Protocol.

A non-central node can have two types of failures: detected or undetecied. A
node detects a failure if it is unable to communicate with its current central node
(i.e. with same version number), or if it realizes that.a larger version number is
in use by other nodes, or if the node is “told” by the operator that it has failed.

4.5.1 Dctccﬁed Non-Central Node Failure.

Let us first study detected failures. After a detected failure, a node goes
into failure mode where all normal activities are halted. The failed node will
start constructing its active table until it cither joins in an clection or if is able
to communicatc with a central node. The first case has already been discussed.
In the second casc, the node will perform the foliowing procedure in order to be
brought up to date.

174

SIITURIVIIS AR BN G L v L

10 A0 o AN TP M AN B Rhranene w1 ¢ G0 Tt Bt arien

EXTTI

PO 7L 2

CH. 7: CRASH RECOYERY

Lct y be the node that is recovering. Let us assume that y remembers what
updatcs it has alrcady performed, and in particular, y knows that it has correctly
performed all updatics from versions j or less. Hence y is sure that it has not
lost any updates from thesc versions. (Notice that j could be zero.) Let & be the
version number at the central node that y has located.

To rccover, y sends a “I would like to recover” message to the central node.
If the central node is in the middle of the election procedure, it will tcll node
y to dcfer its recovery until the clection is over and normal opcration has been
restored. When the central node receives the message, it also checks that it still
is the central node by making sure that it can communicate with a majority of
nodes. Next, the central node informs all the other active nodes that node y is
now-up and that they should start sending messages to y. (For a time, node
y might not acknowledge these messages because it is busy catching up, but
this causcs no problem.) Then the central node informs node y that the current
version number is . :

Ncxt, node y requests update 0 version & from one of the logs. Supposc that
updatc says: “Last scquence number for version m was ", Then y knows that
it must pcrform all updates 1,2,3,...s from version m, and that there are no

- updatcs from versions m -~ 1,m -} 2,...k — 1. Next, node y requests update

0 version m from the logs and repeats the procedure until version 7 is reached.
In this way, node y can discover the sequence and version numbers of all the
updates it could have misscd. By comparing this list to the list of updates it did
perform, it can find out all the updates it missed. The update values for these
updates can be requested from the logs and the updates can be performed.

Node y might have some updates from older versions in progress (i.e., the
updatcs had originated at y, node y had obtained their locks, but sode y had not
rcached the point where it had a majority of acknowledgments to the “intend to
perform” messages). Since these updates originated at an old version, then they
have certainly been cancelled, and node y should either throw them away and
inform the users or rode y should restart the updates from scratch. Any pending
messages (e.g., “propose to cancel”) from older versions can also be thrown away
because the fate of these updates has already been decided,

Node y is now caught up to all previous versions (up to k—1), but still has to
caich up to the current version k. However, node y does not have to worry about
this because the rest of the protocols will automatically force y to perform any
updatcs of version & that it misscd. Therefore, node y can set its current version
number to k and can become a normal member of the system. It can start ac-
knowledging “intend to perform”, “propose te cancel”, “force performance” and

175

SR TOY PP

CH. 7: CRASH RECOVERY

“intend to cancel” messages. When a “commit” or “cancel” message arrives, node
y will request and perform the missing updates before committing or cancelling
(because of the sequence number rule).

We still have to discuss what happens to any pending messages from version
k that node y might have. These messages can exist if there was no central
node version number change while node y was down. These messages definitely
cannot be thrown away becausc node y is now part of the active majority and it
must honor the commitments it made to remember these messages. Some of the
messages might refer to updates that have alrcady been performed or cancelled.
Only in these cases can node y throw away the messages. This can be done by
checking for pending messages as each missed update is performed.

If node y has any version & updates in progress (i.e.,, the updates had
originatcd at y under version k, y had obtained their locks, but y had not obtained
a majority of acknowledgments for the “intend to perform” messages), it can
continuc processing them. If the updates have been cancelled, node y will never
be able to obtain a majority of acknowledgments for the "intend to perform”
mcssages, and thosc updates will never be performed. In thosc cases, node y musb
either inform the users or must restart the updates from scratch.

4.5.2 Undetected Non-Central Node Failure. |

We now discuss the case of an undetected non central node failure. This
can occur if a non central node y temporarily halts but then resumes opcration
at exactly the place where it left off, without realizing that it was declayed.
Fortunatcly, this case is no diffcrent than the case where the failure was detected.

If the central node was replaced while node y was down, then node y will
immediately detect the failure because it has an old version number. And if the
same central node is still active, then the normal protocols will bring node y u
to datc just as we described above, '

4.6 Central Node Recovery Protocol,

A central node discovers that it has failed when it sces a higher version
number in usc by any node or when it finds that it cannot communicate with
a majority of active (i.e., not failed) nodes. In that case, the central node stops
acting like a central node and gocs into failurec mode like any other node would.

176

LAk e R L

DTN DY T o)

CH. 7: CRASH RECOVERY

Recovery then is performed as described in the previous scction.

In some cases where the network is partitioned, a central node and a minority
of other nodes might continue to operate for some time before realizing that they
have all failed. The central node can grant locks to updates, bub these updates
will never be performed becausce there is no majority to acknowledge the “intend
to perform” messages. Therefore, whatever the central node and its minority
try to do, it will be of no conscquence to the rest of the system. The successor
central node will cancel all the updates that were authorized after the failure.

(Scc section 4.4.2.)

4.7 Receovery From Loss of State Information.

Up to this point in this chapter, we have assumed that no node loses its vital
statc information. This information includes the database, the list of updatces
that have been performed at the node, and any pending messages (e.g., “intend
to perform A") at that node. In this section, we will dxscuss how a node can
recover from the loss of its state information. :

Tirst we must assume that any loss of informaticn is detected by the node
that loscs it. A node that loscs state information and does not realize it, can
rasily cause the RCLA-T algorithm (and almost any other algorithm) to fail.
(Note: If we change our definition of majority of nodes to mean the true majority
plus m nodes more, then the RCLA-T algorithm can tolerate the simultancous
undctected loss of pending messages at m nodes. However, this modification does
not prevent crrors if the database or if the list of performed updates is lost or if
erroncous pending messages can appear. This modification will not be discussed
further in this thesis.) :

It is possible to recover from a detected loss of state information, but the
mecchanism is morc involved than the simple recovery without losses. First we
will discuss rccovery when only the pending messages have been lost. Later we
will discuss the casc where the list of performed updates is lost and finally we
consider the case where data in the database is lost.

4.7.1 Loss of Pending Messages.

Suppose that node y is recovering from a crash wherc thcbpending messages
have becn lost. Also assume that the current version number is k. Since y's

177

AR S LI L s e et ke ke

CH. 7: CRASH RECOVERY

pending messages are not necded in order to come up to date to version & — 1,
this part of the recovery protocol is unchanged. (See scction 4.5.) When y is
rcady to start processing version k updates, it informs the central node that it
is doing so without pending messages. The central node replies with the current
sequence number that is being used. Supposc that this scquence number is .

The rest of the recovery proceeds as before, except that node y docs not
acknowlcdge any messages involving updates with sequence numbers smaller
than or cqual to s. In other words, node y acts as if it were down for any mes-
sagcs involving these updates. Nevertheless, “commit” and “cancel” messages
arc processed by node y correctly for all updates.

Since node y is not responding in reference to updates with sequence numbers

‘less than or equal to 5, the central node must find & majority that does not include

y before it takes any action on one of these updates (e.g., cancel it or force its
performance). Therefore, all updates with sequence number smaller than or equal
to s will bc proccssed correctly.

If the cential node cannot communicate with a majonty of active nodes tha.b
have not lost their pending messages, then the system might operate inefficiently.
For example, if node y is required by the central node in order to obtain a
majority of nodes, then the central node will be unable to cancel updates with
scquence numbers less than or equal to s. There does not seem to be @ way around
this problem. In such a case, the central node can decide to continue opcration
without cancelling these updates or it can decide to quit until it can find more
nodes that have not lost their state information. (If a majority of nodes loose
their state information regarding an update A, then the central node w111 never
be able to perform or cancel update A.)

If the central node crashes before all updates with sequence number less than
or cqual to s are performed or canceled, node y must inform the successor central
node of its loss of pending messages for updates with sequence number less than
or cqual to s. Thus, the new central node will not take any action on update A
unless it finds a majority of nodcs that have not lost pending messages regarding
A.

4.7.2 Loss of the Lisb of Performed Updates.

It is also possible to recover from the loss of the list of performed updates
at a nodc y. (The list of performed updates consists of the sequence numbers
of the updates that have been performed at that node.) If node y is keeping &
log, this list can be reconstructed from the log. But lct us suppose that either

178

Cpeceaa -

pimas ra

TSR N a2

oo
Paetiior

A FRFIY

CH. 7: CRASH RECOYERY

there is no log at y or that the log has been destroyed. The loss of the list of
performed updates can occur without the loss of the pending messages, but here
we will consider the more gencral problem of losing both the pending messages
and the list of performed updates.

Lct us assume that every node periodically saves in a safe place a copy of
the list of performed updates and the version number corresponding to that list.
This is called checkpointing. The recovery of node y can then start from this
checkpointed state. (If there is no checkpoint, we simply start with an empty
list at version 0.)

To recover, node y simply assumcs that the list of performed updates at the
checkpoint is the current one and then proceeds as was described in section 4.7.1
above. Clearly, some updates will be performed twice at node y, but this causcs
absolutely no problems, as long as updates are performed in order of increasing
version and scquence number. (Actually, the updates can be slightly out of order
if their hole lists permit it. Sce chapter 3.)

To sce why this last statement is true, consider a sequence of updates uj,
Uy, U3, ... U, ordered by increasing version and scquence number. Database Dy
is obtained by applying the updatces in order to an initial database Dy. Database
D, is obtained by first applying a subset of the updates to Dy and then applying
all the updates in order. To show that Dy has the same values as Dy, take any
item 7 in the database. If none of the updates modify item ¢, then this item will
have the original value of Dy in both D and D;. Otherwise, let u; be the last
update in the scquence that modificd item 7. Let v be the value stored into item
¢ by update u; Then item 7 in D; will have a value v and item ¢ in D2 will also
have a value of v. Therefore, both databases are identical.

4.7.3 Loss of Data in the Database.

A node y can also lose part or all of its database, Let us also assume that
node y has also lost all pending messages and the list of performed updates (which
is not very uscful aftcr the database has been ruined).

Nodc y has three basic alternatives. Each alternative could be useful in
ccrtain cascs. The first alternative is to go back to a checkpoint database and
its list of performed updates and then to recover from there as outlined in the
previous sections. ‘

The second alternative is to start from an empty database and then to per-
form all old updates to recreate the database. The last alternative is to copy the
database from another node. It is intcresting to note that new updates could be

179

e e AR et 1 RTINS 0 Y O

CH. 7: CRASH RECOVERY

performed at the source node while the copy operation was in progress. After
the copy operation ends, node y would perform all the updates that occurred
during the copy and the database would then be up to date and consistent. (To
scc why, consider the argument at the end of section 4.7.2.)

4.8 Summary of the RCLA-T Algorithm.

We have outlined the design of a resilient centralized locking algorithm
that uscs a two phase commit protocol to perform updates. We discussed the
mecchanisms for cancelling updates, for electing a new central node and for
recovering from crashes. Although we did not prove the correctness of the RCLA-
T algorithm, we hope that the reader is convinced that the algorithm could be
implemcnted and that such an algorithm would operate correctly in the presence
of [ailures (except malevolent failures which we did not consider). '

5. PERFORMANCE OF THE RCLA-T ALGORITHM.

- As was stated at the beginning of this chapter, we have tried to keep to a
minimum the overhcad of the RCLA-T algorithm during normal (e.g. without
failures) opcration. The two main sources of additional overhead during normal
operation as compared to the original MCLA centralized locking algorithm, are
the logging of the performed updates and the two phase commit protocol for
performing updates. Also recall that in section 3.5 we showed that any resilient
update algorithm would have at least this overhead during normal operation
(unlcss we can undo updates). Therefore, when we compare the performance of
the RCLA-T algorithm to other algorithms, we assume that these algorithms
also have similar ovcrhead.

5.1 Logging of Updates,

Let us consider how this overhead can be taken into account by our system
modecl and parameters. (Scc chapter 4.) The logging of updates can cither occur
at the same IO device that is used for the database or it could occur at a separate
device (c.g., a tape unit).

180

ISR PRV R PRSP RS S U

wrdeAwy

FAMREI AN D e UL L

PORPEIREPPPIY. WO I TU <X

PRI A 0 ap
.

CH. 7: CRASH RECOVERY .

If a different device is uscd, we would have to add that device to our model.
Notice that in this case, the dclay incurred by updates due to logging would be
indcpendent of the algorithm being used. The delay would only depend on the
number of updates being logged (N/A, per second) which is the same for all
algorithms. Thus for the casc of independent logging devices, the logging delay
docs not have to be considered when we arc only comparing the performance of
the different algorithms, :

If the same IO device is being used for logging, we can assume that a log
cntry is written just before the new database values are written out. We can
model this by assuming a single IO opcration for logging and for performing
the update and by incrcasing the value of the parameter I;. Recall that Iy was
the IO scrvice time needed to write one item to the databasc. Therefore, the
performance results of chapter 6 can still be used to compare the performance of
the different algorithms. Using the results of chapter 6, we observe that unless the
system has a very high IO load and is closc to saturation, the centralized locking
algorithm still performs better than the other algorithms as the parameter I is
increased (starting at the typical value used in chapter 6).

5.2 The Two Phase Commit Protocol.

Next, we consider the additional overhead of the two phase commit protocol.
This overhead involves sending “intend to perform” messages and waiting for
a majority of acknowledgments. The second phase, i.e., sending the “commit”
mcssages is not considered additional overhead because it is equivalent to sending
the “perform” or "accept” messages of the original algorithms. '

The twe phase commit protocol can increase the response time of updates
in two ways: First, the protocol increases the CPU load at each node because
the additional mcessages have to be processed. This additional load will cause an
increasc in the CPU queue wait times for all CPU operations of the algorithm,
Sccondly, the response time of updates can also be increased by the additional
transmissions and by the wait for a majority of acknowledgments.

Let us consider the first source of overhead. The CPU time needed to process
an “intend to perform A" message is very small. (There is no IO involved in
processing this message.) To process such a message, a node has to check if it
has seen update A before and the message has to be stored in memasry. Checking
for A involves looking at the list of performed updates and at the list of pending
mecssages. (if there are many messages, the check can be performed with the aid

181

SIS TP, NI PRIAS S

-

CH. 7: CRASH RECOYERY

of a hash table.) Thus, the time to process an “intend to perform A" message is
comparable to the CPU time necded to set a lock, i.e., Cy. (See chapter 4.)

Processing the acknowledgments of the “intend to perform A" message will
take even less time. The node that receives these acknowledgments must simply
count the number of acknowlcdgments. When a majority of acknowledgments is
rcached, the processing of the update will be completed.

Since the additional CPU load is in both cases minimal, the increase in
CPU wait time will be ncgligible for the paramcter valucs we have considered.
Therefore, the increase in response time of the other algorithm steps will also be
negligible. (Notice that this last statement is not true if the CPU utilization is
very high. In such cascs, even a small load increase can cause large increases in
the wait times. However, in all the cases we studied in chapter 6, this was not
the case. As a matter of fact, in all the cases the CPU utilization was quite low.)

Now leb us consider the increase in response time due to the additional waits
of the two phase commit protocol. Computing the increase in update response
time is not simple. Nevertheless, in the cascs that were studied in chapter 6, the
incrcase in update responsc time can be approximated by 2T because the CPU
timces involved arc negligible. (Recall that T is the network transmission time.)
This mcans that the diffcrences in response times between algorithms found in
chapter 6 are valid even if a fwo phase commit protocol is used in the algorithms.

If the CPU time needed for processing the messages of the two phase profocol

- is not negligible, then the delay will be larger than 27 However, in many cases,

this increased delay will be smaller in the MCLA centralized locking algorithm
than in other algorithms like the distributed voting algorithm. To sce why this
is true, rccall that the CPU load at all nodes except the central node in the
MCLA aigorithm is lower than the CPU load at all nodes in the other algorithms.
This happens because in the other algorithms, all nodces arc locking or voting,
while in the MCLA algorithm only the central node is locking. Therefore, in the
MCLA algorithm, a node will wait a smaller amount of time for a majority of
acknowledgments. The acknowledgment from the central node will take longer,
but this rcally docs not maticr becausc only a majority of acknowledgments are
nceded. Of course, in some special cases where the acknowledgment from the
ccnbral node is needed to get a majority, the delay in the MCLA elgorithm could
be greater,

182

L LAY S

N L LT

F ATt A R Miliiod mare (]

B B Ul ag £ L s

CH. 7: CRASH RECOVERY

5.3 Summafy.

In scction 5 we studicd the performance of the RCLA-T algorithm and com-
pared it to the performance of other resilient update algorithms, We observed
that a centralized locking algorithm with logging and two phase commit protocol
still performs better than the other algorithms with similar modifications unless
the IO or the CPU servers are heavily loaded.

This concludes chapter 7. To simplify the presentation, in the next chapters
we are again going to assume that no failures occur in the system. Then we will
briciiy rcturn to the issues of crash recovery in chapter 11 when we consider crash
recovery in a partitioned database with multiple controllers.

1183

CHAPTER 8

RESTRICTED TRANSACTIONS

Another one of the assumptions that was made for our performance analysis
was that the update algorithms must be able to process arbitrary transactions
as dcfined in chapter 2. In this chapter we will study the implications of this
assumption, and we will discuss why we will not eliminate this restricticn.

In scction 1 we show that the update algorithms can be modified to take
advantage of advance knowledge of the transaction types that will run in the
system. In scction 2 we justify our decision for not studying these specialized
algorithms. Finally, in section 3 we make some bricf comments on the SDD-1
system [BERNTS8]. The SDD-1 is a distributed database system which attempts
to take advaniage of particular transaction types in an automatic way.

1. THE ARBITRARY UPDATE RESTRICTION.

Throughout our studies we have assumed that an update algorithm should
be able to handle any transaction which reads an arbitrary set of items ir the
databasc and then, based on what it read, the transaction writes into a subset of
those items. However, if we restrict the types of acceptable transactions, then we
can simplify the algorithms considerably. We present two examples to illustrate
this fact.

1.1 Examples.

Assume that all update transactions do not need to read the database in
order to compute their update valucs. That is, every update is simply a set of new
ilem values that must be stored in the databasc regardless of the old contents.
This typc of updates arise in any database which only acts as & passive recorder

184

CH. 8: RESTRICTED TRANSACTIONS

of outside information. For example, stock brokers have databases which simply
contain the current status of the stock market. An updatc in such a system
simply informs the databasc that a certain stock has a new price or that a certain
volume of stock has been traded in a day. These updates, which come in directly
from the stock market, are independent of the old contents of the database.

There are many simplificd algorithms that can be suggested for a database
with the described update restriction [GRAP76]. Using the terminology of Gray
ct al [GRAY76], in this casc we only nced degree 1 consistency because there are
no rcad actions in the transactions. All we require is some sequencing mechanism
that guarantces that all updatces are performed in the same order at all nodes.
Simple timestamps [JOHNTS5] or a central site that issucs sequence numbers
provide solutions to the problem. Clearly, these simple algorithms perform better
than thc gencral algorithms would when used for these restricted updates.

As a second example, consider transactions which are of the form "Add
a constant & to item ¢". In this case all transactions simply read the value of
onc itcm, add k to it, and storc thc new value back in the same item. Such
transactions could arisc in a bank database where customcr accounts are debited
or credited as money is withdrawn or deposited. The same situation shows up
in an inventory control database where parts enter and leave the warchouse.

For this situation, scveral simplified algorithms can be designed that take
advantage of the update type restriction. Notice that updates arc commutative.
This mcans that two updatcs can be performed in any order at a sitc and the end
result will be the same. Therefore, an algorithm only needs to guarantee that all
updates arc performed (in any order) at all nodes in the distributed database.
Within cach sitc we nced a concurrency conirol that makes each update atomic
at a singlc database. However, our distributed algorithms have always assumed
that this cxists. No timcstamps or locks are nceded; an npdate algorithm simply
dclivers all updates (in the from “add constant k to item ¢") and then each node
performs the read and write operations, Duc to the type of updates, the databases
will always be consisicnt.

1.2 More Than One Transaction Type.

In the zbove examples we have of course assumed that there is only one
typc of updaie. If we have, say, two typcs of updates, then the simple algorithms
might not be enough. For example, we may also have updates of the form “Make
item 7 cqual to constant " in the second example of seciion 1.1. Since the new

185

CH. 8: RESTRICTED TRANSACTIONS

updatcs arc not commutative with the old ones, the simple protocol breaks down
and we can casily get inconsistencices. :

We will illustrate how these inconsistencies can arise. Suppose that we have
two databases and the value of an item 7 is 10 in both databases. Then suppose
that an update to increase item j by 5 arrives at node 1. Let us call this update
transaction A. Suppose that update A is only performed at node 1 and, for some
reason, the "perform update A" message to node 2 is delayed. Then the value
of item 7 will be 15 at node 1 and 10 at node 2. Next, an update B of the new .
typc arrives and sets item 7 to 100 at both nodes. When the delayed message for
update A arrives at node 2, it increascs the value of item 5 by 5, leaving item j
with a valuc of 105. At this point, the databascs have a pcrmanent inconsistency
because the value of item 7 at node 1 is 100.

One solution to the multiple transaction typesis to usc a gcncral algorithm
that works for arbitrary transactions. The algorithms we have been studying
(e.g., MCLA, CCA, distributed voting) are of this class. Another solution is to
use scveral specialized algorithms, onc for each transaction type possible. The
spccialized algorithms can then take advantage of the particular ¢ransaction type’
it is assigned to.

1.3 Another Example,

We will now illustrate this idea by considering the following example: Assume
that we have a system where a majority of the updates are of the type “Make
item ¢ cqual to constant £". We will call these the type T1 updates. The rest
of the updates are of type T2 and can be arbitrary updates. Furthermore, we
assumnc that it is casy to decide the type of an update simply by examining it.
For our systcm we choose to have {wo different algorithms or protocols, one for
cach update type. There arc many alternatives available for the two algorithms.

One alternative is based on centralized locking. We choose A2, the algorithm
for the type T2 updates, to be the MCLA-infinity algorithm (see chapter 3) with
one slight modification: The table of locked items (i.e., locked(i) in Appendix 1)
also contains the sequence number of the update that has locked the particular
item. That is, given a locked item number, the central node (where locks are
granted for 2ll T2 updates) can tell what update holds that lock. The cffort nceded
to keep this extra information should be minimal because the extra information
can be stored in the same (hash) table used to keep track of what items are
locked.

186

CH. 8: RESTRICTED TRANSACTIONS

Algorithm Al, the algorithm for the type T1 updates, is simpler than A2
because type T1 updates do not need to hold locks while they are being performed.
Only the correct scquencing information is necded before a T1 update can be
performed and such information is available at the central node. We now present

an outlinc of the Al algorithm:

Algorithm Al. ‘

STEP 1. Update B arrives at node z: “Make item ¢ equal to constant k".
Node z identifies this update as type T1 and marks it as such. Node z forwards
the update to the centrai node. ’

STEP 2. Upon receipt of the “Make item ¢ equal to constant k" update, the
central node checks if item 7 is locked. If it is, go to step 4, else go to step 3.

STEP 3. Item ¢ is frec. Therefore update B necd not wait for any of the
currently exccuting updates. SoBis assigned the next available sequence number,
the “hole list” (sce below) is appended and the “perform update” messages are
sent to all nodes. Go to stcp 5. (Notice that the “perlorm update” messages
can be sent directly by the central node without having to first send a “grant”
message to the update originating node. This can be done this way because there
is no basc set to read and no computations to perform before the new value for
item ¢ (i.c., k) is obtaincd.) (The Lole list contains the scquence numbers of the
currcntly cxccuting updatces. This list represents the updates that B does not
have to wail for before being peérformed at a node. See chapter 3 for details.)

STEP 4. Item ¢ is locked by update C. Say C's secquence numbecr is 7.
Thercfore, B only has to wait for the update with scquence number 7. So B is
assigned the next sequence number, and a hole list with all sequence numbers
cxcept 7 is appended to B. (This means that B can be performed at any node
that has performed update C.) The “perform update” messages are sent out to
all nodcs. ‘

STEP 5. Upon receipt of the "perforin update” messages, all nodes (including
the central node) perform the update in the usual way (i.c., checking the hole
list and the scquence number of B). (End of algorithm Al.)

Notice that a T1 updatec does not obtain any locks and is ncver deferred
at the central node. The central node only attaches the necessary scquencing
information to cach T1 updatc so that the nodes know when the update can be
‘performed. Also notice that the sequence number of a T1 update is not placed
in the heole list (because updates in the hole list arc the ones that currently hold
locks and T1 updates never hold locks). This mecans that any other updates that
follow B, a T1 update, will have to wait for B before being performed. This
rcpresents no problem at all since B cannot be delayed reading a base set and

187

"CH. 8: RESTRICTED TRANSACTIONS

computing as the other gencral updates can.

The Al algorithm we have described is much more efficient than the general
A2 (i.c., MCLA-infinity) algorithm because several of the steps of the general
algorithm havc been climinated. Furthermore, because the T1 updates are able
to exccute without holding locks, the rest of the updates will also beneiit irom
the Al algorithm. Of course, the magnitude of the savings will strongly depend
on the mix of T1 and T2 updates in the system.

2. WHY WEONLY STUDY ARBITRARY TRANSACTION ALGORITHMS.

Another alternative for the system with T1 and T2 updates is to design two
algorithms bascd on the use of timestamps and the distributed voting algorithm.
In this casc the A2 algorithm for the T2 updates would be the gencral distributed
voting algorithm. (Secc chapter 3 and [THOMT6).) In the Al algorithm for T1
updatcs, we can eliminate the voting phase of the A2 algorithm because T1
updates do not rcad any data. As before, all we need is the correct scquencing
information, which in this case is provided by the timestamp mechanism. Hence,
in the Al algorithm, all we nced to do.is to obtain the current timestamp at
a nodc and attach it to the “perform update” messages which are immediately
scnb out to all nodcs.

The Al algorithm that uscs timestamps scems to be more eflicient and simpler
than its countcrpart that uses centralized control. (After we study rcad only
transaction in chapter 9, we may disag.ec with the above statcment. For the
time being we arc only considering updates, so the above statement is valid.) On
the other hand, as we have scen in chapter 6, the A2 algorithm is more efficient
" when centralized control is uscd instead of timestamps. We therefore reach the
conclusion that the particular mix of Tl and T2 updates will determine whether
* the central control or the timestamp strategy is superior.

Reccall that the above discussion refers only to a particular example where
T1 updates arc of the form “Make item ¢ cqual to constant ¥” and T2 updatces
arc any other updatces. IFor a differcnt set of transaction types we may find that
a pariicular strategy is always superior, or we may again reach the conclusion
that the transaction mix dictates the best stralegy.

For a given sct of transaction types and mixes, we arc able to compare the
performance of scveral alternatives by using the simulation and analysis methods

outlined in this thesis. But it is very hard to reach any general conclusions as

188

CH. 8: RESTRICTED TRANSACTIONS

to which is the best strategy or algorithm for all transaction types and mixes.
We will therefore limit oursclves to study only the general algorithms that can
handle arbitrary transactions. The designers of a gencral purpose distributed
database system will probably have to usc a gencral update algorithm and will
hence be able to usc the results we have obtained so far., The designers of a
specialized databasc system with a known set of transaction types will have to-
study their particular systcm. We hope that they can use some of the tools that
we have uscd in this thesis to reach their own conclusions.

3. THE SDD-1 SYSTEM.

Before we conclude this chapter, we mention a distributed database system
currcntly being designed which attempts to take advantage of particular trans-
aclion types in an automatic way. In the SDD-1 system [BERNTS8], the database
administrator sclects a sct of predefined transaction types which he hopes will
cover most of the updates that will be submitted by the users. The system has
4 updatc algorithms or protocols. The algorithms have different degrees of com-
plexily and of gencrality. At system creation time, the chosen transaction types
arc analyzcd in an automatic way and a protocol is chosen for each type. The
protocol chosen for a fransaction typc is the most efficient one of the four that
can corrcctly handle the transaction. When the system is in operation, updates
arc analyzcd to dccide what their type is and the corresponding protocol is used
to execute the update. If the update docs not fall within one of the predefined
types, the lcast cfficient but most general protocol must be used.

An interesting research project would be to study the most general SDD-
1 protocol and compare it to the other arbitrary updatc algorithms we have
presented in chapter 3. We have not done this in this thesis. However, at first
sight, thc SDD-1 most general protocol scems to be more complex and Iess efficicnt
than the other algorithms. Ifurtherinore, the advantage of the SDD-1 systcem lies
in its ability to handle 4 dilfcrent protocols automatically, and only by studying
the system in a particular application with a gives sct of transaction types and
mixes, would we be able to make a fair comparison to some other system.

In summary, in a specific application where many of the transaction typcscan
be analyzed at system creation time, the SDD-1 system could operate cfliciently.
However, by adopting any of the other update algorithms to the same application,

189

CH. 8: RESTRICTED TRANSACTIONS

we could probably get performance improvements too. What strategy performs
best depends on the particular application and transaction mix.

180

VT PR ZN S}
.

fremy are

o AMERTITXPEIIRLY ATV PO SRW 21321 15 L0 V01) 4 EN Sttty
"

VA S DT 9 Wy G VAL

[.y ¥ 3

CHAPTER 9

READ-ONLY TRANSACTIONS

In this chapter we will study the elimination of the update-only restriction
that was made in the performance analysis. In section 1 we define read-only
transactions {queries) and we classify them info three groups: free, consistent
and current queries. In the following three sections we presené consistent and
current query algorithms for the cases where the MCLA-h, the DVA, and the
Ellis type algorithms are used for the update transactions. In these sections we
also study the consistency provided by these query algorithms by applying the
notions of consistency developed by Eswaran et al [ESWA78], In passing, we also
prove the consistency of the MCLA-h algorithm (in section 2.3) and the end (or
convergence) consistency of the DVA algorithm (in section 3.2). In section 5 we
discuss the performance of the query algorithms, while in section 6 we state some
conclusions for this chapter. '

1. READ-ONLY TRANSACTIONS,

A rcad-only transaction or query reads a set of items from the database and
presents the values obtained to the user. The transaction in no way modifies the
database. This mcans that a user carnot make an update to the database based
on the data obtained from a query. If the user wishes to submit such an update,
the update must first read the data again to check if the data has not changed.

A read-only transaction or query can be considered as an update transac-
ticn where the write set is empty. Therefore, the update algorithms can also be
used to read data. However, many simplifications are possible when handling
querics. That is, since queries are simply a restricted type of update, we can take
advantage of this to improve efliciency.

We are now making an exception to the statement of section 2 of chapter 8
that we will only study general algorithms for handling arbitrary transactions.

igi

ST R A S P

B L S Y T YWY ST PYRENTS R re e wp

CH. 9: READ-ONLY TRANSACTIONS

The reason why we will study these restricted updates called queries is that queries
arc very common in almost any conceivable database system, regardless of the
typcs of updates that are performed. As we may suspect from the discussion of
chapter 8, we will be unable to reach sweeping conclusions as to which algorithm
performs best because the cfliciency will depend on the types and percentages of
queries submitted. However, we will be able to reach some limited but interest-
ing performance conclusions which will be very useful in any system that must

process queries.

1.1 Types of Queries,

There are two requircments that we can make on queries, The first is to re-
quire that the query should give the user a consistent view of the data [ESWAT6]. .
In other words, all consistency constraints or assertions that can be fuliy evaiuated
with the data read should be true. (Constraints that cannot be fully evaluated
with the data read by the query are irrelevant here.) A second independent
requircment that can be made on a query is that the data read from the database
is the latest or most current [GRAYT79]. In other words, we can require that a
query submitted to the systcm at time ¢ should reflect any updates that were
performed anywhere in the system before and up to time {. We than say that the
data produced by the query is current as of time ¢. {In our discussion of currency
we use time in an intuitive fashion. The ideas could be formalized using concepts
in [LAMPT78].) -

We can define four types of queries according to the consistency and cur-
rency requirements they make. A “free” query makes no requircments at all.
A “consistent” query requires consistent data, while a “current” query requires -
current data. Finally, a “current and consistent” query makes both requirements.

1.2 An Example,

We will illustrate some of these concepts through a simple example. Suppose
that we have a subset of the database, d, and a sct of consistency constraints, c,
on this subset. Assume that at time ¢y all copies of d have the same value, there
are no pending updates that involve d, and d is consistent (i.e., ¢{d) is true).

Next, three conflicting updates v;, uz, and u3 that involve d are performed.
Update u; is first performed at a node at time ¢;, update ug is first perforr.~d

192

8N WA AR besab . .

- ol AL Rsaiaki

CH. 9: READ-ONLY TRANSACTIONS

at a node at time {3, and update uj is first performed at time #3, where {) <
t; <<ty << t3. Since the updates conflict, we assume that the node that performs
uy must have seen u; first. In other words, u; was computed based on u;{d), -
where u;(d) is the resulting subsct of the database after u; has been performed.
Similarly, u3 was computed based on w(u;(d)) to preserve consistency.

A consistent query should return either d, u;(d), u2(ui(d)) or ua(uz(uifd)))
because only these values are consistent. In some update algorithms (e.g., the
distributed voting algorithm), a node can perform the updates uj, u, 3 in
a different order. In such a case, that node cannot answer a consistent query

" until all updates are performed. Hence, if the local database is uz(uy(d)), the

query must wait until up is performed. Then up{u3(u)(d))), which is here equal to
uz(ug(uy(d))), can be returned as a consistent answer to the query. Notice that in -
other update algorithms (e.g., the centralized locking algorithm) us(ua(u;(d))) is
not equal {o uz{up(wi(d))) and the updates can only be performed in the proper
sequence. In such algorithms, any database will cither contain d, u;(d), uz(ui(d))
or uz(uz(ui(d))), and consistent queries can simply read any database. -

The values in d are current up to time t;. After time ¢;, d is still consistent
but is out of date. Thus, a current query Q submitted at time ¢, ¢ < ¢ < #y,
should reflect update u;. Current query Q could read u;{d). This data also
happens to be consistent. However, current query Q could also read uz(ui(d))
which is current as of time ¢ but is inconsistent. A consistent and current query
submitted at time ¢, & < ¢ < t;, can only read u;(d), uz(ui(d)) or uz{us(u;(d)))
and not d.

A free query can read data that is inconsistent and out of date. For example,

‘a free query submitted at time ¢, ¢ > {3, could read d, u;(d), uz(uz{ui(d))), ua(a),

up(u3(uy(d))), or any such combination.

1.3 Why We Need Different Query Types.

It might scem that frce queries are not very useful because they can produce
data that is inconsistent and cut of date. On the other hand, free queries are
extremely simple and efficient to process since all they must do is read the data
at a node without bothering with anything else (not even with local concurrency
control). In many applications, users may be willing to sacrifice consistency and
currency for cfficiency. Furthermore, in well designed systems, free queries should
produce results based on data that is not too old. For example, a warehouse
manager might want a rough idea of where the inventory stands. The manager

193

T 2 2T IS F 2L VU
.

ERREELIT S CUR PPN S b e

o,

B i Sl b d i B I DR O MOGUALAS mont e a7

EE TR

[P OFEREY

. sure

T

s aa

CH. 8: READ-ONLY TRANSACTIONS

.docs not really care il the data obtained is 15 minutes old. The manager mfght

not mind that the total number of parts reported does not exactly match the
sum of thec itcmized entrics in the report obtained. As another example, consider
a query that computes an average salary for a large set of employees. The result
might not be accurate if some of the salaries are being updated during the long
period that the averaging query is running. But the user might decide that such
occasional conflicts will not alter the average significantly. Furthermore, not
running the averaging query as a free query will produce long delays in other
transactions that access the salary data, |
Another cass where free queries are valuable is in one item queries. A query
that only rcads one item will always give a consistent view of the data. To
sec why this is true, consider a given item j and its value v at node z. The
valuc v must have been written by some update U. If there are any consistency
constraints that deal exclusively with item j, then update U must have produced
a consistent value v because a single update never violates the consistency con-

straints. Therefore, the frec query mechanism can be used for one item queries

and the result will always be consistent. In many systems, one item queries are
very common and considerable effort can be saved if we use an efficient method
like the free query mechanism for performing these queries. ‘
Clearly not all queries in a system can be frec queries. In some qucries, a
consistent view of the data is required. The checking account monthly statcment

" that is sent to a bank customer must be consistent. (For example, the sum of

cashed checks should equal the total debits entry.) Also, a read-only transaction
to look up the location of a device in a distributed system directory given the
name of the device should not encounter duplicated names in the directory. These
are only two of the many cases where consistent queries are needed.

In many systems, the currency of the data is not a critical factor. For ex-
ample if a query to produce a monthly statement for an (interest free) checking
account misses some of the latest withdrawals or deposits, they will simply be
rcported in the next statement. However, in other situations current queries are
a must. Consider a general who has to decide whether to fire or not & missile at -
an incoming warship. In this situation, the general needs the latest information
on the ship's position and speed in order to make the best decision.

1.4 The Query Algorithmas,

We will now describe how queries can be processed in a distributed database

194

LARLI AR SRR AN (W IZE A SR N

-

1 e s stbd VD R DU R e ¢

D

CH. 9: READ-ONLY TRANSACTIONS

system. The algorithm used for querics depends on the update algorithm being
utilized, so we will divide the following discussion into three sections, one section
for each of the main update algorithms we have studied. We still assume that
databascs arc completely duplicated at each node, and that transactions (queries
and updates) fully specily at their inception the items that they reference. We
arc again going to assume that no failures occur in the system. (In chapter 11 we
make some comments as to how [ailures aflect queries.) We will not discuss free
queries in the next sections because the algorithm for them is independent of the
update algorithm. To process a free query, a node simply reads the referenced
valucs from the local database. Not even local concurrency control is needed for

free queries.

2, QUERIES IN THE CENTRALIZED LOCKING ENVIRONMENT.

2.1 ' Consistent Que}-iea.

‘When the centralized locking algorithm (MCLA-h) is used for updates, all

updates are assigned a sequence number alter they obtain their locks. At each -

node, conflicting updates are always performed in ascending sequence number
order. In other words, the base sct data read by an update wili reflect all updates
with lower sequence numbers; and the data that is written by an update will be
scen by all updates that need this data and that have higher sequence number,
This means that if all updates are performed at nodes as atomic operations, then
the database will always be consistent in between these operations. Therefore,
if a query reads its data between the update operations, it will get a consistent
view of the database. This is equivalent to saying that a consistent query only
needs local concurrency control in order to be executed. Hence, when the MCLA-
h algorithm is used for updates, queries can be executed very efficiently without
the necd for communicating with other nodes. :

The above discussion has been very informal. We will now show that the
above statements are true in a more formal way. In passing, we wiii aiso show
that the MCLA-h algorithm for updates provides all updates with a consistent
view of the database. The following formalization is simply an application of the
consistency notions defined in [ESWAT6] with a few minor modifications. The

185

PURZE s SIS T A

s

PR N TR

CH. 9: READ-ONLY TRANSACTIONS

reader is strongly urged to read [ESWATE] since it provides the basis for the
following material. '

2.2 The Notions of Consistency in a Distributed Database.

The notions of consistcney in a distributed database system are identical to
the oncs in a centralized system. In both cases we have a set of items, some con-
sistency constraints, and some processes that are executing actions on the items.
The fact that in the distributed system the items are stored in different nodes and
the processes may run on different computers makes no difference. Therefcre,
we will simply view the distributed databases as a single large database where
each item d[¢, 7] in this database corresponds to item ¢ at node z. (Sec chapter
2.) The consistency constraints for the distributed database are simply written
in this notation. For example, assertion a == b-}-¢ at node 3 is now written as’
d[a, 3] = d[b, 3] 4 d]c, 3]. Since the databases are completely duplicated, then
the assertion a = b - ¢ will become a set of asserticns d[a, y] == d[b, ¥l - d[c,]
for 1 < y < N (N is the number of nodes). In addition to the constraints at
each node, we would like a duplicated item ¢ fo have the same value at all nodes.
These are simply the implicit consistency constraintsd[¢, 2] = d[z, y] for all nodes

&, y. (Sce chapter 2.)

The concepts of actions and schedules are not changed for distributed da-
tabases. An action is represented by (T,a,¢), where “T" is the name of the"
transaction, “a" is either read (r) or write (w), and “¢" is an item. We assume
that all actions are atomic and that they can be written in a linear sequence
which is called the schedule of the acticns. (For a formalization of the ideas of
actions and schedules in a distributed database see [BERNT78].)

Our model of an update transaction is a series of read actions at a single node
followed by a series of identical write actions at all nodes. (See chapter 2.) That
is, let T be an update transaction that originates at node z. Transaction T first
rcads items d[B;, 2], d[B,,], . . . d[By, #] at originating node z, where By, By, ... By
are the indices of the items in the base set of T. After reading and performing
computations, T writes the items d[B1, y},d[Bs,), ... d[B, y] for all nodes y such
that 1 < y < N. Notice that all written items are in the base set, that is, ¢ < b

Thus, we represent update T, which originated at node z, by the scqucnce

T = ((T’ aj, 61), (T; az, 62), cee (T; Qb4-Nes eb+Nc)) ‘
where (1) action a; = read for 1 <1 < b; (2) item ¢; = d[B;, 2] for 1 <1 < b5 -

196

CH. 9: READ-ONLY TRANSACTIONS

(3) action a; = write for b < ¢ < b - N¢; and (4) items ¢; for b < ¢ < b} Ne¢
are the items d[Bj, y),... d[B,, y] for 1 < y < N in some order. Notice that the
particular order of the write actions is not important as long as they all follow the
read actions. We assume that if T is run on a consistent database and without
interference from other updates, it will produce another consistent database. Fer
cxample, the actions{T, w, d[k, 1]), (T, w, d[k, 2]), ... (T, w, d[k, N]) (fixed k) must
write the same value in order not to violate the implicit consnstency constraint
dfk, 1] =d[k,2] =... d[k,N].

A schedule is said to be serial if the transactions in it are executed one at a
time. A schedule is said to be consistent if it is equivalent to a serial schedule.
The requirement that an algorithm produce a consistent schedule is stronger
than the requirements we had defined for an algorithm in chapter 2. That is, if
an algorithm produces a consistent schedule then (1) all transactions will get a
consistent view of the data, and (2) the implicit consistency constraints will not
be violated. As we will see shortly, the inverse of this statement is not necessarily
true. :
To sce that all transactions in a consisient schedule read consistent data,
simply note that the consistent schedule is equivalent to a serial schedule and that
all transactions in a serial schedule sce consistent data because the transactions
are executed one at a time. (Sce chapter 2.} Similarly, the implicit consistency
constraints are not violated in a consistent schedule because if is equivalent to

.-

a serial schedule where the implicit consistency constraints are not violated.

2.3 Consistency of the MCLA-h Algorithm for Updates.

The concepts presented up to this point apply to any of the update algorithms - -

we have studied. Now we will concentrate on the MCLA-h algorithm. Consider
the schedule S produced by running a set of update transactions (as defined in
section 2.2) under the control of the MCLA-h algorithm. In this case, we can
prove the stronger condition that S is consistent. To show that S is consistent
(i.e., equivalent to a serial schedule) we must shew that the binary relation “=<"
on the sct of transactions, which is defined below, is acyclic [ESWAT6].

The relation “=<" produced by schedule S is defined as follows. Tp < Tq(p
different from g) if and only if for some ¢ < 3,

S = ((Tpaise)y... (T aj€),..)

where (1) either a; or a; are write actions and (2) thereis nok such that t <k < 5

197

Vo Fklanan
.

SREPCRY ORI DA TPV SRS

LGSRV TPENVIRP PR P e

v wre

CH. 8: READ-ONLY TRANSACTIONS

and er = e and a; = write,.

To show that “~<<" is acyclic, we order the transactions using the scqience
numbers that were assigned to each update at the central node (in the MCLA-h
algorithm). Let Tp be the update transaction with scquence number p. We will
now show that T, < T, implics that p is less than g and therefore that “~<" is
acyclic and S consistent. .

THEOREM 1. Let Ty and T, be two different update transactions, with sequence
numbers p and g respectively, that were executed using the MCLA h algorithm.
Then Tp << Ty implics that p < gq.

PROOF OF THEOREM 1. Let S be the schedule produced by the MCLA-
h algorithm. Tp ~< T implics that for some 1 < 7,

) . S={(.(Tpaie)...(Tyaje),...)

where (1) either a; or a; is a write action and (2) thereisnok such that t <k < §
and ex = ¢ and ax = write. Let ¢ be item d[m, z] at node z. Since both T,, and
T, reference item d[m, z], these updates conflict.

- We show that p << ¢ by contradiction. Assume that p > g. This means that
T, obtaineca its locks at the central node after T, did. Since Ty and Ty conflict,

when T, obtained its locks and its scquence number p, T, must have released its
locks at the central node (else T could not get locks for item d[m, z]). Therefore,
Tgis not in Tp's hole list. This in turn implics that node # cannot perform any T
action involving d[m, z] until T,'s write action involving d[m, z] has completed
at z. (This is guaranteed by the local concurrency control at node z.) That is,
any action {T), a;, d[m, z]) must follow an action (Tg, w, d[m, z]) at node z. Since
all of Ty's reads precede its writes in S, then (Tp, a;,d[m, z]) must also follow
any action (Tg,r,d[m, z]). Therefore, the above schedule S is impossible for any
actions a;, a;. This is & contradiction, so p must be less thar ¢. (End of proof.)

THEOREM 2. Any schedule S for update transactions produced by the MCL A-
h algorithm is consistent.

PROOF OF THEOREM 2. Suppose that the relation “~<" defined by S has
a cycle Tp < Ty < ... < Ty < Tp. By theorem 1, this implies that p << p, which
is impossible. Therefore, “<" cannot have any cycles. This implies that S is
equivalent to a serial schedule [ESWAT6] and hence consistent. (And thus, the
MCLA-h providcs transaciions with a consistent view of the database and does
not violate the implicit consistency constraints.) (End of proof.)

198

BRI LN

PRSP RPER NI T W RN

3ces i

CH. 9: READ-ONLY TRANSACTIONS

2.4 Consistency of Querics,

Up to now, we have only dealt with update transactions in the MCLA-h
algorithm. We will now show that any query that is performed at a node & with
local concurrency control will also get a consistent view of the database. A query
or read-only transaction is of the form

Q= ((Q,a,e), (Q; az, 02), v o (Q, apy eb))

where (1) all a; for 1 < ¢ <b are reads, and (2) ¢; =d[B;,z) for 1 <7 < b.

The concurrency control at a node should process queries as follows.
Suppose that a query Q arrives at node « at time . At that instant, a set P of
update transactions have initiated their writes at node z. That is, if T; € P,
then some action (T, w, d[m, z]) occurs before time ¢ (for some valid item index
m). Il T; ¢ P, then no action (T;, w,d[m,z]) occurs before time ¢ at node .
Query Q should be processed at node z in such a way that it sees the effects of
all updates in P and sees no effect of any updaie not in P,

The [ollowing observation may seem surprising at first, but we will shortly »
show that it is no cause for concern. '

OBSERVATION. Not all schedules S for query and update transactions produced
by the MCLA-h algorithm and the local concurrency control described above are
consistent. '

PROGCF COF OBSERVATION. We show that this observation is true by
looking at a particular schedule S, produced by the MCLA-h algorithm and the
local cencurrency control, which is not equivalent to any serial schedule. Consider
two update transactions T, and Ty in a system with two nodes z and y. Update
T, simply updates item 1 without reading any data, while update Ty similarly
updates item 2, Thus we can write

Tp= ((Tp; w,d[l, 3"]): (TP’ w, d“: y]))
ar;d
Tg=((Tp w,d[2,y]),(Tq, w, d[2, 2])).

Motice that these two updates do not conflict because they reference different
items. Therefore, the actions of T and T, can occur in any order in schedule S,

Next, consider two queries which read items 1 and 2. One query, Qy, is
performed at node z, while query Qg is executed at node y. We can represent

199

LA A
.

REEE VR TTET TE T . e L S

=

CH. 8: READ-ONLY TRANSACTIONS

Q: and Qg as
Q= ((91! r,d[1,2]),(Qu,7,d[2,1]))

and

Q2 = ((Qa, r, d[1, y), (Qz, 7, d[2, 9]))-
The following schedule S can be produced by our algorithm:

S=((Tpwd[L3]), (Tewd2y) (Qindl,az),
(Qu,7d[2,4]), (QzrdLy]) (Qurd[2y)),
(pr w, d[l, y]): (Tq, w, d[2; x]))'

Schedule S is legal because the MCLA-h algorithm permits T and Ty actions
in S to come in any order and because both queries either see the complete effect
of updates or they do not see any cffects. According to the definition of the
relation “<", we see that Tp << Q1 in S because transaction Tp “hands” an item
(i.e., d[1, z]) to transaction Q. Similarly, Q; < Ty, Ty < Qg, and Q3 << T;. This
implics that the relation “—<" is cyclic and hence schedule S is not equivalenf to
any serial schedule. (End of proof.) :

We can interpret the above observation as follows. In S, Qi sees T; but
does not see Ty, while Qg sees T¢ but not T, There is no way that thcse four
transactions can be exccuted one at a time (i.e., serially) and produce this same
effect. In any seriai schedile, if Q; sccs Tp, and Qz Iellows Q; in the schedule,
then Q2 must also see Tp. This is not the case in S. '

Although this result may secm surprising at first, it does make sense. Notice
that in S we are executing some transactions (e.g.,, Qi and Qg without any -
global concurrency control. If we wanted S to be strictly consistent, then all
transactions, including Q; and Qjy, should be performed following the MCLA-h
algorithm. '

Fortunately for us, the fact that S is not consistent does not mean that Q;
and Qp do not see a consistent view of the data. If we eliminate Qa from S,
we observe that the resulting schedule is consistent and equivalent to the seriz]
schedule {T,, Q1, Ty} (i.e., Tp exccuted first, then Qy, and then T,). Thus, Q,
secs a consistent database at node z. Similarly, if we delete Q) actions from S,
we find that Q2 sces the consistent data at node y produced by scrial schedule
{T¢ Q2 Tp}. In other words, both queries sec a database produced by some
scrial execution of the updates, but these serial executions of updates may be
different for each query. Since queries in no way modify the database, then the
fact that the queries perceive different serial executions of the updates is of no
conscquence. (Notice that if some user were able to look at the resulis produced

200

I RPN TV S P ERE DR Y LTI Or S

]
.

CH. 8: READ-ONLY TRANSACTIONS

by @: and @; at the same time, the user may be confused. Here we assume that
users only look at the results of their own queries.)

To conclude this section, we will prove for the general case that queries
sec a consistent view of the database, even if the overall global schcdule is not
consmtcnt

THEOREM 3. Any schedule S, produced by running a single query Q ai node z -
with local concurrency control together with a set of update transactions under
the control of the MCLA-h algorithm, is consistent.

PROOF OF THEOREM 3. We show this by contradiction. Assume that
there is a schedule S that violates the statement of theorem 3. Then there must
be a cycle in the “<" relation defined by S. This cycle must contain Q because
(as was shown in theorem 2) any schedule of updates is cycle free. Say that
this cycle is @ < T1 <= Tz < ... =< Ty < Q (where Ty, To,... Ty are update
transactions). Since Q < Ty, there is a write aciion of T that follows a rcad of
Q. And because of the concurrency control at node z, no write action of T} can
precede the first read of @ in S at node z. In particular, the first write action
of T} must follow the first read of Q. By a similar argument, we can show that
Tn < Q implies that the first write action of Ty, at node z must preceed the first
read of Q at . Combining these two observations, we see that the first write
action of T,, at £ must occur before the first write action of Ty at node . This
can only occur if T, has a lower sequence number than T;. However, theorem
1 and the fact that T} < Ty =< ... =< T}y, implies that T} must have a lower
sequence number than Ty This is a contradiction. (End of proof.)

2.5 Current Queries in the Centralized Locking Environment.

A current query Q submitted to the system at time ¢ must reflect any updates
that were performed anywhere in the system before and up to time ¢, When the
ccentralized lockmg algorithm is used for updates, the currency restriction can
be expressed in terms of the sequence numbers (assigned by the central node)
as follows: Let s be the last scquence number assigned by the central node the
instant that Q is submitted. Then Q should reflect all updates with sequence
numbers up to s.

There arc many alternatives for dealing w1th current querics. Here we will
simply outline a few of them. One straightforward way ic process a current
query Q that originates at node z is to use the update algorithm for it. Since Q

201

R ST WIE UL SFAFRV Y PR R S

Leeavmd we

CH. 9: READ-ONLY TRANSACTIONS

will receive a scquence number s greater than s (the current sequence number at
the central node when Q was submitted), then all conflicting updates with lower
sequence number than s will have been performed at £ when Q is ready to be
“performed”, '

This algorithm can be made more efficient by not having Q hold locks at the
central node and by not having Q obtain a sequence number. Furthermore, Q
doces not even nced to wait at the central node if it finds a locked item. Instead,
Q can note the current sequence number, s, and obtain a copy of the current hole
list as soon as it arrives at the central node. Then, as Q checks if the items if
refercnces are locked, it simply deletes [rom its copy of the hole list the sequence
number of any update that Q discovers holding a lock for an item Q needs. After
this processing at the central node, Q returns to its originating node z (or to any .
other node) where it waits until all updates with sequence number less than s
and not in its hole list copy are performed at the node. After this wait, Q can
be exccuted. By following this strategy, Q will not wait for updates with lower
sequence numbers that do not modify items referenced by Q.

A further improvement in the response time of query Q may be obtained by
having the central node send copies of @ to various nodes after Q has obtained
its scquencing information. This way, the first node to have all the necessary
data for Q can execute Q and send the results to the user (who may be at another
node). However, the duplication of effort produced by this strategy may slow
down other transactions.

Finally, if response time is not critical, a very simple algorithm can be
devised. In this algorithm, a current query Q, originating at node z, simply
requests the latest sequence number issued by the central nul -, Then Q waits
until all updates with sequence number up to the latest one have been performed
at node z. - :

2.8 Current and Consistent Queries in the Centralized Logking Environment.

A current query which also needs consistent data simply follows both protocols
for current reads and for consistent reads. In other words, when a query Q is
finally executed according to any of the current algorithms mentioned above, it
shouid be subjected to the local concurrency control in order to obtain consistent
data as well.

202

B P SR PPN AN

b TR ARG R e e A e s

[y

CH. 9: READ-ONLY TRANSACTIONS

.2,7 Summary.

In this section we have shown how current and consistent queries can be ex-
ccuted when the MCLA-h algorithm is used to coordinate updates. We observed
that the sequence numbers issucd by the central node are a very powerful concept
which permit us to perform consistent queries with simple local control and to
perform current queries in an efficient and inbuitive fashion.

3. QUERIES IN THE DISTRIBUTED VOTING ENVIRONMEN T.

3.1 Consistent Queries.

In this section we will study how consistent queries can be executed when the
distributed voting algorithm is used to handle update transacticns. We will find
that local concurrency control is not enough for consistent queries. The fact that
a more complex protocol is required for consistent queries in this environment is
a serious drawback of the distributed voting algorithm.

To show that local concurrency control is not adequate for consistent queries,
we consider the following example. The system consists of three nodes: z, y, and -
z; and the database at each of these nodes contains three items: @, 4, and ¢. (We
can think of these items as being the “deposits™ “withdrawals” and “balance”
items used in the examples of chapter 2. We w. 3¢ shorter names q, 4, and ¢
here in order to simplify some of the expressions v will write.) Suppose that we
have defined the consistency constraint “a—¥b+= ¢" on this database. (That is,
"deposits” — “withdrawals” = “balance”.) Initi.ily, the value of item @ is 100
at all nodes; the value of item b is 40 at all nodes; and the value of ifem c is 60
at all nodes. Thus, the consistency constraint is satisficd. Now suppose that we
have two updatcs. Update A is “increase a by 10 and ¢ by 10" (i.e., “deposit 10
dollars”) and update B is “increase b by 5 and decrease ¢ by 5" (i.e., “withdraw
5 dollars"). Update A arrives first and receives OK votes at nodes = and y and
is accepted by node y. Node y sends out “perform update A" messages fo all
nodes. (These messages indicate that the new value for item a is 110 and the new
value for item c is 70.) Update A is then performed with timestamp ¢; at nodes z
and y but for some reason the “perform update A" message to node z is delayed.

203

S ANEVIRPNGE TUNLE UL N .

s

et

CH. 9: READ-ONLY TRANSACTIONS

Then update B arrives and receives OK votes at nodes z and y. “Perform update
B” mcssages indicating that the new value of item b is 45 and the new value of.
itemn ¢ is 65 are scnt out to all nodes. Update B is performed at nodes z and y
with timestamp 3, where i, > {;.

The databases at nodes z and y first contain a = 100,b = 40, ¢ = G0; then-
a = 110,b = 40,c = 70 (after A); and finally a = 110,b = 45,¢ = 65 (after A
and B). All thesc databascs arc consistent (i.e., a — b = c). However, at node
z, update B is performed even though the “perform update A" message has not
arrived. Node z has no way of knowing that this message is missing since it did
not vote for update A, This leaves the database at node z with ¢ = 100,06 =
45, ¢ = 65, which is an inconsistent state. Any queries performed at z after B
has been performed and belore the “perform update A" message arrives, will get
an inconsistent view of the database. ‘

Of course, when the “"perform update A" message arrives at node z, the

" value of a will be changed to 110, leaving the databasc consistent once again.

Notice ihat the value of ¢ (equal to 85) is not affected by the "perform update
A" message because the timestamp of item ¢ in the datebase is £, while the
timestamp of update A is ¢;, which is less than #;.

3.2 Consistency of the Distributed Voting Algorithm for Updates.

In order to understand more fully why it is that the distributed voting al-
gorithm may temporarily leave inconsistent data at some nodes, we will briefly
discuss the type of consistency provided by the distributed voiing algorithm. It
turns out that not even the distributed update algorithm with only update trans-
actions provides consistency in the sense that the centralized locking algorithm
does.

OBSERVATION. Not all schedules S for update transactions produced by the

distributcd voting algorithm arc consistent. .
PROOF OF OBSERVATION. Using the notions of {ransactions and consis-

tency defined in section 2.2, we can write the update transactions of the previous

example (scction 3.1) as:

A= ((A7, da, z])! (A! T d[c’ $D, (A’ w, d[a’ y])’
(A, w,d[c,y)), (A, w,d[e,2]), (A,w,dca)),
(A, w,dfa,2]), (A, w,dfe, Z]))

204

F7A U W3 VR R

- Ao 2 A ML LA A B YIS X e

CH. 9: READ-ONLY TRANSACTIONS

and
B= ((B, T, d[b: 3]): (B, r;d[cs 3"])) (B: w, d[bx y])’
(B,w,d[c,y]), (B w,d[b,a]), (B,wdlca]),
(B,w,d[6,2]), (B,w, d[c) z])).

The schedule obtained by executing A and B as described in the example is

S=((Arded), (A~dez), (A wday),
(Ayw,d[c,v]), (A,w,d[e,2]), (A, w,d[cz]),
(B, r,d[6, gl), Bnd o)y B, w,dbyl)
(B,w,dl,y]), B,w, dfb, :I:]), (B, w, d[c) $]),
B,w,d[,z]), (B,wds2]), (Aw, dla, 2]),
(A, w, d[e, 2))).

By examining S, we observe that A < B (because action (A, w, d[c, z]) preceeds
action (B,r,d[c,z])) and B < A (bccaase action (B, w,d|c,2]) preceeds action
(A, w,d[c,2])). Since the relation “=<<" is cyclic, S is mconsxstent (End proof of
observation.)

TheB =< A relation in S is produced by thelast action (A, w, d[c, 2]). However,
this is not a “normal” write action because it is never actually performed. Recall
that update A had obtained timestamp ¢; while item ¢ at node 2z had timestamp
&y greater than #;. Hence, the timestamp mechanism at node z simply ignores
action (A, w,d[c,2]) and item ¢ keeps its old value of 65.

Thus, in a scase, the relation B =< A does not represent a real dependency
of transactions A and B. In other words, B < A means that an action of B must
come before an action of A in schedule S, but in this case this is not strictly true,
The action of A (i.e., (A, w,d]c,2])) could be moved ahead of the B action (i.e.,
(B, w, dc,2])) and the end ellect of the actions would be unchanged. That is, let
schedule §' be the schedule obtained from S by moving action (A, w,d[c,2]) as

follows: .
S=((Andgz]), (Ar dle,z]), (A, w,d[q yl)
(A, w,dc,v]), (A wdez]), (A wdz]),
(B’ 7 d[br x]): (B: Ty d[c) 3"]): (Br w, d[b: y]))
(Bx w, d[c: y])) (B; w, d[b; 5]); (B; w, d[c} z]‘).'
(B,w,d[b,2]), (A, w,d[cz]), (B, w, d{c, 2],
A, w,d[a, z]))’
If we start with some ‘nitial state of the database and perform schedule S' we

obtain the same final state as if we had started with the same initial state and then
performed schedule S. This is truc because, in either case, action (A, w, d[c, 2]) has

Slilbass e 20" 0

PRENONT WL} PN T2

0 TG G e AT S DR K Y AT B 110,014 74 04N Tl PN O TDMRIEOR B0 adons i 1

CH. 8: READ-ONLY TRANSACTIONS

no cfTect on the final state. In S, the value written by this action is overwritten
by the following action (without any other actions having rcad the value) while
in S, the action is not actually performed. In this special sense, schedules S and
S’ are cquivalent.

We will use the term “end equivalent” to describe two schedules whose final
effect on the system is the same. A schedule which is end cquivalent to a serial
schedule is end consistent. (The terms mutual consistency [THOMT6] and con-
vergence consistency [GRAY 9] have been used for what we call end consistency
lere.)

Notice that schedule S' is a consistent schedule because the "—<" relation
for S' has no cycles (i.e., we have climinated the B << A relation). Therefore the
original schedule S is end equivalent to some serial schedule. We will now show
that in gencral, any schedule S produced by the distributed voting algorithm,
with update transactions only, is end equivalent to some serial schedule. But
belore we do so, it is useful to recall how timestamps are assigned to update
transactions in the distributed voting algorithm (see chapter 3):

The timestamp of transaction T, ts(T), is assigned to T when T is accepted
and must be (1) larger than the timestamps of the items read by T at T's
originating node, and (2) larger than the clock times at all the nodes visiled in
the voting process. Also notice that when T rcquests OK votes at a node, that
node reads all the timestamps in the base sct of T. I any of these timestamps is
larger than the corresponding timcscamp read by T at its originating node, then
T is rejected. Thercfore, if T is accepted, ts(T) will also be larger than all the
timestamps encountered in the voting process for the items in the base set of T.

THEOREM 4. Any schedule S of update transactions produced by the distributed
voting algorithm is end equivalent to some serial schedule.

PROOF OF THEOREM 4. Let S be the schedule produced by the distributed
voting algorithm for a set of update transactions. (We assume that all actions
of transactions that were rejected by the distributed voting algorithm have been
rcmoved from S. Since rejected transactions only read data, their actions are not
important in determining end equivalence.) Let T}, Tq,... Ty, be the transactions
in S (i.c., the transactions that completed successfully) and let ts(T;) be the
timestamp of transaction Ty, 1 <1< n. ‘

STEP 1. We transform scheduie S into schedule S’ by moving all write
actions that were not performed because of a timestamp conflict. That is, for all
occurrences -

S={(..(Tiw,e)...(Tjw,e)...)

IR NP ¢ YL ot L IR EE PP

CH. 8: READ-ONLY TRANSACTIONS

where ts(T;) > ts(T;), we move action (T, w, ¢) to immediately precede (T;, w,e).
The new schedule §' is end cquivalent to S because the effect of action (T, w, €)
is null in S and is overwritten (without having been read by any other action)
in S

Notice that in schedule S’ all write actions are “normal” actions. That is,
write actions in S actually writc a value (and a timestamp) into the database.
Also notice that there can be no read actions of T; between actions (T';, w, €) and
(T;, w,€) in schedule S. To sce why this is true, let z be the node where both
T; and T; receive OK votes. Also, let 2; be the instant when T; gets its OK
vote at node z, and let z; be the instant when T; gets its OK vote at node z.
Since t5(T;) < ts(T}), z; must occur before ;. Since all reads of T occur before
z;, and z; occurs before (T, w,¢), then all reads of T, must occur before action,
(T, w,). This last statement implies that the actions of transaction T; are still
in a proper order in schedule S'. In other words, all the reads still precede all the
write actions of T; in S'. ,

STEP 2. We now have to show that §' is consistent and thus equivalent
to some serial schedule. To do this, we will show that if T, < Tg in S/, then
ts{Tp) << t5(T,). Once we show this, it immediately follows that "-<" is acyclic
and that §' is equivalent to a serial schedule, :

- I Tp=< T, then for some 7 > j,

S'={(..(Tpa;€),...(Tg a5 6€),...)

where (1) either a; or a; is a write action and (2) there is no k such that ¢t <k < 3
and ¢ = e and ax = write. There are three cases we must consider now.

Case 1 of stcp 2. a; = a; = write. In this case, ts(Tp) must be less than
ts(T,) bccause otherwise, in step 1, we would have moved (T4, a;, ¢) to precede
(Tpraise). : '

Case 2 of step 2. a; = write and a; = read. When T, writes ¢, it also writes
timestamp ts{Tp). Thus when T, reads ¢, it will sce this value and Ty will be
assigned a timestamp larger than ts(Tp). Therefore, ts(Tp) << ts(Tg).

Case 3 of step 2. a; = rcad and a; = write. This case is somewhat more
complex than the previous two. First notice three important facts: (1) Notice
that Tp and T4 conflict because the write setb of Ty shares item e with the read
sct of Ty; (2) Notice that since both Tp and T, were aceepted by a majority of
OK votcs, there must be a node = that voted OK for both updates; (3) Let ¢ be
the timestamp read by Tj in action (Tp,r,€). Since timestamps for data items
can only increase in value, ty must be less than ts{T,), which is the value of the

207

SV A

CH. 9: READ-ONLY TRANSACTIONS

timestamp written by T, in action (Tg, w,¢). Within case 3, there are now two
subcascs we must now consider:

Subcasc A of casc 3 (step 2). Suppose that T, arrived at z before Ty did. It
at the time when T, arrives, T, has not been performed, then T, will be delayed
(because T'p and Ty conflict). Hence, in any case, T; will sce T performed at z.
After Ty is performed at z, the clock at z must have a higher value than ts(T)p).
Since ts(T,) must be larger than the clock reading at node z when Ty receives
its vote, we scc that ts(Tg) > ts(T)).

Subcase B of case 3 (step 2). Now suppose that Ty arrived af node z before
Tp did. This implies that when Tp votes at , it sces a timestamp of ts(Ty)
for item e. Since this value is less than ty, Tp will be rejected. Since this is a
contradiction, Ty will not arrive before Tp. -

We have shown that in all cases, ts(Tp) < t5{Ty), and thus, Tp < Ty im-
plies that ts(Tp) < ts(Ty). This in turn implies that §' is equivalent tc some
scrial schedule and that S is end equivalent to that same serial schedule. Hence,
the distributed voting algorithm provides end (or convergence) consistency for
updates. (End proof of theorem 4.)

The result of theorem 4 implies that any update transaction T, sees a consis-
tent view of the database when performed with the distributed voting algorithm.
To check this, consider the set of values read by Tp in schedule S, where as
before, S is the schedule produced by the distributed voting algorithm. These
values are exactly the same values read by T, in schedule 8’ produced after step.
1 above. This is true because the values read by any action are not alffccted
by the transformation of stcp 1. Since S' is consistent, we find that T, in S
does indeed sce a consistent view of the database. Thus, the distributed voting
algorithm satisfies one of the requirements for a concurrency control mechanism.
(Sece chapter 2.) It is easy to show that the distributed voting algorithm satisfies
the second requirement. Suppose that at a given time we stop receiving new -
transactions and finish processing all existing transactions. The schedule cbtained
from this, S, is a valid distributed voting schedule. Schedule S is end equivalent
to a serial schedule S'. Since S' is serial, it leaves the database in a state where
all the implicit consistency constraints are true. Thus, S also leaves the database
in the same state. ‘

(It is hard to compare end consistency to any of the degrees of consistency
defined in [GRAY76). In a scnse, end consistency is similar to degree 3 consis-
tency becausc they both provide protection from arbitrary transactions. That
ic, with consistency degrees 0, 1, or 2, there are transactions that may leave the
databasc permanently inconsistent. Ncither degree 3 nor end consistency have

208

v atemiese

e T R

RO e T

CH. 9: READ-ONLY TRANSACTIONS

this problem. On the other hand, end consistency scems weaker than degree 3
consistency because with end consistency (e.g., like the distributed voting algo-
rithm) the databases at a node may be inconsistent befween “perform update”
messages and not useful for local consistent querices. o
Earlicr, we showed that local concurrency control is not enough for consis-

tent queries in the distributed voting environment. However, the observation

that updatcs do sce a consistent view of the database suggests a way to execute
consistent querics. Simply handle queries as if they were updates with an empty
write sct (i.e., dummy updatc). Thus, queries will follow ihe voling protocol and
will scc a consistent view of the database. Unfortunately, this method is much
less eflicient than local reads with concurrency control.

By generalizing the example of section 3.1 to an N node network, we can
scc that any consistent query algorithm will have to visit at least a majority of
nodes in order to guarantee consistency. Therefore, the efliciency of any other
consistent query algorithm for the distributcd voting environment will be similar
to the efficiency of the query algorithm described in the previous paragraph. (It
might be possible to modify the distributed voting algorithm in order to allow
consistent querics to be executed at a single node. For example, by including in
the “perform update” messages the timestamps that were read at a transaction's
originating node, and by forcing nodes to wait until they see these timcstamps
locally before performing the update, we can force the “perform update” mes-
sages to be cxecuted in the correct order at all nodes. We have not studied this

modified algorithm and its performance.)

3.3 Current Queries in the Distributed Voting Environment.

The currency requirement for queries in the distributed voting environment
can be expressed as follows: A current query submitted to the system at time ¢
must reflect any updates that have been accepted at any node before and up to
time ¢. In the following discussion, we assume that a node that accepts an update
transaction performs the update locally before honoring any queries. Thus, the -
effect of any update accepted at node z at time ¢ will be seen by all queries
received at node z after time £,

Just as in the centralized locking environment, there are many alternatives
for dealing with current queries. One simple algorithm for query Q submitted
at node z at time ¢ is to send Q to all nodes and to ask them to exccute Q.
(This can be done serially or in parallcl.) When node z collects all the answers,

209

G WATRVIRUN S F D e

N Rl

CH. 8: READ-ONLY TRANSACTIONS

it chooscs the values with the most recent timestamps. That is, for cach item
referenced by Q, node z will collect N values and will choose the value which has
the largest timestamp {where N is the number of nodes). The values obtained
in this fashion will reflect all updates accepted before time ¢ (and possibly other .
updates accepted after time ¢) because these updates have been performed a.t
lcast at onc node,

The number of nodes consulted for a current query can be reduced to a
majority of nodes by having query Q also check the list of pending updates at
cach node it visits. A pending update at node z is an update that node z has
voted OK on, but an accept or reject message has not yet arrived at node z. If
query Q finds a pending update at node z, then it should wait until the outcome
of the update is decided before proceeding. This wait is necessary because there
is a chance that these pending updates are performed before time ¢ at a node
that Q docs not visit. After having visited a majority of nodes, Q can guarantee -
that all updates performed before time ¢ have been reﬁec ed in the data it has
read.

It is impossiblc to have a current query algorithm that visits less than a
mejority of nodes. If the nodes not visited by query Q constitute a majority,
then they could have accepted an arbitrary number of updates, before time ¢,
without Q and the rest of the nodes finding out.

3.4 Current and Consistent Queries in the Distributed Voting Environment.

Current and consistent qucries in the distributed voting environment can be
processed as dummy updates using the distributed voting algorithm. As we have
secn in section 3.2, this algorithm provides any transaction with a consistent
view of the data. This view is also current because this algorithm also makes
transactions wait for other pending transactions, as was described in section 3.3.

3.5 Summary.

In section 3 (and its subscctions), we have shown how current as well as
consistent queries can be executed when the distributed voting algorithm is used
to coordinate updates. The consistent query algorithm is less eflicient than its
counterpart in the centralized locking environment. Similarly, most of the current
query algorithms scem to be less efficient than the centralized locking versions.

210

REURUZL IV RS 724 T RO R

v,

CH. 9: READ-ONLY TRANSACTIOMNS

The main reason for these differences is that there are no sequence numbers
to order updates in the distributed voting system. Timestamps are used for
sequencing in the distribufed voting algorithm, but the timestamp of an update
is not as helpful as the scquence number of an update. For example, from an
update's timestamp we cannot tell how many other updates have been previously
performed in the system. -

4, QUERIES WITH THE ELLIS TYPE ALGORITHMS.

4.1 Consistent Queries.

It is easy to study the consistency of the Ellis type algorithms. (See chapter
3.) The original Ellis ring algorithm (OEA) actually performs updates one at a
time, so that all schedules produced by that algorithm are not only consistent
but scrial as well. In this case, consistent queries can be processed locally at any
node with local concurrency control. The proofs of these facts are so simple and
similar to our previous proofs that we will not present them here.

The other more efficient Ellis type algorithms (MEAS and MEAP) also
provide the same typc of consistency as the OEA. In the modified Ellis algorithm
with sequential updates (MIEAS) and in the modified Ellis algorithm with parallel
updates (MEAP), an update transaction T with base sct B does not perform any
action at node z until all other transactions that previously referenced items in
B have been completely finished at rode z. This implies that if T, < T (i.e., T
depends on Tj), then Tp cannot depend on any transactions that follow T in a
legal schedule. Therefore, any cycle Tp < T < Tj < Ty <... <Tp <X Tpis
impossible and any schedule produced by the MEAS or the MEAP algorithms is
consistent. It is also easy to show that local concurrency control provides local
querics with a consistent view of the database.

Thercfore, all the Ellis type algorithms are just as cfficient for processing
consistent queries as the centralized locking algorithm.

211

TPV SR L

ARV R LSl L T T e s

¢ arree e ane n

I il Ry dae St

EAE NIV

Lidearn et e o e

B rrpr

Wpes

CH. 8: READ-ONLY TRANSACTIONS

4.2 Current Queries.

In the Ellis type algorithms, all nodes must be “locked” belore an update is
performed at any node. This means that any node can find out if a new update
is being performed somewhere in the system. This implies that current queries
can be executed locally without consulting any other nodes. This is an important
advantage of these algorithms.

The current query algorithm for the OEA environment is very simple and
eflicicnt. When a current query Q arrives at node z at fime ¢, this node checks
the database state. If the database is idle at node z, then all updates that have
been performed up to that instant {time t) have been performed locally and Q
can be executed immediately. If the database state is passive, then some update
A might have been performed before time ¢ at some other node but not at node .
Therefore, Q must wait until the next “perform update” message (corresponding
to A) arrives. After A is performed at node z, query Q can be exccuted. If the
databasc state is active, then node z itself is trying to obtain locks for a new
update A’. But since the state is still active, the locking process for A’ did not
finish before time ¢ and A’ was not performed anywhere before time ¢. Thus in
this case, Q can also be executed immediately.

The current query algorithm for the MEAS and the MEAP algorithms are
very similar to the above algorithm. The only difference is that the current query
algorithm must check the state of every item referenced in the query. For every
passive state found, the query is delayed until the update involving that item
arrives. After these waits, the query can be executed.

5. PERFORMANCE OF THE QUERY ALGORITHMS.

We haveseen that for every update algorithm there are consistent and current
query algorithms. Some of these new algorithms are more eflicient than others.
For example, the consistent query algorithm corresponding to the centralized
locking and the Ellis type algorithms are much simpler and efficient than the
consistent query algorithm corresponding to the distributed voting algorithm.
The current query algorithm for the Ellis type algorithms, is more eflicicnt than
the current query algorithm for the centralized locking algorithm, which in turn
is more cflicicnt than the onc for the distributed voting algorithm. (The second
part of this last statement may not be true in some cases where the central node
in the centralized strategy is congested. Sce chapter 6.)

212

o ddelied g peae
.

R evTTIowwasre s s R R LY FETYTN (PR

- NEIEER,

CH. 9: READ-ONLY TRANSACTIONS

The overall system performance will strongly depend on the query types
and the fraction of the total transactions that they represcnt. I'or example, if
most transactions are free reads, then all algorithms will perform identically.
If most transactions are current querics, then a system that uscs an Ellis type
updatc algorithm will perform the best because current queries can be exccuted
with very low overhead. If most transactions are consistent queries, then the
centralized locking or an Ellis type algorithm will perform best. The case where
all transactions arc updates has already been studied, and we discovered that
the centralized locking algorithm performs best in most cases of interest.

When we have dilferent transaction types running, the choice of algorithm
will depend on the particular percentages of transaction types and the system
parameters. However, the trends should be obvious by now. For example, if
p transaction are updates while 1 — p are current queries, then as p decreases
towards 0, the centralized locking algorithm will be less attractive as compared
to the original Ellis ring algorithm (OEA). At some low value of p, the OEA will
become the best choice. A detailed simulation could give us a good approximation
to the value of p where the switch-over occurs. But unless we have a particular
system in mind, the exact value of p is hard to evaluate. Therefore, we will not

perform any such simulations here.

6. SOME CONCLUSIONS.

From our study we can rcach the following general conclusion. Out of the
algorithms we studied, the centralized locking algorithm (i.e., MCLA-h) scems
to be the best algorithm for handling a combination of update and rcad only
(query) transactions except if:

(1) The central node is heavily loaded (due to the centralized locking) and
updates constitute a large part of the icad. In such cases, the distributed voting
algorithm may handle updates me-e :fficiently. If updates are not frequent, then
the increased response time of updates in the centralized locking system will be
offset by the reduction in the response time of queries.

(2) Most transactions are current queries. In this case, the Ellis type algo-
rithms will operate more efficiently because current queries can be executed ab

a singic node,

=
et
7Y

FERTRE - ST TR NS Y PENE, S0 VR s A

CHAPTER 10

TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

Up to now we have assumed that all transactions epecify fully at their incep-
tion the sct of items that they will reference. We have called this set of referenced
items the base set of the transaction, so we call this assumption the base set
assumption. In this chapter we will study transactions that do not specify their
base set initially. In other words, these transactions must read some item values
before deciding what other items to read.

In section 1 we discuss how the fact that transactions do not initially specify
their base set alTects the algorithms we have presented in previous chapters. In
scction 2 we study how thec MCLA-h algorithm can be modified to deal with
transactions that do not specify their base set initially. (The rest of the algo-
rithms we have studied either are not affected by the base set assumption, or
the modifications needed by them are very similar to the modifications given for

" the MCLA-h algorithm.) Finally, in section 3, we discuss the performance of the

modified MCLA-h algorithm,

1. OVERVIEW.

The elimination of the base set assumption only affects some of the algo-
rithms we have studied. Notice that none of the query algorithms of chapter
9 arc affected. In all these query algorithms, 2ll the data needed by a query is-
rcad at a single node with ocal concurrency control, so that a query does not
have to specily its base set beforechand. (Recall that in some query algorithms
like the DVA algorithm, the query must visit other nodes before completing. Bub
even in these cases, all the data is read at a single node.) In other words, to
read data at a node, a query can request some local locks, read the data that
is locked locally, perform some computations based on the data read, and then
dccide that it wants to read more data. To read the additional data, the query

214

DU RFTRIES % O K SRR TR
.

s o e T TERE A S Pt A TR

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

simply requests more local locks, reads the additional data, and possibly repeats
the cycle. Thus, it is not necessary that queries specify their base set initially.
(Notice that this can lead to local deadlocks.)

The update algorithms that are not based on locking are not affected by
the base sct assumption either. The algorithms that do not use locking are the
DVA and the CCA algorithms. No modification is required in these algorithms
in order to handle transactions that do not specify their base set initially. In
the distributcd voting algorithm, the item values and their timestamps are read
initially before any votcs have been obtained. Thus, the node that is doing this

initial read is free to read some values, then compute some, and then based on " -

the computations, it.can decide to read other iterns. When the read phase has
completed, the votirig phase can commence just as if all the item values had
been read in a single operation. The other algorithm that does not use locks is a
complete centralization algorithm where all values are read and all computations
performed at the central node. In this case, there is no problem with initially

“unknown base scts either.

Therefore, in this chapter we will only study the locking update algorithms.
Since the modifications needed to cope with transactions that do not specify
their base sct initially are very similar for all the locking algorithms, we will
concentrate on one of the update algorithms, the MCLA-h algorithm.

In this chapter we will continue to assume that no failures occur in the
system. We still assume that the database is completely replicated at all nodes.
Finally, since we will only study update algorithms, in this chapter we can assume
that all transactions are update transactions (i.e., no queries).

2. STRATEGIES FOR THE MCLA-h ALGORITHM.

In the case of the centralized locking algorithm (MCLA-h), the base set is
nceded beforchand so that locks can be requested from the central node. When
the base set is initially unknown, it will be impossible to request all locks as a
first step. There are three possible alternatives:

STRATEGY 1. Enlarge the base sct. In some cases we can get away with
simply requesting a few more locks from the central node in order to cover all
alternatives. For example, a transaction might read the balance of a bank account
in order to record a withdrawal. If the new balance is negative, a special eniry
must be made in the overdraft record. We can process this transaction by simply

215

100 enn A AAPRAD S ROB UM A st Lo, AL A A N

b @ RV b meten s e

il = 2 a9 A il

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

requesting locks for the balance and the overdraft records, even if we are not
surc we will nced the second item. The advantage of this strategy is that we only
request locks once. However, the disadvantage is that we unnecessarily restrict
concurrent exccution of other updates because of the extra locks we hold. In
our example, many transactions may request the lock for the overdraft record
cven though in most cascs they will not use it. Thus, most of the transactions
could run concurrently but will actually run serially because they unnecessarily
request the lock for the overdraft record. :

STRATEGY 2. Request locks as they are needed. When this strategy is
foilowed, an update first specifics an initial set of items it would like to read.

" Locks are requested and obtained, and the update reads the items and computes..

If the transaction discovers that it would like to read some more items, then it
requests more locks from the central node, After these new values are read, more
could be requested and so on. This method does not seem very attractive if the

number of rcquests to the central node is not small. In the centralized locking

algorithm, we want to avoid "visits” to the ceniral node as much as possible
because this is the system bottleneck. '

However, for many transactions, a second or third lock request will be very
rarc, and most transactions will run with only a single request to the central node,
In the bank example above, we can request the lock for the overdraft record only
when it is actually needed. Thus, only the few transactions that find negative
balances will have the extra overhead of requesting the additional lock. '

When locks are requested as they are needed, there is a danger of deadlocks.
These dcadlocks can be detected by the central node. Some transactions may
have to be backed out, but this does not represent a problem because no item
values have been modified by a transaction requesting locks.

STRATEGY 3. Read without locks and th« a request locks needed. (A similar
strategy is followed by the distributed voting aigorithm.) Using this method, an
update reads all the data it needs at its originating node, without holding locks.
This way, an update can read data aud compute in stages. Once the update is
rcady to write the new values, locks are requested from the central node for all
items that were referenced. .

Of course, the problem with this strategy is that by the time the locks are
obtained, the values that were initially rcad might be invalid. Therelore, we need
a mechanism for detecting conflicting updates that were performed during the
read. When such a conflict is discovered, the update will have to be restarted.
There are scveral alternatives for processing the sccond attempt.

One way is to release all the locks obtained and to start the update once

216

v etetsidiie 1mvi ROV ARG A b o

SR STLE PRA

AN

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

more from scratch. (Dummy updates with the update's sequence number will
have to be sent out to all nodes.) On the sccond attempt, we may use strategics
1 or 2 (above) because we might now have a better idea as to what items will be
necded. _ ’
Another alternative is to keep the locks form the first attempt, reread the
data to obtain the current values, and then to proceed using strategy 2. In other
words, the fact that some updates conflicted and modified some values that were
read does not necessarily imply that another base set will be needed.

For example, if we use this idea on the bank account example, the update
will rcad the balance (with no locks) at node z and will then discover that it needs
the overdraft record. This item will also be read at node z, and the first phase
will complete. Then both locks will be requested, but when they are granted,
may discover that some other conflicting update was performed between the time
the update started rcading and the time when the locks were granted. Assuming
that a conflict did occur, the data read is obsolete, but there is no need to throw
away all our previous work. Chances are that the new values will not increase the
base set nceded. So we can reread the balance and the overdraft record locally
and reexccute the computations. When we do this, we may find a new overdraft
record value, but this should not force us to read other items. We may also find
a new balance and that we do not need the overdraft record after all, but this
does not force us to read other items either. (That is, the base set is now smaller,
so it does not matter if we have obtained an extra lock.) In some special cases,
we may find a completely different balance which may force us to read some
other items. (For example, we may now neced an “overflow” record because the
account has too much money !) In many applications, occurrences of drastic base
sct changes due to item value changes will be rare. In such cases, a read without
locks strategy will allow most updates to complete with only one lock request to
the central node. ' co

2.1 Mechanisms for Detecting Conflicts,

The mechanism to detect conflicting updates can be fairly simple. When
an update starts its reading phasc (with no locks) at node z, it makes a copy
of the set of performed updates. Let "Copy” be this copy of Done-set[z]. The
values rcad by the update will reflect all updates in this set. When the locks are
obtained later, the update will receive a sequence number s and a hole list I, If
all updates with lower scquence number than s and not in hole list { are in sef

217

QK ERF B L 7 AR 10T IR AN e

e a i

LR O U B A R e e YE L R RTEL 7Y BT S 72 7F VE AN T 2 e ar ot - AP B N BT

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

Copy, then the data initially rcad is current and the update can proceed (i.e., it

" can be performed at all nodes). If some update is missing from set Copy, then

the update must restart as outlined at the end of section 2.

As a matter of fact, the check can be made at the central node itsclf after all
locks are granted. The central node can send out the “perform update” messages
directly because the new update values have already been computed. This way,
we save some time because we do not wait for the grant message to reach node
z. Furthermors, if the “perform update” messages are sent out by the central
nodc itsclf, the locks obtained by an update will be released immediately, so we
might as well do away with locking complctely. We can also do away with the
hole lists because the list of updates that have obtained locks but not released.
them (i.c., the hole list) will always be empty. Only the sequence numbers issued
by the ceniral node will still be used to properly sequence each update.

In summary, this is how an update would be proccssed. When update A is
rcceived at node z, the sequence number of the last update performed at node z is
recorded. Let this number be s. Then update A will read the values it needs and
computes some new valucs. These new values, together with sequence number
s are sent to the central node for authorization. When the central node receives
them, it checks that the latest sequence number issued by the central node is
indced s. If this is not true, A is rejected and node z is informed. (In this case,
updatc A must be started from scratch because no locks are held by it.) If s is
the last sequence number issued,.then A is accepted. Update A is assigned the
next scquence number (i.e., - 1) and the "perform update” messages (with the
new values that were computed at node z) are sent out to all nodes.

The problem with this mechanism (the original one we described or the
simplified version described in the previous paragraph) is that some updates may
be unnecessarily rejected. For example, suppose that an update A has started
rcading data at node z and a sccond update A/, which does not conflict with A, is
performed at node z. When update A arrives at the central node for authoriza-
tion, it will be rejected because it did not see update A’. (Notice that A’ has a

. lower sequence number than A.) Nevertheless, update A could have been accepted

because A’ did not modify any of the values read by A.

There is another mechanism which we can use for detecting conflicts which
is more eflicient than the one described above. The idea is that the local concur-
rency controller at cach node detects the conflicts. As an update A is reading
at nodc z without global locks (i.c., those issued by the central node), it sets
local locks. These local locks are held until A obtains global locks and completes.
Therefore, when & “perform update” message for a conflicting update A arrives

|]
[
(4]

MYIIALA A e

LImy s e et

e o e e T L R

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

at z, the concurrency control will immediately detect the conflict. If update A
is still reading, it should be halted and restarted in order to avoid wasting more
time on it. If update A has finished reading and is waiting for locks from the
ccntral node, then node z remembers that the data obtained by A is no good.
When the grant message for A arrives, either the global locks are released and
A restarted, or the data is reread as described previously. In any case, the local
locks of A arc rclcased and update A’ is performed. : o

After update A obtains global locks, it must still wait until all updates with
lower scquence number and not in its hole list are performed locally at node z. If
after this step no conflicts have been detected by the local concurrency control,
then update A can be performed. The new values produced by A are stored in the
local database, the local locks are released, and the “perform update” messages
are sent out to all nodes as before.

With this new mechanism, only updates that actually read values that were
subsequently modified by another update will be rejected. The use of the local
concurrency control to detect conflicts does not produce any overhead since this
control is required at all nodes in order to perform the updates correctly,

2.2 The Other Locking Algorithms.

In the case where the other locking algorithms are used for updates that do
not specify their base set initially, we have similar problems to the ones of the
MCLA-h algorithm. The problems do not appcar in the original Ellis algorithm
(OEA) because, there, updates lock the entire databesc regardless of what they
will rcad. But in the other algorithms (c.g.,, MEAS, MEAP, WCLA, TWCLA),
updates must obtain Jocks for the items they will read, before they actually read
any data. In these cases, we have the three same options that we had for the
MCLA-h algorithm: (1) enlarge the base set, (2) request locks as they are needed,
and (3) read without locks and then request locks. Since these solutions are so
similar to the ones for the MCLA-h algorithm, we will not discuss them here.

3. PERFORMANCE OF THE DIFFERENT STRATEGIES.

Only the performance of the locking algorithms is affected by $he elimination
of the base sct restriction. All other update algorithms operate as before, and we

219

SRRt T T e

S J

DR S LT 7 1 VY7 MRV

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

can thercfore use the performance results obtained in chapter 8. In this section
we will concentrate on the change in performance of the MCLA-h algorithm due
to the initially unknown base scts. The elimination of the basc set restriction
will affect the other locking algorithms in a similar way.

Studying the performance of the MCLA-h algorithm in the case where the
base sct is initially unknown is not simple. We have outlined several different
strategies that could be used for this case {e.g., enlarge the base sct, read without
locks, ctc.) and in each casc the performance depends on how well the update
transactions suit the stratcgy. Such factors as how many extra locks are nceded
to cover all possible base sets {for the enlarge the base set strategy) or how
many lock requests to the central node are needed by an update (for the request
locks as necded strategy) will entirely define the performance of these algorithms.
Unfortunately, the update model that we have used so far does not take into
account any of these factors, and it is hard to add the factors without application
knowledge. o

Fortunately, at least it is possible to study the “read without locks” strategy
and obtain a rough cstimate of how this strategy performs. In appendix 8, we
present a simple analysis of the “read without locks” strategy which provides
us with an approximation for the average response time of updates. (The local
conflict detection mechanism is used; an infinite hole size limit is assumed.) The
results are plotted in figure 10.1. We can observe that the increase in response
time is very small. That is, the number of updates that are rejected is so small
that it only becomes significant when the system is heavily loaded. In these cases
where the system is close to saturation, a small load increase due to the rejected
updates can incrcase the average response time of all updates significantly. In
all other cases, the increase in average response time is small. o

Theresults of figure 10.1 are obtained assuming that updates reference items’
at random within the database. Of course, in many applications, there are certain
items that are frequently referenced by updates. In this case, the number of
conflicts and update rejections will be larger, 2nd the response time of updates
will be worse than what is shown in figure 10.1.

However, the assumption of random reference was also made for the analysis
of the other update algorithms, so that it is fair to compare the results of figure
10.1 with the previously obtained results. In figure 10.2, we graph the results
for the “read without locking" MCLA-h algorithm together with the results for
the distributed voting algorithm, To make the comparison realistic, we should
make the “L" paramcter for the centralized locking algorithm smaller than for
the distributed voting algorithm. (See chapter 6.) Recall that the I; parameter

220

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

T riam 't
Pleure 16,1
A
R

average , | I
response . . 1

time (sec original 1 ! ,
MCLA-infinity iy l
15 X ; |
= = =« MCLA-infinity ! ! 1
read without locks | 1

! H
! | !
! . i
" ! I
1 !
! t
X I

1.0 i

’
”~
‘IS = 0.01 sec.
‘Is = 0.005 sec.
0.5T “.-_S =
t t t : t +—>
5 3 3) 1 o
Ar, average interarxrival time (sec)

Figure 10.1. The ¥CLA-h algorithm: The read without locks
strategy. N=6, M=1000, 3s=5, Id=0.025 sec., T=0.l sec.,
h=infinity.

221

TH AN INITIALLY UNSPECIFIED BASE SET

CH. 10: TIRANSACTIONS WI

TFizure 10.2

! ' 1
R / ! i
average / !
response 7 I I
tize (sec) / ! 1
. / ; I
1.5 4
Y ! !
Vs / '
7’
P 7/ H
e 4 /
-~ /
el
_-=" 7/ !
f DVA (Is=0.01 sec.) 7 /
s
1.04 -7 L/
- - s
- ~
t DVA (Is=0.005 sec.) -
. -
- - -

-

-?—D;A {15=0)

f MCLA-infinity (Is=0Q)
read without locks

s 1 3
1 4 14
2 1 (<]

Ax, average interarrival time (sec)

w-t

Figure 10.2. The read without locks MCLA and the DVA
algorithms. N=6, M=1000, Bs=5, Id=0.025 sec.,
T=0.1 sec., Rt=l sec.

13
134
[3V

PN = T PYIUR T LT AN VI RS SO

FY R R A TR L D

LIV A b A L2 FRH

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

(IO time slice) is the IO time nceded to read or write a timestamp or a lock.
For a locking algorithm, I; is ncar zero because the lock table can be kept in
main mcmory as a hash table.” Therefore, in figure 10.2 we give the results for

the MCLA-h algorithm (with read before locking, h = infinity) with I, = 0. In

chapter 6, 0.025 scconds was used as a typical value for I, for the DVA algorithm,
but by using caches this value may be reduced somewhat. In figure 10.2, we give
the responsc time of the distributed voting algorithm for I, =.0.01, I, = 0.005,
and I, = 0 scconds because a true value should be in this range (probably closer
to 0.01 scconds). The MCLA-h algorithm performs better than the distributed
voting algorithm in most cases of interest. If I; = 0 for the distributed voting -
algorithm {which is unlikely), this algorithm performs better than the centralized
locking algorithm when the system is heavily loaded. (This is not shown in figure -
10.2. This effect appears in figure 6.2 of chapter 8.) However, for the more
realistic values of J; = 0.01 or I, = (.005 seconds, the MCLA-h (read without
locks) performs better for ali values of the interarrival time (A,).

In figure 10.3 we compare the results for the MCLA-h algorithm (read without
locks, h = infinity) with the completely centralized algorithm, CCA. In the
complctely centralized algorithm, all undates are totally performed at the central
node. Recall that in this algorithm no global locks are required; the local con-
currency control at the central node is sufficient. Thus, for this algorithm, the
IO time slice parameter [, is always zero. Also notice that updates do not need
to specify their base set beforehand.

The MCLA-h (read without locks, h = infinity) algorithm with I, = 0
performs better than the completely centralized algorithm, as can be seen in
figure 10.3. If the J, paramcter is increased for the MCLA-h algorithm, then the
completely centralized algorithm can perform better. However, this is not a fair
comparison because I, = 0 is the most likely case for the MCLA-h algorithm.

The rcsults obtained from the analysis of the “read without locks" strategy
for the MCLA-h algorithm show that our previous conclusions regarding the
performance of the update algorithms (for completely duplicated databases, up-
dates only) are not altered. The MCLA centralized locking algorithm still gives
the best average response time for updates in most cases of interest, even when
the base set is initially unknown. Furthermore, in the analysis of the MCLA-h
algorithm in appendix 8 we did not consider many possible simplifications that
could improve efficiency. (For example, we did not consider that updates could
be aborted while they were reading and computing because of a conflict, In the
analysis, we assumed that all updates requested locks from the central node, even
when the updates knew for sure that they would be rejected.

223

CIl. 10: TRANSACTIONS WiTII AN INITIALLY UNSPECIFIED BASE S

) A
average :
respense |
time (sec)
1.54
1.0+
Is = 0.01 sec. -
-
l -
— - -
Is.= 0.005 sec. . —~
o.sl-=--~-—" "
Is = 0 sec. ==~ MCLA-infinity
read without locks
— CCA (Is=0)
1 1 + 3 ' t B~
T T 4 ¢ ¢ i i
5 4 3 2 1 °

Px, average interarrival time (sec)

Tigure 10.3. <he read without locks MCLA and CCA algorithms.
N=6, M=1000, 3s=5, Id=0.025 sec., T=0.l1 sec.

i LAY,
"

CH. 10: TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET

We have not analyzed the “increase the base set” or the “request locks as
nceded” strategics. However, we have discovered that the “read without locks”
strategy performs fairly well. The other strategics should only be used when they
improve the performance. That is, if for a give application the other strategies
do worsc than the “read without locks" one, then the latter one should be used.

225

CHAPTER 11

PARTITIONED DATA AND MULTIPLE CONTROLL_ERS |

In most distributed databases, the data is not completely replicated at all -
nodes in the system as we have assumed up tc this point in this thesis. In this
chapter we eliminate this assumption. We study distributed databases where the
data is partitioned and we present several algorithms for processmg transactions
in this environment. '

In section 1 we present a partitioned data model and we show how the al-
gorithms of chapter 3 can still operate in this case. In section 2 we introduce
the concept of multiple controllers and we discuss how a partitionea distributed
database system with multiple controllers can operate more efficiently. In section
2 we also present an update processing algorithm for the partitioned data, mul-
tiplc controller case. Then, in scction 3, we study query processing algorithms
for the partitioned data, multiple controllers environment, and we study their
performance.

To simplify the presentation, we will first assume that no failures occur in
the system and that transactions specify their basc set initially. Then, in section
4, we will consider how these assumptions can be relaxed in the partitioncd data,
multiple controller environment. In sections 4.1 and 4.2 we will look at transac-
tions that do not specify their base set beforehand, while in section 4.3 we will
discuss how the algerithms presented in this chapter can be made crash resistant.

‘1. PARTITIONED DATA.

In this section we will discuss how our algorithms can be modified to handle
.partitioned databases. Up to this point in our research, we have assumed that
every data item is replicated at every node in the system. In a partitioned dis-
tributed database, itcms are not replicated at all nodes. As a matter of fact,

some items might not be duplicaied at all. That is, there might exist a single

226

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS '

copy of some items. From the point of view of a single node, it has a fraction or a
partition of the database. This partition can be identical to, completely disjoint
from, or can overlap the partitions at other nodes.

1.1 'The Partitioned Data Model.

We will now extend the database model we defined in chapter 2 in order to
model partitions. We chose a simple model which explicitly shows where the data
is replicated. As before, the database is a fixed set of M shared named resources
called items [ESWATS6]. Each item has a name and some values associated with
it. For simplicity, we use the integers between 1 and M as the names of the items
in the database. (E.g., item 10, item j). In addition, each item ¢ has associated
with it a set S(i). Sct S(¢) is the sct of nodes which have 2 copy of the value of
item ¢. That is, each element of S(7) is the node identification number (between
1 and N) of a node where a value of item ¢ is stored. We assume that all sets.
S() are not empty. We represent the values associated with item ¢ by d[z,],
where z is a node in S(). (For nodes y not in 5(), d[¢, y] is undefined.)

In our model, the storage locations of one item are completely independent
from the location of other items. However, for convenience we may group items
that have identical storage characteristics into “fragments”. A fragment F is a
sct of itcms that have the same S sets. We use the notation S(F) for the set of -
nodes where F" is stored. (That is, S(F) equals S(7) for all items ¢.in F.)

From the point of view of the user, the locations of the items in the system
(i.e., S(2)) is irrclevant. The uscr transactions still view the database system as if
it were a single local database where all item values existed. Therefore, our model
of a transaction will be not be changed. A transaction T simply reads the values
of a set of items (the base set), performs some computstions and generates new
values for a subsct of the items that were read (the write sct). As before, we also
have a set of consistency constrainis or asseriions defined on the database. These
user constraints are specificd only in terms of the items; the location of the item
values is agzin irrelevant. (Later, the location information can be added to the
user constraints as was done in chapter 9.) We assume that a transaction that
is run by itself on a single database with all items values available will preserve
the consistency of the database.

221

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS
1.2 Transaction Processing With Partitioned Data.

Let us assume that a transaction T specifies fully at its inception the items it
will reference; that is, T specifies its base set Bs(T). (We will study the elimination
of this restriction in section 4.) For the time being, we will concentrate on update
transactions. Possible simplifications for read-only transactions will be discussed
in section 3. ' :

We also assume that the system has a directory which gives the location of
the item values. A directory is 8 mapping that produces the set S(5) {or S(F'))
" given the item name 7 (or the fragment name F'). By consulting the directory,
a transaction T will be able to find out the set S(¢) corresponding to every item
in Bs(T). , _ ’

The directory itsell is a distributcd database and can be partitioned as was
described in section 1.1. For example, the directory information for a certain
fragment F" can be located at some nodes and not at others. A transaction needing
{o find out where F is located must visit one of the nodes that have a copy of
the S(F) set. There are two main problems that arisc now: (a) How does the
transaction know what nodes have a copy of S(I), and (b) How can we update
the elements of S(I)? These are hard problems in themselves. They correspond
to the arca of distributed directory management, which we consider to be beyond
the scopc of this thesis. Nevertheless, here we will make some short comments
before moving on to the problems we rcally want to address in this chapter.

We do not wish to have a “second level” directory which can tell us where the
“first level” directory is located becavse this would only push down the problems
to this “sccond level” direc! .. One simple solution is to replicate the complete
(first level) directory at all nodes. Another solution is to find out the location of
data by broadcasting a request “Where is item 7 {or fragment F) located?” to -
all nodes. The nodes with a copy of the corresponding partition of the directory
would respond “Ttem ¢ (or fragment F) is located at nodes S(2) (or S(I))" and the
nodes that do pot have the right information would respond “I do not know".
By remembering in caches the location of the commonly referenced items, nodes
can speed up the lookup procedure. Notice that if the information in a cache
becomes obsolete, there is no serious problem. For example, suppose that a node
z incorrectly believes that a value of item ¢ is located at node y. When node =
requests the value of item ¢ from node y, node y will inform node z that it does
not have the value. Node z will then have to locate item ¢ through the longer
broadcast procedure. Also notice that it is highly convenicnt for the nodes in
S(z) themselves to have the directory inlormation [or item <.

228

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

The directory information can be updated, but the concurrency control
mechanism for doing this is diffcrent from the one we discuss in this chapter.
The rcason for this is that considerably more safeguards must be taken when
modifying a directory. In this thesis we will not discuss directory updating; we
will assume that the directory is static. :

Once the system has all the necessary information, it has to decide how to
run the transaction. There are two distinct issues involved here. The first, which
we will study in this chapter, is how to provide each transaction with a consistent.
view of the database; that is, how to deal with the concurrent execution of the
transactions when the data is partitioned. A second and different issue is how
and in what order to perform the read operations and computations in order to
minimize the effort and dciays involved. In our previous research we did not have
this sccond problem because all the data required by a transaction was available
at any node. But now there is a choice to be made as to where the data will
be obtained, and the different order of performing the read and computation
steps at different nodes can greatly influence the efford required to perform a
transaction. In this chapter we will totally avoid this problem because it is very
hard and weuld obscure the solution to the first. Therefore, we assume that the
values of the items in the base set of a transaction can be obtained from any
node that has them and this can be done in any order. (Also notice that the
database model we have chosen is not good for studying the second problem.)

We now concenirate on the concurrency problem for partitioned data. It
turns out that any of the update algorithms for the completely duplicated case
of chapter 3 can be extended to the partitioned data case. The reason for this is
that a node docs not need to have the value of an item, d[2, z], in order to lock
the item or votc on an update involving the item. Thus, the algorithms virtually

‘remain the same. The main diflerences are that the item values may not be
availablc locally and that the nodes must ignore “perform upda*e messages that
involve items that they do not have.

Although this solution is simple, it has disadvantages in some cases. But
before we discuss these problems and their solution, it will be helpful to illustrate
thc idea of using the algorithms of chapter 3 for partitioned data with the MCLA-
h and the DVA algorithms. Some of the disadvantages will become evident as
we discuss these two algorithms.

1.2.1 The MCLA-h Algorithm for Partilioned Data.

If we use the MCLA centralized locking algorithm with hole size limit of

229

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

k (MCLA-h) (see chapter 3), an update will be processed as foliows. Assume
that an update A is initially submitted at node z. The first step is for node z to
request locks for &ll items refcrenced by A Irem the central node. Even though
the central node might not have the value of the items needed by update A,
it still grants locks using the MCLA-h protocol. After a possible delay at the
central node, update A obtains the locks, a scquence number and a hole list. The
hole list is the list of the currently executing updatcs and is used to speed up
the execution of update A. A grant message to node z informs the node that
A is ready for execution because no other updates can interfere with the items
refercnced by A. Thus, node z scts out to read the valucs of the items in the -
base set of A { Bs(A)). First node z must obtain set S(t) for all items 1 in Bs(A).
(As mentioned carlier, this is done with help of a directory.)

After this, node z knows where it can read the values for the items in BS(A)
Reading the valucs might involve communicating with several other nodes. At
any of these nodes where values of A are read, the read operation must be delayed
until all updatcs with scquence nuinbers less than A's sequence number (and not
in A's hole list) arc performed. (Sec chapter 3.) This guarantecs that update A
obtains a consistent view of the database, even though the values for A have
been read at several nodes. In other words, all and only updates with sequence
number less than A's scquence number will be reflected on the items read by
update A. After node z obtains all the valucs necded by update A, it procceds
to computc the new valucs for the items in the write set of A, Ws(A). Finally, a
“perform update” message, which includes the new valucs, is sent to all nodcs.
Even though a node does not have any item values involved in update A, it still

ust receive the “perform update” message because the node needs te know that
A has been performed. Such nodes simply add A’s seguence number to their list
of performed updates and do nothing more. When the central node receives the
“perform updatc” message for update A, it releases A's locks and deletes A's
sequence number from the hole list.

1.2.2 The Distributed Voting Algorithm for Partitioned Data.

The distributed voting algorithm can also be used for partitioned data.
Unfortunately, in order to be able to vote on updates, all nodes must keep the
timestamps of all items, even though the nodes might not have the values of
all items. This is analogous to the MCLA-h case where the central site must
keep lock information for all items. Since the timestamp information is more
voluminous than the locking information, this represents a serious problem for

230

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

the distributed voting scheme. Furthermore, the timestamp information must
be kept at all nodes, while the locking information in the cenfral locking strategy
is only kept at a single site.

When a node z receives an update from a user, it proceeds as follows. First,
the item values and their {imestamps are requested from any :icdes that have
them. Then the voting protocol is followed in exactly the same fashion as before.
When update A is accepted, the “perform update A" message (i.e., the “accept”
message) must be sent to all nodes because all nodes must modify their times-
tamps for the items referenced by update A. Nodes that also have the value of
an item referenced by A, updaie this value. :

9. MULTIPLE CONTROLLERS.

There arc two main disadvantages with the solutions for partitioned data
we have proposed so far. Both disadvantages stem from the fact that there is
a single unified control structure for the complete system. The first problem is
that every node must bec aware of all updating activity in the system. That is,
every single node must process every update in order to record the timestamp
or sequence number information regarding the update. This processing must be
done regardiess of whether the node contains any item values that are involved
in the update. In the completely duplicated database case, it made sense to have
a single control structure because all nodes had to process all updates anyway.
However, in a partitioned database, this is no longer the case.

The second main disadvantage of the proposed solutions is that the nodces that
enforce the concurrency control (i.c. the central node in the centralized locking
algorithm or the voting nodes in the distributed voting algorithm) must resolve
conflicts involving all updates. The single control structure residing at these nodes
crcates a performance botileneck because ali updates must pass through these
nodes to obfain the proper authorization. If all transactions reference random
items in the database (as we have assumed up to now), then there is little we
can do to avoid these bottlenccks. However, in a partitioned database, we expect
transactions to have special reference patterns that will allow us to eliminate the
bottlenecks by having several independent control structures. We will illustrate
this idea through an example.

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

2.1 An Example.

Suppose that a certain company has a distributed database system with two
nodes. One of the nodes, node z, is located at one of the company’s two plants. -
The database at node z contains all the data pertaining to that installation.
Similarly, node y contains all the data corresponding to the second plant. The
database is hence partitioned in a very natural way. We also expect that most
transactions will deal exclusively with onc of the databasc fragments. In other
words, transactions that only reference data at one of the nodes will be very
common. Of course, there will always be some transactions that will involve data
at both nodes, but we expect the number of such transactions to be low.

Il we choose a single centralized controller at say node z, we will have a very
incfficient system. Similarly, if we select a distributed voting scheme where all
transactions must obtain votes at both nodes, v.e will run into the same problems.
A more efficient and natural way {o solve the concurrency control problem in this
example is to have two indcpendent controllers, one for each database partition
- or fragment. The controller at node z can have total control over its fragment .
(i.c.; the data at node z). Transactions that only rclference items at node z will
only have to communicate with this controller. Similarly, the controller at node
y has control over its items and it can grant access to those items. This way we
climinate the bottleneck through the use of two controllers, each processing its
share of the transactions. .

The complication in this scheme occurs when processing the few transactions
that refercnce items in both fragments. Such transactions must coordinate their
update with both controllers. One way to do this is to first request “Jocks” for
the itcms handled by one controller, and then o request the rest of the “locks”.
This protocol is not as cflicient as simply requesting locks (61' control) from a
single controller, but the fact that only a fcw transactions require this “two level”
protocol (as we assumed at the beginning of this example) should make the overall’
system performance good.

2.2 Controliers.

Returning to the general case, we sce that we can have several independent
controiiers. Each controller will be in charge of the concurrency control of a seé
of items, and for convenience we assume that all the items supervised by the
same controller have the same storage set S(¢). Hence, a controller is in charge

232

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

of a fragment of the database.

A controller is not a node. As a matter of fact, one controller may be
distributed among several nodes. A controller is simply onc or more software
“modules” which exercise control of the data using any one of the previously
studied algorithms. For example, a centralized locking controller for fragment F°
has a single module which grants locks for any update referencing items in F'. A
distributed voting controlle: for fragment I has j modules on j differcnt nodes.
" These nodes may or may not have values of items in fragment F'. An update
involving any items in F' must get a majority of OK votes from the j modules.
In order to vote, each module of the distributcd voting controller must keep the
latest timestamps it has seen for cach item in fragment F'. If the module does
not reside at a node where the values for F' are stored, then the module needs
its own copy of the timestamp values. Controllers that use the other update
algorithms of chapter 3 can also be designed. ’

2.3 Multiple Controller Model.

We will now extend our model io include the concept of “partitioned” or =

multiple controllers. Our model should cmphasize the independence of data
storage and the data control. That is, the distribution of the data in the system
is diffcrent from the distribution of the control. Our model should allow us to
have complcetely duplicated databascs with a single overall controller, completely
duplicated databases with multiple controllers, or partitioned data together with
partitioned control. We would also like our model to make cach controller com-
pletely independent from other controllers. Each controller must have total con-
trol over the items assigned to it, and we can use any algorithm (distributed or
centralized) to cnforce this control.

To cxtend the modcl, we associate cach item ¢ in the database with a con-
troller C(2). Thus, cach item can be represented by the tuple (2, V{z), S(2), C(2)),
where ¢ is the name of the item, S(2) is the sct of nodcs where values of ¢ are.
stored, C(7) is the name of the controller in charge of the item, and V(7) is the
set of values:

V(i) = {d[i,s] | = € S(2)}.
We use the integers between 1 and C), to name the controllers in the system,
where C,, is the total number of controllers. {Notice that Cy, should be less than
or equal to the total number of items M.) Each controlier J (1 < J < Cy,;) has
associated with it an algorithm A{J), a sct of nodes M(J) where the modules for

233

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

the controller reside, and a set of items controlled by it, J{J). Algorithm A{J)
is the protocol (e.g., centralized locking algorithm, distributed voting algorithm)
that is uscd by the modules that compose the controller in order to perform the
concurrcncy control of the items in I{J). Each node in M{J) has a module of
controller J. For consistency, we assume that C(z) = J for all ifens ¢ € I{J)
(1 < J < C,). For simplicity, we have assumed that controllers are in charge of
fragments. That is, S(¢) = S(k) [or all 3,k € I(J), where 1 < J < Cp,. We will
also use the C notation to denote the controller of a fragment. In other words,
C{F) is the controller of fragment F'. {Notice that C(F) must be equal to C(7)
for all items ¢ in fragment F.) :

2.4- Processing With Multiple Controllers,

Now that we have extended our distributed database model to include more
than onc controller, we must describe how transactions are processed in this en-
vironment. In this and the following scction, we first consider update transactions
with a known base sct. In section 3 we will discuss read-only transactions, while
in scction 4 we will study some of the problems that arise when a transaction
does not specily its base set initially, ‘

When all of the items referenced by an update transaction T have the same
controller J (i.e., C(i) = J for all items ¢ € Bs(T)), then update T can be
processed completely by controller J following algorithm A(J). Since controller
J has complete authority over all the items referenced by T, no other controllers
hdve to be contacted. Thus, messages must be scnt out to some or ali of the -
modules in M(J) sc that they authorize (e.g., accept, grant) the update T. Then
update T must be performed at all nodes that have values of the items referenced
by T. Since S(z) = S for all items 1 € Bs(T), update T must be performed at all
nodes in S. Each of these nodes processes the “periorm update” message for T
and its sequencing information (e.g., timestamps, scquence numbers, hole lists)
in the usual manner.

If the items referenced by T have dilferent controllers, then the update must
be coordinaied with ail the conirollers involved. Let Jj, Jy, . . . Jin be the controllers
nceded for update T. Notice that the problem of performing T under the control
of Ji, Jz,...J, is different from the problem of performing an update transacticn
T’ with one controller distributed over m modules. In the latter case, each of the
m modules shares control of the same items with the other modules, and thus
algorithms that only obtain authorization from & majority of modules can be

234

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

designed (e.g., the distributed voting algorithm). In the case of m independent
controllers, each of the m controllers must authorize the update because cach
controller has complete control over some of the items involved in the update.

2.5 The Update Algorithm for Partntxoned Data With Multxple Controllers.

Although meany variations arc possibie, there are four basic steps that must
be followed to perform update transaction T under the control of controllers
Jl!J2) J)

STEP 1. Obtain an authorization (c.g., locks, majority of OK votcs) for
update T from controllers Jj, J,...J;n. For example, if A(Ji) is the centralized
locking algorithm, then we request locks (from the single node in M(Jg)) for
items 7 in Bg(T) such that C(z) = Ji. Il A(Ji) is the distributed voting aigorithm,
we obtain values and timestamps for items ¢ in Bs(T) such that C(z) = Ji, and
then sve obtain OK volcs from & majority of the modules in M(Ji). Alter a
controller authorizes an update, in clfect it has "locked” all the items that it
controis refercnced by update T. No other updates can relerence these items until
updatc T complctes. Notice that in the distributed vobing algorithim, the entrics
for T in the pending lists at each module act as locks. No conflicting updates
can receive OK votes at these nodes while T has not been accepted.

The authorization step we have just described can be done sermlly, in parallel,
or by nodcs:

(a) SERIALLY. Ia step 1, we can request authorization from cach control-
ler one at a time. Ii a controller rejects a request, we wait and try later. To
avoid decadlocks, we can order the controllers a priori and we only request up-
dalc authorizations in increasing controller nember. (If the base set is initially
unknown, we might not be able to follow this order. Also, i we optimize the
transaction processing, we might destroy the ordering. In both cascs we can then
have dcadlocks, wiich are briefly discussed in section 2.6.)

(b) INPARALLEL. Messages requesting anthorization can be simultaneously
sent to all m controllers. If a rejection message is received from any controller, we
must try again. With this strategy dcadlocks can arise and we necd a mechanism
for detecting them. (Sec section 2.6.) '

{c)BY NODES. The set M defined by M(A) UM(R)U ...UM {J;) contains
all the nodes that have modules involved in T. The update transaction T can
“visit" each of the nodcs in set M. At cach node, all the authorization required
from that node will be obtained. In this way, each node is only visited once,

235

CH. 11: PARTITIONED DATA AND MULTIFLE CONTROLLERS
reducing the number of messages transmitted. Deadlocks are also possible with
this method.

STEP 2. Obtain data for update T. After having clearcd update T with
controller J; (where 1 < k < m), the values of items ¢ in Bs(T) such that
C(z) = J can be read. Any node of the set S(z) can be selected as a source of
data. In some casecs, the data values can be read before the update is cleared
with controller Jx. For example, if A(Jk) is the distributed voting algorithm, the
item values and their timestamps are read before the first OK vote is received.
However, if more current timestamps arc cncountered in the voting process, the
data read may have to be discarded. Notice that the reading of the item values
can also be done serially, in paralicl, or by nodes. The messages for doing this
can be intcrleaved with the messages to the controllers for step 1.

STEP 3. Compute update and perforin at all nodes. Once all controllers have
been “locked” and the data obtained, the new update valucs can be computed.
The new values for the items in the write set of T (Ws(T)) must be sent to all
nodces that have copics of the items. These “perform update” messages can be
scnt in parallel to improve response times. A “perform update” message must
also include all the sequencing information issucd by all the controllers. Belore
cach itcm value is modificd, this information must be checked. For example, if
for some item 2, C() = Ji, A(Jk) is the MCLA-h algorithin and node « is in 5(2),
then node z will receive the “perform update” message with a sequence number
s and a hole list issued by controller Ji. Node z will not update item 2 until all
previous “perform update” messages with scquence number issued by controller
Jk, less than s, and not in the hole list have been completely processed at node z.
Similarly, il A(Ji) is the distributcd voting algorithm, then when node z updatces
item 7, it also updates the tiincstamp of the item to be the timestamp of update
T issued by controller Jj. '

When asingle node z has database fr agmentsf} and Fy controlled by scparate
controllers J; and- J; respectively, then node z can get a combined “perform
update” message involving items in F} and F5. Node z has several options as to
~ how to handle the update. One option is to split the message into two messages:
one for the items in) and cone for the items in F5. The submessage for I
would contzin all the sequencing information issucd by controller Jj, and the
other submessage would have the J; information. Then node z would process
the messages independently. Thus, the {ragmcnts could be updated at different
times.

Another option is for node z to process the “perform update” message as a
single update message. In this case, node z would first process the Jj information

236

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

and will dclay the update until the portion corresponding to the F fragment is
clecared. Then node z would process the J; information. Only when the complete
update is clcared for both fragments would node z actually update the values of
all the items involved. , .

The first alternative is more efficient but requires somewhat more complex
control in order to split the “perform updatc” messages and process them in-
dependently. The second alternative is simpler for the case where read-only
transactions must be processed because the updates are performed as complete
units at each node. (Sec scction 3.)

STEP 4. Inform controllers Jj, J, .. . Ji, that update T has completed. After
update T has been performed, all controlicrs must be informed so that they can
fcicase their "locks” on the items. This step can be done in conjunction with
step 3. In other words, the “perforim update” messages can also serve as “release
locks" messages. When a controller module is told that update T has completed,
it updatcs its state information (e.g., hole list, lock table, pending list, timestamp
table, state). '

2.6 Dzadlocks.

The update processing algorithm for multiple independent controllers may
cause dcadlocks to occur becausc updates compele for cxclusive access to the
items. Onc way to deal with dcadlocks is to prevent them by a priori ordering
the controllers and by only “locking” the controllers in that particular order.
Unfortunately, this is not possible in many cascs, and a dcadlock detection and
recovery mechanism becomes necessary. (Sce step 1 above). The mechanisms for
deadlock climination are well known and many papers have becn written on the
subject [GRAY77, MENATS]. In this thesis, we will not deal with the deadlock
detection and eliminaticn problem because we consider it to be beyond the scope
of this research.)

2.7 Performance.

In section 2.5 we have described how updates can be processed in a parti-
tioned distributed database system with multiplc controllers. The overall system
performarnce will of course depend on the particular update algorithms chosen for
the controllers. But other factors will probably have a greater influence. These

237

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

factors are Lhe reference patterns of the transactions and how well the data and
control partitions fit these patterns. Therefore, it is very important to partition’
the data and the control in a way that reduces inter-fragment or inter-controller
transactions. In other words, distributed database coupling [GARC78b] must be
reduced by properly distributing the data and its control.

Since the system performance heavily depends on factors which arc external
to the update algorithms, it is hard to obtain performance results for the parti-
tioned data, muliiple controller case. However, when we design each controller in
the system, we can use the performance results we have obtained in this thests.
Thus, we can view each controller and the fragment of data if controls as a fairly
independent subsystem. The operation of cach ol these subsystems is virtually
identical to the operation of the completely duplicated database, one controller
case we have studied. So by optimizing the update algorithm for each subsystem,
we can improve the overall performance. '

3. READ-ONLY TRANSACTIONS WITH PARTITIONED DATA AND
MULTIPLE CONTROLLERS.

Up to this point, we have concentrated on update transactions in the par-
titioned data and control environment. In the following scctions (3.1 and 3.2) we
will discuss read-only transactions or queries and how they can be handled.

3.i Consistent Queries.

In chapter 9, we discovered that when some algorithms (e.g., the centralized
locking and the Ellis type algorithms) were used for updates, consistent queries
could be performed at a single node with local concurrency control. If all the
item valucs referenced by a query arc available at a single node z and all items
arc controlled by the same centralized or Eiiis controller J, then a consistent
query can be performed at node £ with local concurrency control only. If the
distributed voting algorithm is uscd, then the query must be clearcd with a
majority of the modules of the controller J. However, if the query references
itern values at different nodes or items controller by different controllers, then
some synchronization iz needed before the query can obtain a consistent view of
the database. This is true even if the centralized or the Ellis type algorithms are

238

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

used for the controllers. The synchronization is needed in order that the same
set of updates be reflected on all the ilems read. '

The synchronization can of course be provided by the general update algo-
rithm described in section 2.5. But in some cases, the algorithm can bc made more
cflicient. The efficiency gains depend on the update algorithm being employed
by the controllers. Thus, if the distributed voting aigorithm is employed by the
controllers for updates, we do not expect many gains over using the update algo-
rithm for queries. (See chapter 9.) On the other hand, if the MCLA-h algorithm
is uscd by all controllers, then we expect the query algorithms to operate more
efficiently due to the existence of scquence numbers for the updates.

In the rest of section 3.1 we illustrate how an efficient query algorithm can be
designed for the case of a system where all controllers use the MCLA-h algorithm.
This is an important and interesting case because of its simnplicity and because
we expect to take advantage of the available sequence numbers. The sequence
numbers will be used to coordinate consistent queries without the intervention of
the central controllers. Thus, by avoiding the controllers (which are the potential
bottlcnecks) and by obtaining the data dircctly from the nodes that have it;
we expect {o have a more cfficicnt algorithm. Similar query algorithms can be
designed for some of the other controller types (or even mixed types), but these .
will be lelt as an exercise for the reader. In order to clarily the presentation
for the MCLA-h case, we first describe the query algorithin {or the partitioned
data, onc controlier case. Then in section 3.1.3 we generalize the algorithm to
the multiple controller case.

3.1.1 Consislent Querics With Partitioned Data and a Single
MCIL A-h Controller.

In this section, we describc a query processing algorithm for the case of
a partitioned databasc where there is a single MCLA-h controller, residing in
a singlec module at the central node, in charge of updates. The reason why a
query Q canrnot simply read the data it necds (with local concurrency control,
see chapter 9) is that query Q might nced data irom several nodes, and each of
these nodes might have performed a difercnt set of updates. Thus, the basic
idea of the query processing algorithm is to collect all the data from whatcver
nodes have it, and at the same time, make sure that exactly the same updates -
have been reflected on the data collccted. _

We now present the query algorithin. Recall that in the MCL A-h algorithm,
every node z keeps a set of performed updates done-set[z]. (See appendix 1.)

239

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

LEach clement of this sct is the scquence number of an update that has been per-
formed at node z. (This sct can be stored efficiently by combining all continuous
lower sequence numbers into a single entry. In this chapter we will ignore such
simplificasions because they obscure the presentation.)

3.1.2 Query Algorithm Al.

STEP 1. Consistent query Q arrives at node z. Node z analyzes it and
discovers that data must be requested from nodes yy, ¥,... Y. Node z copies
the current done-sct{z] into temporary variable P(z). From that instant on, node
z saves all “perform update” messages reccived at node z that involve items
in Bg(Q) (the base set of Q). (In step 4 below, we sce why these messages are
needed.)

STEP 2. Node z sends out the necessary “request data” messages to nodes
Y1y W2, - - - Ye- A copy of P(z) is appended to all these incssages. When all “request
data” messages arc answered, node z continucs processing at step 4 below.

STEP 3. This step is performed by any node y; receiving a “request data”
message from node z. Node y; waits until all sequence numbers in P(z) (from
message) have been perforined locally (i.c., until P(z) is & subsct of done-set[y;]).
Then node y; copies done-set[y;] into variable P(y;) and initiates the read opera-
tion using local concurrency control. Thus, all updates in P(z) will be reflected
in the data rcad at node y;. (Unfortunately, not only updates in P(z) will be

reflected; updates in the larger set P(y;) will be reflected too. This is why node
y; will send P(y;) to node z.) After the requested valucs are read, node y; sends
the vaiues and a copy of P(y;) back to node z.

STEP 4. When nodc z receives answers to all of its “request data” messages,
it will have all the nccessary data for Q. All updates in P{z) will have been “scen”
by the items rcad. However, some of the data may have scen other updates not in
P(z). Therelore, node z must make sure that ali these extra updates are performed
on all the data. The necded updates are the updates in P(yi) U P(w)U . .. P(wx)
but which are not in P(z). Call this sct of missing updates 8. The updates in &
have cither been saved by node z (in step 1) or have not yet arrived at node z.
All the saved updates in @ arc performed, and as the rest of the “perform update”
messages arrive at node z, the updates arc performed on the data for query Q.
When ali updates in @ have been performed, the data for Q is consistent and can
be given to the user. (End of algorithm Al.)

Notice that if all the data requested by query Q is located at a single node,

240

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

then the Al algorithm simplifies to rcading the data at the node with local
concurrency control.

3.1.3° Consistent Queries With Partitioned Data and a-Muitipie
MCLA-h Controllers.

In this scction, we describe a query processing algorithm for the case of
partitioned database whcere there arc multiple MCLA-h controllers. We assume
that each node in the system performs updates as complete units (i.e., the second
alternative of step 3 in section 2.5). That is, if a read is executed at a node with
local concurrency control, then exactly the same sct of updates will be reflected
by all the itcms read at the node. {A slightly more complex algorithm can be
designed for the case where the fragments involved in an update may be actually
updated within a node at diffcrent times. We will not consider this other query
algorithm here.)

The basic idea for the query algorithm is the same as for algorithm Al: The
same set of updates must be scen by all items read, even if the values read reside
on dilferent nodes. The algorithm for this case is slightly more compiex than
algorithm A1l because (1) there is no unigue sequence number ordering for all
updates, and (2) not all nodes scc all the “perform update” messages. Thus, our
new algorithm, A2, must coordinatc sequence numbers issued by different con-
trollers. In addition, several nodes must participate in collecting recent “perform
updatc” messages for the final synchronization. In algorithm Al, this step was
done by a single node beeause it could catch all the relevant messages.

In the multiple controller case, a node z kecps a collection of performed
update scts instead of a single sct done-set[z]. Let done-set[J;, 2] be the sequence
numbers, issued by controller J;, of the updates that have been performed at
nodc z. We illustrate how these sets are used through an example.

Suppose that node z has the vaives for fragments I'}, Fy, and F3. IYach of
thesc fragments is controlled by controller Jy, J, and J3 respectively. Say node
z receives a “perform update” message for update transaction T, and assume
that update T involves items in [ragments Iy, Iy, and I'3. The “perform update”
message must include three scquence numbers sy, sp, and s3 and three hole list I,
b, and I3, each issued by controllers Jj, J2, and J3 respectively. Before performing
thc updais T, node z checks thet dene-setlf;, z] includes all sequence numbers
less than s; but not in list l;. Similar checks arc done with done-set]J;, z) and
done-sei|Js, z]. Alter the three checks (and three possible delays), s; is added to
done-set]J),), 5 is added to done-set]h,), 83 to done-set(Js, z] and the update T

241

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

is performed. The additions to the donc sets are done as a single atomic operation,
and the update T is performed with local concurrency control.

Now consider what happcens in the above example if node z only has fragment
F stored. The node will receive exactly the same “perform update” message for
T as before. The differcnce is that node only checks that all sequence numbers
less than s; and not in list { arc in donc-sct[J}, z]. After this check, s; is added to
done-set[J, z] and the part of updatc T that involves fragment I is performed aé
node z. Notice that node £ may ignore the sequencing information for fragments -
F5 and F3 in the message because these fragments are not stored at node z.
However, if node z discards this information, a query Q that reads fragment I
at node z and fragment Iy at some other node y, will have no way of knowing
that if Q sees T at node z, it must also sec update T at node y. In other words,
in order that Q reads consistent data, all nodes where Q reads must have either
all performed update T or none should have performed T. Thercfore, we need a
- special mechanism at node « so that this node can respond to query Q as follows:
*OK, here is the data in F] you requested, but if you are also reading data from
fragments Fy or I3, make surc that you sce the update with sequence numbers
sy (for controller J;) and s3 (for controlicr J3) performed on these fragments.”

Onc simple way todo thisis to have node z (and all nodes) have a done-sct|J;, z]
for all controllers J; where 1 < 7 < m. When node z starts performing update
T, it would add sequence numbers s; and s3 to done-set[J, z] and done-set|J3, z]
respectively, even though node z was not performing an update on data controlled
by J2 and J3. Then node z could give the response for query @ described above.
(Of course, this mechanism may be omitted if querics follow the query algorithm
and lock all controllers involved in the query. But this is what we want to avoid
by having a special simplified query algorithm.)

Before we describe the query algorithm for partitioned data and mulliple
MCLA-b controllers, let us summarize how the “perform update” message for
an update T is processed at nodc z. Suppose that the update references data
controlied by controliers Jj, Jy,...Jz. Then the “perform update” message for
update T wiil have k sequence nuinbers 53 (of J), & (of J), up to & (of Ji). The -
message also contains & hole lists. Supposc that node z has data controlled by Jj,
Joy ... i, where | < k. Then node z will check sy, s2,...5 (and the corresponding
hole Iists) against done-set|J},z], done-set[fy,z],... done-set[},z] in the usual
way. Once all checks are passed, the sequence numbers sy, 8y, . . . 5; are added to
done-set|J, z], done-set[Jz, 7}, ... done-sct[Ji, z] (as one atomic operation) and T
is performed with local concurrency control.

242

CH. 11: PARTITIONED D.ATA AND MULTIPLE CONTROLLERS

3.1.4 Decscription of Query Algorithm A2.

The query aigorithm works in two phases. In the first phase, query Q visits
the necessary nodes rcading data. Then a sccond phase may be necessary where
Q returns to cach node to process some missing updates. Suppose that query Q
must rcad data from fragment F' located at nodc y. Also assume that fragment
F is controlled by controller J. Belore visiting node y, query Q visits other nodes
where it finds out that certain updates involving I must be seen if Q is to sce a
consistent view of the databasc. Thus, as Q visits nodes to rcad data, it collects
a set of sequence numbers corresponding to updates that must be seer by F.
This set, which we will caii P{J), is simply the union of the done-sct]J, 2] for all
nodcs z visited before node y. When query Q finally arrives at node y (in the
first phase), it contains a set P(J) of updates that must be scen by #. Therefore,
beflore reading fragment ' at node y, query @ must wait unbil all the updates
described by P(J) are performed. Once this is done, node y reads the item valucs

in fragment F* that arc requested by query Q. (Noblcc that @ may see other
" additional updates for I that were not required by P{J).)

After having read fragment F¥ at nodc y, query Q continucs its visit to other
nodes and it may find that there are other updates that must have also been
scen by I for consistency. That is, done-set[J,z] at some new node £ may be
larger than the sct that was actually scen at node y. To fix this problem, Q
will have to visit node y once more (in the sccond phasc) in order to obtain the
updatcs missed on the first visit when the data was read. However, to sce the
missing updalcs, Q cannot rercad the data in F at y because this may still add
more updates to the sct of needed updates of other fragments. The solution is to
have nodc y temporarily save all “perform update” messages (that involve items
referenced by Q) between the time Q is first seen and the time when Q returns
for the sccond phase visit. This way, any updates missed by Q on the first visit,
will cither be saved or are stiil to arrive at node y. Only the missing updates and
no other updates will be perforined on the data that was previously read by Q
at node y. By following this protocol, we guarantce that all fragments will see
exactly the same sct of updates. -

We will now present the algorithm in a more detailed way, but with fewer
comments. '

3.1.5 Query Algorithm A2.

STEP 1. Consistent query Q arrives at node z. Node z analyzes it and

243

CH. 11: PARTITIONED DATA AND MULTIPLE CCNTROLLERS

discovers that the data must be requested from nodes y1, ¥,...yn 2nd that
controllers Ji, Jo,...J; are in charge of all the itemns referenced by Q. (Node
z itself may bc one of the nodes y; where data wili be read.j Siaic variabics
P(3,), P(R), ... P(Ji) arc carricd by Q as it visiis the nodes. Variable P(J;) will
represent the updates that must be scen by the items controlled by J;. Initially,
P(J;) is sct to the empty set, for 1 < 7 < k. Step 2 below describes the first
phase processing that must be performed by the nodes Yy, ;.. . Yn, While step
3 describes the second phase processing required when the nodes are visited for
a second time. Thus, we start sicp 2 at node y;.

STEP 2. Phase One. We are visiting the nodes yy, ¥,... Yn in order. Say
we are currently at node y;. Assume that at this node we will read data from
fragments i, Iy, ... F1. The controller for each fragment F, is C(Fy), and of course
C(F;) isone of J}, Jz, ... Ji for 1 < z <1 < k. For cach fragment I, we perform
the following four substeps:
2A) Wait until F, secs all updates in P(C(F2)). That is, query Q waits until

P(C{F,)) is a subset of done-set[C(Fy), vi). :
2B) We arc ready to read data in F. Save a copy of done-set|C(F7) ui] in
save-set[C(I:), vi, Q). At the same time, slart collecting all “perform update”

messages that arc processed at y; in save-message{C (), vi, Q)
2C) Update "P” variables. For all j such that 1 < j < & do “P(J;) :=

P(J;) done-set]Jj, yi]".
2D) Recad data in fragment F; that is requested by query Q.

Notice that steps 2B and 2C arc performed as ar atomic operation. The
read in step 2D is exccuted with local concurrency control so that only updates
that were registered in step 2C arc sccn by Q. After phase one processing (i.c.,
step 2) is completed at node yy,, the sccond phasc is started at yy.

STEP 3. Phase Two. At the completion of phase one, P(J;) represents the
updates that must and will be seen by the items controlled by controller J; (for
1 < j < k). The updates in P(J;) will not change in the sccond phasc. In the
sccond phase, we visit nodes yy, ¥,... ¥ (in any order) to perform any missed
updates. Say we are at node y;. Assume that at this node we read data from
fragments I, Fy,...F} in phase one. Let C(F%) be the conbroller of fragment F.
For each iragment F; (1 <z <), we periorm the following iwo substeps:
3A) The sequence numbers in P(C([3)) but not in save-set[C{Fy), yi, Q] are the

scquence numbers { issucd by C(I;)) of the updates that arc missing for frag-

ment F. These updates are either in save-message[C(F7), 5, Q) or have not

arrived at node y;. The missing updates that are in save-message[C{I%), vi, Q)

are immediatcly performed on the data read by Q and no more messages

244

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

are collected in save-message[C(F7%), y,,Q]
3B) Query Q waits until the rest of the missing updates arrive. As they arrive,
they arc performed on the data that was originaliy read by Q.
STEP 4. After the second phasc completes at all nodes, query Q can report
the values obtained to the user. (End of algorithim A2.)

3.1.6 Pcrformance of the Consistent Query Algorithms (Al and A2).

. At first sight, algorithms Al and AZ may scem somewhat complex, so it
is natural to ask the question “Is it not betier to use the update algorithm of
section 2.5 (which locks controllers) for queries instcad of either query algorithm
Al'or A2?" The answer to this question is not simple because in some cases it
might indeed be better to use the update algorithm.

The advantages of the query algorithms (Al and A2) over the update al-
gorithm uvsed for qucries are that (1) There is no need to visit (i.e., send any
messages to) any controllers, and (2) There is no need to lock the controllers
for the duration of the querics (and thus slow updates down). The- potential
disadvantages of the query algorithms arc that (1) Nodes where data is read must
be visited twice (This is only true in algorithm A2.) (2) There may be dclays as
we wait for “perform update” messages to arrive, and (3) There is a need for an
additional protocol (i.e., the query algorithm itself) that will make the system
mare complex.

Clearly, if the system is processing many transactions and the central con-
trollers are hcavily loaded, it would be best to avoid the controllers. If the
controllers do not have heavy loads, then the query algorithms may not be so
attractive. For example, consider the casc where node z has the central controller
modules for 10 fragments Fy, Fy,...JF. Each of these fragments is located in
nodes yi, ¥2,...Yi0- To process a query Q that refercnces all 10 fragments, we
could use the update algorithm. This would involve requesting locks (one message
- to node z), sending read requests to nodes 1, *., ... Y10 (10 messages in parallel),
collecting the data (10 more messages), and releasing the locks { 1 message to
node z). If instcad we usc algorithm A2, we would visit nodes yy, yo,... Y10
twice (20 messages) which would take longer because these visits must be done
serially. (Seme paraliclism is possible in the sccond phase, but this feature was
not inciuded in algorithm A2.)

However, there are many cascs where the query algorithms perform better,
even if the controllers are not heavily loaded. For example, if the controllers of
the previous example are located in 10 different nodes zy, #z,...730 and if we

245

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

usc the update algorithim for query Q, then we would first need to visit 10 nodes.
requesting locks, and alter the reads, we would have to release the locks at all
these nodcs. It is not clear what strategy will give the lowest response time for Q
in this case, but the number of messages and service requests at nodcs is clearly
larger if we use the update algorithm. Also notice that as the number of nodes

whcere data must be read gocs down, the A2 algorithm becomes morc attractive.

For cxample, if Q reads data from two nodes, y; and yp, query Q will visit node

y2 only once and node y; twice. The number of message transmissions needed is -

only four {counting thc messages to siart the processing and the message wzth
the results for the user.) _

Finally notice that disadvantage “2" (given at the beginning of this subsce-
tion) of the Al and.A2 query algorithms is not a serious problem. The delays
waiting for “perform updaile” mcssages should not be significantly greater than
the delays waiting for locks in the update algorithm.

3.2 Current Queries.

Processing currcnt queries in the partitioned data multiple controlicr case
is simple because no coordination belween the different controllers (and their
fragments) is nceded. If a query makes sure that the data it rcads irom each
fragment is current, then the collection of all the data obtained will also be
current. Thercfore, a current query can use the current query algorithms of the
one controller case independently for each [ragment and then simply combine
the results. obtained. (Sec chapter 9.)

4 THE OTHER ASSUMPTIONS.

In the second part of this thesis (chapters 7 through 11) we have considered
the effects of the four major assumptions that were made for the performance
analysis of chapter 4. In chapter 7 we studicd failures; in chapter 9 we looked
at read-oniy transactions; in chapter 10 we discussed transactions that do not
specify their base set initially; and finally in this chapter we have studied par-
titioned datz with multiple controlicrs. However, we have not yet studied a
distributed databasc system where all four assumptions are eliminated at once.
For example, in this chapier we have assumed that no failures occur and that

246

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

transactions specify their base set initially. And in chapter 7 we studied failures
in the completely replicated data case.

-In this section we will attempt to convince the reader that the ideas we have
prescnted so far can be extended to a general system with nonce of the restrictions
we have mentioned. Such a general system is quite complex. Demonstrating in
detail how our algorithms can be combincd and extended to the general case, and
analyzing the performance of such a gencral system is a very hard task. Here we
will not do this; we will only outline some of the principal ideas. Much research
is still required in this arca. :

We will organize section 4 as [ollows. In subsection 4.1 we discuss how
transactions (including queries) that do not specily their base set initially can be
processed in the partitioncd data, one controller case. In subsection 4.2 we study
transactions {including queries) that do not specifly their base set beforehand in
a partitioned data, multiple controller environment. Then, in subscction 4.3, we
discuss how the partitioned data, multiple controller algorithms for éransactions
(including qucrics and transactions that do not specify their base set initially)
can be made resilient.

4.1 Transactions With Initially Unknown Base Sets in the Partitioned Data,
One Controller Case.

As long as there is a single controller, the fact that the data may be parti-
tionrd an- iransactions do not specily their base set initially docs not introduce
any new problems. -

In the algorithms where locks are used (i.c., MCLA-h and Ellis type) we still
have the same three alternatives for processing transactions that do not specify
their basc set. (Scc chapter 10.) The only difference is that the “read without
locks” strategy may not be as atiractive now becausc the vuinerable read without
locks period may be longer. in other words, if data has to be read at several nodes,
this will take a longer time and the valucs read will be vulnerable to conflicts with
other updates over this longer period. This increases the probability of rejection
and hurts the performance of this strategy.

When the distributed voting algorithm is uscd, transactions that do nct
specify their base set at their inception can still be performed with partitioned
data as described in scction 1.2.2. .

Queries that do not specify their base sct initially can be processed as usual
in the pariitioned dala one controller environment, For example, algorithm Al

247

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

(scction 3.1.2) can be used when the controller is a MCLA-h one. The fact that
the nodes where the query will read (i.e., yi, %2, . .. Yo in Al) are initially unknown
does not alfect this algorithm.

4.2 Transactions With Initially Unknown Base Seis in the Partitioned Data,
Multiple Controller Case, '

The update zlgorithm for the multiple controller case (scction 2.5) can be
used with a few minor modifications when transactions do not specify their base
sets initially. The main difference is that we will be unable to “lock” ali controllers
in parallel and that deadlocks cannot be avoided by ordering the controllers.

In this environment, an update transaction T proceeds as follows. Update T
first decides that it wants to rcad some items in fragment F; which is controlled
by controller J;. If J; works with locks (c.g., A{(J;) = MCLA-h) and update T
knows becforchand what items in F; it nceds, then T can request the locks and
then read. If J; uses locks but J; docs not know initially all the items it wants to
read, then T uses any of the stratcgies discussed in chapter 10 {e.g., read without
locks). II controller J; docs not use a locking algorithm, then update T simply
reads the itecms and then obtains authorization from controller J;.

Aflter having read the data in Iragment Fy, update T decides what other
fragment it wishes to read. The process is then repeated in exactly the samne
fashion. (The lock or authorization form controller J; is not released until the end
of the transaction.) Notice that alter having read itcms in Fy, update T mnight
decide to read some more items in the same fragment, Thus, T might “visit”
controller J; more than once. This should not represent any serious problem, as
long as T does not request the same items twice or as long as controllers can
identifly such occurrences.

After having rcad all the data it nceds, update T can perform the update
and inform all controllers involved of its completion in the usual fashion. As
was mcntioned earlier, there is a danger of deadlocks and a special mechanism
is needed to detect them and recover [rom them.

The query algorithms for the multiple controller case need some minor
modifications to deal with unpredictable reads. Qucries in this environment must
now carry with them enough synchronization information to cover a read of any
data. For example, in algorithm A2 (scction 3.1.5), we will necd a P(J;) variabl
in each query for all possible controllers J;, even though some of these controllers
will not be involved in the query at all. Other than this, algorithm A2 remains

248

. CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

unchanged.

4.3 Crash Recovery.

In chapter 7 we presented some techniques for making the update algorithmé
resitient. We believe that the same techniques (e.g., logs, two phase commit
protocol) can be exiended to the morc general case we are considering here.

Handling read-only transactions {querics) in a failure environment is rela-
tively simple because these transactions cannot in any way alter the database.
One simple way to process querics is to restart them from scratch whenever a
failure is dctected. Notice that querics can be mtcrruptcd and aborted at any
point, so there is no problem with leaving a query unfinished.

The fact that some transactions do not specily their base set initially does
not affect the recovery protocols. Even if transactions read data without locks or
request locks as they need them, they can still use a two pitase commit protocol
to actually perform the updates and the transaction can still be cancelled before
updatcs are committed.

Data partitioning with a single controller should not mtroduce any ncw
problems because the one controller can be made resilient cxactly as in the simple
case we have alrcady considered in chapter 7. When we have multiple controllers,
each onc must be made resilient. Of course, some coordination between control-
lers is be required in the facc of a failure, but the same basic techniques that we
have discusscd can be applied to each controller. For example, a MCLA-h con-
troller in a multiple controller system can still attempt to reclaim its locks after
a transaction has failed to rclease them. Similarly, when the MCL A-h controller
fails, a majority of the nodcs that have data fragments that were controlled by
the crashed controlicr can elect a new controller. This new controller can collect
all state information available at the nodes that elected it and can finish or canccl
all transactions that were authorized by the old confrolier.

To illustrate what wec mean, we will now bricfly show how the two phase
commit protocol for the MCLA-h algorithm (scction 4.1 of chapter 7) and the
canceliing protocol for the same algorithm (scction 4.2 of chapter 7) can be
modified for the partitioncd data, multiple controller casc. In order to avoid the
serious problems that arisc when a network is partitioned, we will require that
a majority of nodes in S(F) be active and able to communicate with each other
before any transactions involving F' ate proccssed.

249

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

4.3.1 The Two Phase Commit Protocol for the Partitioned Data Muitipie
MCLA-h Controller Case.

The two phase comnmit protocol for update transactions in the partitioned
data, multiple MCLA-h controller case is very similar to the protocol that was
used in the complete replication environment. The main difference is that the
node that is coordinating the update transaction (called the master node) waits for
" acknowlcdgments to the “intend {o perform” messages from a majority of nodes
in cach S(F) set, for each [ragment I referenced by the transaction. After thesc
acknowledgments arrive, the master node can scnd out the “commit” messages.

We now give an example to show how this works. Suppose that an item 2
is duplicated at nodcs z; and m, whilc item 7 is replicated at nodes 22, 3 and
z4. That is, S(?) = {a1,22} and S(j) = {z2,23,z+}. Suppose that thc MCLA-.
h controller for item i, C(Z), is at node z; and that the MCLA-h controller for
item 7, C(j], is located at node z4. A transaction T wishes to read item 7 and
then update item j. As was discussed in scction 2, T must visit controllers C(z}
(at node z3) and C(j) (at node z4) and request locks for those items. At C{3)
and at C(j), transaction T obtains pairs of scquence, version numbers. These
numbers arc appended to the messages gencrated by T. After obtaining locks at
both controllers, T has exclusive access to the two items and can proceed.

Once T has computed the new valuc for item j, the system performs the up-
date and relcases the locks using the two phase commit protocol. In this protocol,
the master (which can be any node) scnds oul “intend to perform” messages
informing all nodes involved in T (i.c., 21, o2, 73, 24) that T has completed. The
master only has lo wait for a majority of acknowledgments from cach S(7) sct
involved. For exampie, if the master gets acknowledgments from nodes 71, 3 and
z3, then it can send out the “commit” messages because a majority of nodcs in
cach sct S{¢), S(j) have responded. The time when the required acknowledgments
arc received by the master node is calicd the commit point. When a node receives
a “commit” message, it updates itcm j if it has a copy of the item. If the node has
a coniroller invelved in T, then the commit message also causcs the locks to be
released. Notice that no acknowledgment is necessary for the commit message.

Due to Iailures, some nodes that participated in T may not find out about

T's compiciion (e.g., node z4). Thesc nodes will eventually discover that they

missed this information because the scquence number mechanism. (Sece chapter

7.) When a node discovers this, it obtains the missing information from other

nodes. If the information cannot be found, the node attempts to cancel T. (Sce
section 4.3.2.)

250

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

The two phasc commit protocol guarantees that cither no values are stored
at all or that all values produced by T are eventually stored at all nodes involved.
When a node in S(I") acknowledges receipt of the “intend to perform” message for
T, it makes a commitment to remember T (and the values it produced) and to do
everything in its power to sec that T completes correctly. The node remembers
T by placing the information in the prepare message in a “prepare” list. We
assume that the information in this list cannot be lost. (Log entries can be made
to make the prepare list safe. Sce chapter 7.)

When the master node for T receives a majority of acknowledgments from
the nodes in S(F), it knows that the update to F cannot be Jost. In the case of
failures, we know that at lcast one member of any working majority of nodes in
S(F) will have a record of T and will “speak up” for T. Thus, aftcr receiving a
majority of acknowlecdgments from the nodes in each S set involved in T, the
master node can scnd out the commit messages. When a node in S(F) receives
a “commit” message, it adds T's scquence end version numbers to its list of
performed transactions (which is kept by all nodes); it writes out a log entry;
it performs the update on I indicated by T; and finally it removes T from the
prepare list.

Due to [ailures, a transaction may be unable to get the majority of acknowl-
edgments needed for committing. In such a casec, the transaction “times out”
and the system attempts to cancel the transaction. This cancelling protocol is
described in the next scction.

4.3.2 The Cancclling Protocol for the Partitioned Data Multiple MCLA-h
Controller Casc. ‘

A transacsion will only be cancelled if no data has been committed by the
transaction. Thus, the first slep in the cancelling protocol is to verily that the
{ransaction had not reached the commit point. Notice that if a transaction T
has rcached the commit point, then a majority of nodes in each S(F) sct, for
cach fragment F referenced, have a record of T. Hence, if a single fragment F°
can be found where a majority of nodes in S{F) have no record of T, then T can
be canceiied. ' :

To cancel a transaction T we procced as [ollows. First, a node w is sclected
to be the master node for the cancellation. Any node can be the master, and
- several such nodes may be attempting to cancel T concurrently. We assume that
node w knows that T referenced fragments Fy, Fy, .. . Fk. (The protocol can easily
be modified to handie the case where only one fragment is known initially.) Node

251

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

w sends out messages to controllers C(Fy), C(F2),...C(F%) asking them if they
can canccel T. Each controller responds either that T can be cancelled or that it
does not know if T can be cancelled. Controllers do not take any action on T at
this point. However, if a controller says that T can be cancelled, it makes sure
that T can not reach the commit point in the future.

When node w reccives answers from all controllers, it decides if T will be
cancelled. If at lcast one controller said that T could be cancelled, then T has not
comimitted and is cancelled. I all controllers say that they do not know if T can
be cancelled, then T may have committcd and node w attempts to complete T.
(Notice that in this case all controllers found a record of T. Thus, all the updatc
values produced by T are known and T can be completed.) The decision of node
w is broadcast to all controllers, which then carry out the decision.

When a controller C(F) wishes to know if T can be cancelied (in response
to node w's first message), C(F) scnds out “proposc to cancel T” messages to -
all nodes in S(F). When a node y in S(F") reccives the “propose to cancel T"
message, it checks to see i it has a record for T. That is, node y checks if it has
previously received an “intend to perform” or a “commit” message for T. If y
has such a record, it informs the controller. If y has no record of T, then it scnds
a “have scen proposal to cancel T" message to C{FF). With that message, node
y makes a commitment not to acknowledge any “intend to perform” messagces
for T it might receive later. Thus, nodc y remembers the “propose to cancel T”
message until it hears from the controller again. (We assume that node y cannot
forget its commitment.) '

It C(F) receives a majority of “have seen proposal to cancel T” messages,
then C(F") knows that T has not committed and that T will not commit in the
future. Thus, C(F") can answer node w that T can be cancelled. Gn the other
hand, if C(F) discovered a record of T among the nodes in S{f), then it must
answer that it does not know if T can be cancelled because as far as it knows,
T could have committed. In this case, T's record (including its update values) is
scnd to w.

When controller C(F’) receives a command from node w to actually cancel
T, it docs this using & two phase commit protocol similar to the one used by
transaciions to commit. This guarantees either that T is cancelled at all nodes
in S(F) (as far as F is concerned) or that T is not cancelled at all. A node in S(I7)
finally cancels T by recording a null or dummy update. (Scc chapier 7.) That
is, T is processed as if T has committed, except that no valucs arc stored in the
database. Similarly, a command from w to complcte T because it could not be
cancelled causes C(F) to distribute the update values for T to nodes in S{F) and

252

CH. 11: PARTITIONED DATA AND MULTIPLE CONTROLLERS

to commit them using a two phase commit protocol.

This concludes chapter 11. As we have indicated, some of the ideas presented
in this chapter require additional rescarch. In the next (and last) chapter, we
will identily these areas for further research.

253

CHAPTER 12

CONCLUSIONS

In this thesis we have studied the performance of update algorithms jor
replicated datz in a distributed database. We started by presenting a sct of
update algorithms for replicated data. Then we analyzed the performance of
thesc algorithms using a simple performance model, In the second part of the
thesis, we looked at the assumptions that were made in the performance analysis.
We studied how these assumptions could be eliminated and how this affected the
performance of the update algorithms,

At the end of a thesis like this one, we would like to be able io conclude
that a certain algorithm was the "best” among the ones that we studied. And
it would be even better to conclude that one of the new update algorithms we
presented here (e.g., the MCLA aigorithm) was the "best”. Unfortunately, we
arc unable to do so. Choosing a “best” algorithm would be like selecting the best
programming language or the best data model. With so many factors and issucs
to be considered, it is simply not possible to choose an absolute best. However,
from a certain point of view, or for a particular task, one algorithm might indeed
be superior to another algorithm. In this thesis, we have limited ourselves to
such rclative and limited comparisons.

The most general conclusion we can reach is that the centralized control
algorithms can be an attractive alternative to the distributed control algorithms
in many cases of intercst. In most of the cases that we studied, the MCLA
algorithm perlormed better than the other algorithms, but we must keep in mind
that these results were obtained with a very simplc performance model. Even
though the model was simple, we tried to be realistic, and hence we believe that
in a real disiributed database system, the centralized control algorithms will siill
perform weil.

The most important result of this thesis is not the conclusion of the pre-
vious paragraph. We believe that a more important contribution is that we
have analyzed and shed some light on some of the issues involved in designing
update algorithms for distributed databases. We have pinpointed the principal

254

CH. 12: CONCLUSIONS

performance paramcters of distributed databascs; we have presented an analysis
technique for studying the update algorithms; we have identificd some of the
potential bottlenecks in the algorithms and we have shown ways to decrease their
impact (c.g., hole lists). We have studicd the problems of crash recovery and
how they affect performance; we have analyzed read only transactions and we
have outlined how consistent and current queries can be processed cfficicntly;
we have studied partitioned distributed databascs and the available options ior
transaction processing in this environment; we have introduced the concept of
multiple controllers for a partitioned distributed database in order to improve
performance; and we have analyzed the dillcrent strategics lor processing trans-
actions that do not specify their base set initially.

To end this thesis, we will bricfly indicate some of the problems that we
believe require additional research. In doing so, we will mention some of the -
shortcomings of the work we have presented here.

(a) The periormance model presented in chapter 4 is very simple. We belicve
that it is possible to improve the model to reflect some additional fcatures of
distributed databases. For example, instcad of assuming constant transmission
times, we could model the communications network more accurately. (The model
‘we choose for the communications network depends on the network architecture
we select.) By doing this, we will be able to study some of the communication
problems that were not addressed in this thesis. I'or example, we could assess
whether the communication facility at a central node becomes a scrious bot-
tleneck. When improving the performance model, we must keep in mind that
increasing the complexity of the model had its drawbacks. For example, as the
number of paramcters in the model grows, it becomes harder to comprehend the
relationship among all the variables. Also, having a complex inodel might make
the analysis of the algorithras cxtremely bard and possibly make the simulations
the only reasonable tool for studying the algorithms.

(b) In this thesis we concentrated on improving the centralized control algo-
rithins, somewhat neglecting the distributed voting algorithm. That is, it might
be possible to design new distribuied voting algorithms that are more efficient
than the DVA algorithm we studicd here. For example, a distributed voting
algorithm that broadcasts vote requests in parallel to all nodes might be more
efficient than the one where votes are requested one at a time. Also, it might be
possible to modily the DVA algorithm so that consistent queries can be executed
at a single node. {Sce end of section 3.2 in chapter 9.) Additional research is
rcquired in this area.

255

CH. 12: CONCLUSIONS

(c) Another area that nceds a great amount of research is the arca of crash
rccovery. The crash recovery algorithms presented in chapters 7 and 11 have
to be specified more formally. Eventually, the correctness of the algorithms will
bave to be proved, but this is a hard task. In the near future, it might only be
possible to do a detailed case analysis to show that all the single failure conditions
possible have been considered in the crash resistant algorithms. In chapters 7
and 11 we only concentrated on the crash recovery techniques for the MCLA

algorithm. It is also nccessary to study crash rccovery in the other update al- .

gorithms. The tcchniques presented in this thesis will probably be useful for
the other algorithms, but some specific tcchniques will be applicable for each
particular algorithm. Once we have made several update algorithms resilient,
it would be very interesting to perform a dctailed and complcte performance
comparison of the resilient algorithms.

(d) In this thesis we discovered that knowledge of the intended system ap-
plication is nceded in order to study the performance of a general distributed
database system like the onc of chapter 11. This knowledge is also needed to
study update algorithms that take advantage of restricted transaction types.
(Scc chapter 8.) Thus, another interesting research’ problem is to choose some
representative distributed database applications and to study the performance of
the gencral update algorithms {or the restricted transaction type algorithms) in
these environments. Then, onc could try to characterize the applications through
a small set of paramcters, in order lo understand what algorithms perform better
in what classcs of applications.

{¢) In this thesis, we avoided many interesting rescarch issues in the arca of
distributed databascs. Many of these were mentioned in chapter 1. Out of these,
the oncs that seem to be closely related to the update algorithms are distributed
directory management, deadlock detection and elimination, optimal transaction
processing, and creation and elimination of data items. Research in any one of
these arcas would be very valuable.

256

APPENDIX 1.

This appendix gives a detailed description of the MCLA-h
algorithm. We describe the algorithm as a set of procedures written
in a very informal Ailgol-like language. In this language, comments are
preceded by "<<" and terminated by ">>". The objective of this
appendix is to present the algorithm in a clear and simple fashion.
Therefore, we will not include many modifications that can make the
algorithm more efficient. These modifications are left to the reader
as an exercise.

First we define the data structures used by the algorithm:

h = the limit of the hole list copies (an integer constant).
¢ = the node number of central node (an integer constant).
number-of-nodes = the number of nodes in the network (an integer).

At the central node, c:

Central-sequence-number = an integer; equal to the current sequence
number.

Central-hole-set = the hole 1ist at the central node. In this appendix,
we call the hole 1list a "set" because it is implemented as a set.
Operations on sets are described below. The elements of the
central-hole~-set are the sequence numbers of the holes.

Deferred-set = a set of the deferred updates at the central node due to
iarge hole lists. Each element of this set is an update.

Locked(i) = boolean; true if item "i" is locked. There is a locked(i)
for each item "i" in the database. :

Lock-queue(i) = a quecue of updates that are waiting for update "i" to
become free. Operations on queues are described below. There is
a queue for each item in the database.

At each node, n, in the system:
Done-set{n) = the set of all the updates that have been performed
at this node. Each element in this set is the sequence number
of a completed update.
Waiting-set(n) = the set of the updates that have been deferred at this
node because an updale with a lower scquence number is missing.
Each eiement of this set is an update.

Each update A has the following fields:

Base-1ist(A) = a pointer to the list of items referenced by update A.
Each element of this list is described below. HNotice that the
base-1ist(A) is what we have called the base set of A. However,
in this appendix we call the base set a 1ist because it is
implenented as a list. The elements of base-1ist{A) are ordered
by increasing item number in order to prevent deadiocks.

Remaining-1list(A) = a pointer to the 1ist of items that must still be
locked by update A. This field is initially undefined.

Update-values{A) = the new values for the items being updated by A.
These values can be stored ia any convenient way.

Request-node(A) = the node number of the node where A originated.

Sequence-number(A) = the sequence number of update A.

Hole-set{A) = the copy of the hole 1ist that is used by A. Each
eiement in this set is a sequence number.

Each eiemant, P, in the Tist of items mentioned above contains:
Item(P) = tne item referenced.
Link(P) = pointer to the next element of the list., If Tink(P) is null,
then there are no more elements.

257

The following functions are defined for any (FIFO) queue Q:
Add{ X, Q) : adds element X to the end of queue Q. This function does
not return a value.
Remove(Q)} : returns the element at the head of queue Q. The element
is deleted from the qucue.
Is-empty{ Q) : returns true if § is empty.

The following functions are defined for any set S:
Size(S) : returns the number of elements in set S.
Insert(X, S) : adds element X to set S. No value is returned.
Delete(X, S) : removes element X from set S. If X is not in S,
the function does nothing. No value is returned in any case.

Finally, the set operators "is-subset-of", "element-of", and
"union" are defined in the obvious way.

We now give the procedures that describe the algorithm. Each
procedure is called with two parameters: the update the procedure is
going to work with and the node where the nrocedure is going to be
executed. .

Procedure Arrival-of-update(update A; node n };
begin << Update A has just arrived at node n from a user. This
procedure will initialize A and will request A's locks from
the central node, ¢. >
request-node(A):= n; remaining-1ist{A):= base-1ist(A);
request-locks{ A, ¢ }; :
end arrival-of-update;

Procedure Request-locks{ update A; node ¢ };
begin << This procedure should only be executed at the central node c.
This procedure will attempt to lock all of the remaining
unlocked items in A. >
ptr:= remaining-list(A);
<{ ptr is a local variable which points to the list of items to be
locked. >
while { ptr not null) do
begin << Attempt to lock item item{ptr). >>
it:= item{ptr); << save in local variable. >»>
if not locked(it) then
locked{it):= true << item was free so lock it >>
else
begin << could not lock so we must wait >>
remaining-1ist(A):= ptr; << Save our position for later. >>
add(A, lock-queuc(it) j;
exit this procedure;
end;
ptr:s iink{ ptr);
end; << end of while loop >>
<< We havz now obtained all lock Tor A's items. >
centrai-ssquence-number:= central-sequence-number + 1;
sequancs-number(A):= central-sequence-nunber;
hole-32%{ &):= central-hole-set; << Copy the hele set. >>
insert! secuence-number(A), ceatral-hole-set);
if sizs{ hole-set(A))} > h then
insart{ A, deferred-set } << hole set too big; defer A >>
else grant{ A, request-node(A) });
end reguest-locks;

258

Procedure Grant(update A; node n);
begin << The locks for update A have becen granted by the central
node. This procedure will initiate the update itself. >>
if {1,2,3,..., scquence-number(A) - 1 } is-subset-of
[done-set{n) union hole-set{A)] then
begin << can proceced with A >
compute actual update values, store them in update-values(A) and
update the Jocal copy of the database;
insert(sequence-number(A), donc-set(n)); -
check-waiting-updates(n);
for i:= 1 step 1 until number-of-nodes do
if (i not n) then perform-update{ A, i);
end
else
insert{ A, waiting-set(n)) << must wait for other updates >>;
end grant; ’ :

Procedure Perform-update{ update A; node n);
begin << This procedurc will perform update A locally. >
if n = ¢ then central-update{ A, c)
else
begin << this is a non-centiral node >>
if {1,2,3,..., sequence-number(A) - 1 } is-subset-of
[done-set(n) union hole-set(A)] then
begin << can perform A »
update local database as indicated by update-values(A);
insert(sequence-number(A), done-set{n) };
check-waiting-updates{ n };
. end
else
insert(A, waiting-scet(n)) << must wait for other updates >>;
end;
end perform-update;

259

Procedure Central-update(update A; node ¢);
begin << This procecdure should on]y be eyecuted at the central node c.
This procedure will perform update A at the central node
and will release A's locks. >>
update local database as indicated by update-values{ A);

<< Next, we deiete hole A from hole list. >>
delete(sequence-number(A), ceatral-hole-set);
for B elcment~of deferred-set do
begin << check if hole 1ist of update B is now smaller than h >>
delete(sequence-number(A), hole-set(B));
if sjze(hole-set(B)) <= h then
begin << hole-set(B) has less than or equal to h elements >>
delete{ B, deferred-set);
grant{ B, request-node(B));
end;
end;

<< Now release A's locks. »>
ptr:= base-1ist{ A);
while (ptr not null) do
begin << release lock of item item{ptr) >>
it:= item{ptr); tocked(it):= false;
if not is-empty(lock-queue(it)) then
begin << release a waiting update >>
B:= remove(lock-queue(it));
<< Now B can continue its locking prccess. »>
Tocked(it):= trub,
remaining-list{ B Y:= link({ remaining-1ist(B) });
request-locks(B,)
end;
ptri= Yink{ ptr);
end;
end central-update;

Procedure Check-waiting-updates{ node n);
begin << An update has Jjust been performed at non-centra] node n.
This procedure checks if any other updates were waiting for
the completion of the update. >> .
for B element-of waiting-set{ n) do
begin
if {1,2,3,..., sequence-number(B) -~ 1 } is-subset-of
[done-set{ n) union hole-set{ B }] then
perform-update{ B, n };
end;
end check-waiting-updates;

<< End of MCLA-h algorithm and end of Appendix 1. >>

260

APPENDIX 2.

This Appendix gives a detailed description of the modified Ellis
ring algorithm (MEAP). We describe the algorithm as a set of procedures
written in a very informal Algol-like language. In this language,
comments are preceded by "<<(" and terminated by ">>".

First we define the data structures that are used by the procedures:

For each update A we define the following fields:

Base-set{A) = A pointer to the list of items referenced by update A.
This list is described below. The elements of Base-set{A)
are ordered by increasing item number in order to
prevent deadlocks.

Remaining-set{A} = A pointer to the list of items that must still be
Tocked by update A. Initially is undefined.

Request-node(A) = The node number of the node where A originated.

Forward-item(A) = If update A holds forward locks on an item, then
forward-item(A) is the item number of that item. Notice that at
most A can hold the locks of one forward item. If forward-item(A)
is undefined, then A has no forward locks.

Each element, P, in the list of items mentioned above contains:
Item(P) = the item referenced.
Update-firal(P) = True if this is a final update for this item.
Link{P) = Pointer to the next element in the list. If link(P) is
undefined, then there are no more elements.

For cach item i at nodc n we have:

State(i,n) = Idle, passive or active.

Lowest-priority(i,n) = Minimum priority of the set of updates that have
passive locked item i at node n. This value is only defined when
state(i,n) is passive.

Internal-queue(i,n) = The internal queue for item i at node n.

External-queue(i,n) = The external queue for item i at node n.

We also define the following functions:

Successor(n) : Returas the node number of the node that follows node
n in the ring.

Add{A,q) : Adds update A to the end of queue q. This function does not
return a value.

Remove(q) : Returns the update at the head of queue gq. The update is
deleted from the qucue.

Is-empty(q) : Returas true if queue q is empty.

We now give the procedures that describe the algorithm. Each
procedure is called with two parameters: the node where the procedure
is to be executed and the update it is going to work on.

Procedure Arrival-of-update{ update A; node n);
begin << Update A has Jjust arrived at node n from a user. This
procedure will initialize A and will start the locking
process. >>
request-nocz{A)Y:= n; forward-item({A):= undefined;
remaining-sat{A):= base-set(A); internal-request(A,n):
end arrivei-of-update;

261

Procedure Internal-request{ update A; node n); .
begin << This procedure attempts to lock all remaining items at
A's originating node n. >
ptr:= remaining-sct(A); << ptr points to list of items to be locked >>
While * ptr not undefined " do
begin << Attempt to lock item item{ptr) >>
it:= item{ptr); << save in local variable >>
if state(it,n) = idle then state(it,n):= active
else
begin << Could not lock so we must wait. >>
remaining-set(A):= ptr; << Save our position for later >>
add(A, internal-quecue(it,n)); exit this procedure;
end;
ptr:= link{ptr);
end;
<< We have now obtained all locks for A at this node. >>
remaining-set(A):= base-set{A); external-request(A, successor{n));
end internal-request;

Procedure External-request(update A; node n };
begin << This procedure attempts to lock all items referenced by A
at node n. Update A did not originate at node n. >>
if request-node(A) = n then begin
locks-obtained(A, n);
exit this procedure;
end;
ptr:= remaining-set(A);
while "ptr not undefined” do
begin << Attempt to lock item(ptr). >>
it:= item(ptr);
if state(it,n) = idle then
begin state(it,n):= passive;
Towest-priority{it,n):= request-node{A); end
else if state(it,n} = passive then
<< Do not change state(it,n) >
lowest-priority(it,n):= min{lowest-priority(it,n), request-node(A)};
else if state(it,n) = active and request-node{A) < n then
begin << VWe must wait for item it to become available. >>
remaining-set(A):= pir;
if forward-item{A) not undefined then
relecase-forward-lock{ A, n }; << Avoids deadlocks. >>
add(A, external-queue(it,n)); exit this procedure;
end;
<< If none of the above cases, then leave state(it,n) as active. >>
ptr:= Tink(ptr)};
end;
<< We have now obtained all locks for A at this node. >
remaining-set{A):= base-set{A); external-request{ A, successor(n));
end external-request;

262

Procedure Locks-obtained(update A; node n);
begin << We have obtained locks at all nodes for all of ithe items
referenced by A and we are back at A's originating node n >>.
<< First we decide what items will have update-final true. »
ptr:= base-set(A);
While "ptr not undefined" do
begin
if is-empty(external-queue(item(ptr), n)) then
update-final(ptr):= true else update-final(ptr):= false;
ptr:= Yink(ptr);
end;
Compute actual update values, store them in A, and update the
local copy of the database;
perform-update{ A, successor(n)); <{Initiates updates at other nodes.>>
end locks-obtained;

Procedure Perform-update(update A; node n };
begin << This procedure performs update A at node n. >
if request-node{A) = n then begin
finish(A, n); exit this procedure;
end; .

Update local database as indicated by A;
< Now reiease locks if necessary. >
ptr:= base-set{A);
While "ptr not undefined" do

begin

if update-final(ptr) = true arnd

state(item(ptr), n) = passive and
lowest-priority(item(ptr),n) >= request-node{(A) then
release~internal-request(iten(ptr),n);
<< Last procedure releases any requests in the internal queue
and sets the state to idle. >>

ptr:= Tink(ptr);

end;
perform-update(A, successor(n) }; << Go on to next node. >
end perform-update;

Procedure Finish{ update A; node n);
begin << Update A has arrived at A's originating node n after
being performed at all nodes. We must therefore release
all of A’s locks at node n and must start up any other
updates waiting for these items. >
ptr:= base-set(A);
while "ptr not undefined" do
begin << Check item(ptr). »
it:= item(ptr);
if is-empty{ external-queue{it,n)) then
release-internai-request(it,n)
else release-external-request{it, n, update-final{ptr));
ptr:= link(ptr);

end;
stop;’ {< Update A has becn completed. >>
end finish;

263

Procedure Release-internal-request{ item i; node n);
begin << This procedure releases any locks on item i at node n and
if there is an update waiting on i, it is started up. >>

state(it,n):= idle;

if not is-empty{ internal-qucue(i,n) then
begin i
B:= remove(internal-queue(i,n) };
<< Update B can now lock item i and can continue. »>
state(i,n):= active; remaining-set(B):= 1ink(remaining-set(B) };
internal-request(B, n); << Lock rest of items. >>
end;

end release-internal-request;

Procedure Release-external-request(item i; node n;
boolean update~final);
begin << This procedure releases the update waiting for item i at
node n. We assume that external-queue(i,n) is not empty. >>
B:= remove({ external-quecue({i,n)); << Queue should now be empty. >>
state(i,n):= passive; lowest-priority(i,n):= request-node(B);
if update-final then forwvard-item(B):= undefined
else forward-item{(B):= i;
<< Now update B can continue its locking process. >>
remaining-set(B):= link(remaining-set(8));
external-request{ B, n); << Lock remaining items. >>
end release-external-request;

Procedure Release~forward-lock({ update A; node n };
begin << This procedure releases the forward lock held by update A. >>
<< Forward-item({A) should not be undefined. >>
for k:= (n + 1) step 1 until number-of-nodes do
releasc-an-item{ forward-item(A), Kk);
if forward-item{A) > item(remaining-set{A)) then
release-an-item(forward-item(A), n);
<< Remaining-set{A) points to the the item that A will wait on at
node n. >>
end release-forward-lock;

Procedure Release-an-item{ item i; node n);
begin << This procedure will release item i at node n. Update A
has "inherited" these locks from an update with higher
priority. >> .
<< Assert: state(di,n) = passive and
lowest-priority{i,n) > request~node(A).
Question for the reader: Why should the above assertion be true? 2>
irelease~-internal-request{ i, n);
end release-an-item;

<< End of the modified Ellis ring algorithm {(with sequential updates)
and ond of Appendix 2. »

264

APPENDIX 3.

begin "progranm"

require "{} {}" delimiters;
define crif = {(’15&"12)};
define cr = {(’15)};
define § = {comment};

$ This SAIL program computes the average response time of an update
in the MCLA centralized locking algorithm. For an explanation of this
progran, see chapter 4. .

external integer !skip!;

integer bk; string rep;

integer J;

real temp,N,M,Ar,Bs,Is,Id,T,lambda,EY,EY2,EZ,EZ2;
real Pw,locktime,restime,oldrestime,lnc,lc;

real rate,Xc,Xc2,roo0,¥c,Xnc,Xnc2,Wnc,Rnc,Re;

procedure SclveSystem;
begin "compute"
ratee (2xN + 1) + PwxN;
Xe N x 2 %= Is % EY;
Ke+ Xc + Id=EY;
Xce Xc + N % (IsxEY + IdxEZ);
Xce Xc + Pw % N x Is *(EY - 1);
Xc~ Xc / rate;
Xc2« N % 4 % IsxIs % EYZ;
Xc2« Xc2 + IdxId % EYZ;
Xc2« Xc2 + N % (Is*Is*EYZ + LSxIdi(EY + EY2) + Id=xId*EZ2);
Xc2« Xc2 + Pw & N # 4xIsxIsx{ EY2/3 - EY/2 + 1.8/6.8);
Xc2e Xc2 / rate;
roo~ lambda % rate * Xc;
Wee ((lambda * rate /2 Y % X2)/{ 1 - roo);
rate« N + 1;
Xnce (Id*EY + N % Id*EZ)/rate;
Xnc2e (Id#Id*EY2 + N % IdxIdxEZ2)/rate;
roo+ lambda % rate % Xnc;
Wnce ((lambda % rate /2) = Xnc2)/{ 1 - roo };
Rngce 2 % Wnc + Wc + 2xIsxEY + Idx(EY + EZ) + 2%T;
Re- 3 * We + 3 = Is = EY + Idx{ EY + EZ };
restime~ ((N - 1)%Rnc + Rec)/N + Pwx(locktime/2 + Wc + Isx(EY-1});
end "compute";

procedure conflictlanalysis;
begin "conilict!analysis"
Lnce T + Wnc + Id*EY + T + Mc + IsxEY + Id=EZ;
Lce Wc + IdxEY + MWc + IssxEY + IdxEZ;
Tocktine= ((N-1)% Lnc + Lc }/N;
Pwe (EY =% EY / M) % N » lambde » locktime;
end "confiictlianalysis";

while truc do
begin "main"
print("*number of nodes N = "); repeintty; temperealscan(rep,bk};
if 'skip! = cr then N~ temp eise print(N,crif);
print("number of items M= "); repeintty; temperealscan(rep,bk);
if Iskip! = cr then M« temp else print(M,crif);

print{"interarrival time Ar = "); rep-intty; temperealscan{rep,bk);
if tskip! = cr then Aretemp else print(Ar,crif);
print{"mecan base set Bs = *); rep~intty; temp~realscan(rep,bk};
if 1skip! = cr then Bs~temp elsec print(Bs,crif);
print("I0 slice Is = "); rep~intity; temperealscan(rep,bk);
if Iskip! = cr then Is+temp else print{Is,crif);
print("I0 data Id = "); rep~intty; temperealscan{rep,bk);

if Iskip! = cr then Id~temp else print(Id,crlf);
print{"transmission time T = "); rep~intty; temperealscan(rep,bk);
if !skip! = cr then T~ temp else print(T,crif);

EYe 1/(1 - exp(~1/Bs));
(1 + exp{ ~1/8s));
Y/2.8;

Y/2 + 1.8/6.8;

lambda~ 1/Ar;

EY2~ EY % EY =

EZ« (EY + 1.8
+ E

EZ2~ EY2/3
Pwe 8; J« 8; locktime~ §; oldrestime+ 8;
SolveSystem; $ Result is restime, Wc, Wnc;
do begin

JJ+ 1;

conflictlanalysis; S Result is Pw, locktime;
oldrestime~ restime;
SolveSystem; $ Result is restime, We, Wnc;

end
until (J > 5) or ({restime - oldrestime)/restime ¢ .81);
print{crl1f,"==> mean response time = ¥, restime,
* jterations = ", j, crlf, crif);
end "main"

end “program"

266

APPENDIX 4.

begin “progran"

require "{} {}" delimiters;
define crif = {("15&'12}};
define cr = {{"15)};
define $ = {comment};

$ This SAIL program computes the average response time of an update
in the distributed voting algorithm (DVA). For an explanation of this
program, se& chapter 4.

external integer !skip!;

intcger bk string rep;

boolean odd;

integer i, J, k, h, g, 1, skips;

integer N, M, MAJ, count;

real temp, sum, restime, oldrestime, remtime, P, Pc, Pcl, Pc2, Psc;
real Ar, Bs, Is, Id, T, lambda, limit, Rt, EY, EYe, EZ, EZ2;

real X, X2, roo, rate, Pl, P2, execltime;

real array pt, q[8:11, 8:28];
real array W, delay, rateRRIT, rateRV[8:28];
$ rateRRIT[i] is "arrival rate of RRIT[i]" (in chapter 4) divided
by lambda. Similarly, rateRV[i] is "arrival rate of RV[i]"
divided by lambda ;

integer procedure modulo(value integer X,y);
begin
while X < 0 do x= x + ¥;
return{ x mod ¥y);
end;

267

procedure SolveSystem;
begin "SolveSystem"
for i~ 8 step 1 until N-1 do
begin & compute wait times w[i] at each node;
rate~ N + rateRRIT[1] + rateRV[i];
Xe rateRRIT[i]x(Is + Id)% EY;
Xe X + rateRV[il# Is % EY;
Xe X + N#(Is + Id)*EZ;
Xe X/rate;
X2« rateRRIT[iJx(Is + Td)=(Is + Id)xEYZ;
X2+~ X2 + rateRV[iJ*IsxIsxEY2;
X2+ X2 + N#(Is + Id)=(Is + Id)«EZ22;
X2+~ X2/rate;
roo«~ lambdax rate % X;
WEile ((lambdaxrate/2)*X2)/(1l - roo);
end;
restime«~ 8;
for i~ 8 step 1 until N-1 do
begin $ compute response times;
sume 3xW[i];
for j- 1 step 1 until MAJ - 1 do
sume sum + W modulo{i+j, N)I;
temp~ sum + {Is + Id)}*EY + MAJx(Is*EY + T)+
(Is + Id)%EZ + delay[i];
restime« restime + temp;
end;
restime~ restime/N;
end "SolveSystem";

procedure speciallcase;
begin "speciallcase"
J= modulo{i + MA3 - 1, N); $ Update B originated at node j ;
sumeg;
for ke 8 step 1 until N-1 do
sume sum + (W[k] + Is*EY + T);
Psce (Pcl + Pc2)* lambda * sum;
if J geq i then
begin $ delay only;
delay[i)~ delay[i] + Pscx(sum/2 + W[3] + Is*EY),
rateRV[j]~ rateRV[Jj] + Psc;
end
else
begin § dr case ;
delay[i]~ delay[i] + Pscx(W[i] + (Is + Id)*EY + sum + Rt);
rateRRIT[i]~ rateRRIT[i] + Psc;
for k- 8 step 1 until W-1 do
rateRV[k]~ rate?V[k] + Psc;
end;
end "speciallcase";

268

procedura computalptlq;
begin "computlel!pt!q”
for i~ 8 step 1 until N-1 do
begin
rateRRIT[i]- 1; rateRV[iJ~ MAJ; deluj[1]~ g,
end;
for Jj~ 8 step 1 until N-1 do
for i~ 8 step 1 until MAJ - 1 do
begin $ Consider updates with i OK votes at node § ;
pt[i,jJ= (MAJ -~ i - 1)=(Is*EY + T) + T + W3+ (Is + Id)*EZ'
if i+l = MAJ then pt[i,JJe pt[i,d] -
for ke j+1 step 1 until j + (MAJ- i - 1) do
pt[i,J]- pt[i,3] + Wlmedulo(k, N) J1;
qli,J])- pt[i,J]xlambda;
end;
end "computelpt!qg";

procedure old!ts;
begin "oidits"
$ compute delays and extra loads caused by old timestamps;
for i~ 8 step 1 until N-1 do
begin
Pe Pc x (W[iJ + (N-1)%(W[i] + {Is + Id)*EY))% lambda;
tempe WLi] + (Is +Id)*EY + W[i] + IS*EY + R%;
delay[i]e delay[i] + Pxtemp;
rateRRITLi]- rateRRIT[i] + P;
rateRV[iJe~ rateRV[i] + P;
tempe temp + T3
for J~ 1 step 1 until N - MAJ do
begin
Pe Pex{{N = MAJ + 1) = J)x{W[modulo{i+j-1,N)] + Is*EY + T)xlambda;
tempe temp + Wmodulo(i+j, #)] + IsxEY + T;
delay[i]- delay[i] + Pxtemp;
rateRRIT[i]« rateRRIT[i] + P;
for k~ i step 1 until i+j do
rateRV[modulo(k,N)]~ rate?V[nodulo(k NY] + P
end;
end;
end “o]d!ts";

269

procedure conflicts;
begin "conflicls"
for i~ § step 1 until N-1 do
begin "conflicts main loop"
$ compute effect of conflict at first voting at node i;
tempe WLi] + (Is + Id)xEY + W[i] + Is*EY + Rt;
for he B step 1 until MAJ-1 do
begin
3 update at i conflicts wlth update from node J = i-h mod N;
Je modulo(i - h, N);
Ple Pcl % q[h,i]; P2~ Pc2 % q[h,i];
if J geq i then
begin $ update is delayed at node i;
delay[i~ delay[i] + Px(temp + pt[h,i1/2);
a»;RRI;[1]~ rateRRIT(i] + P;
rateRVI i)« rateRV[i] + P;
de]ay[1]~ delay[i] + PZx(Wil + TsxEY + pt[h,1]/2 };
rateRV[i]~ rateRV[i] + PZ;
) end
else
begin $ update gets DR... then proceeds to get more DRs;
remtime~ pt[h,i]/2; ke« i; exec!time~ temp -~ Rt; skips+ 8;
rateRRIT[i]* rateRRIT[i] + Pl;
rateRV[i)+ rateRV[i] + Pl;
while remtime > 8§ do
begin
ke modulo(k + 1, N); skips~ skips + 1;
exec! time~ execitime + T + WLk] + IsxEY;
rateRV[k]~ rateRV[k] + PIl;
remtime- remtime - (7 + W{k] + IsxEY);
end;
delay[i]- delay[i] + Plx(execltime + T + Rt };
delay[i)~ delay[i] + P2x(exec!time - W[i] ~ {Is + Id)sEY);
for 1« (i+MAJ~1)+1 step 1 until (i+MAJ-1)+skips do
rateRV[modulo(1,N)]~ ratuQV[nocu1o(] N)Y] + P2;
end;
end;

270

$ now compute effects of conflicts at nodes j+l, Jj+2, etc. ;
temp- W[i] + (Is + Id)*EY + W[i] + IsxEY;
if odd then limite MAJ -1 else limite MAJ - 2;
for g- 1 step 1 until limit do
begin
Je modulo(1 + g, H);
$ request from node i conflicts with pending request at node j.
The conflicting request originated at node J;
Ple Pcl = q[6,3]; P2~ Pc2 * q[8,3];
tempe temp + T + IssEVY + W[3]; § Temp is exec. time up to node Jj;
rateRRIT[i]~ rateRRIT[i] + PI1;
for ke i step 1 until-i + ¢ do
rateRV[modulo{k,N)]~ rateRV[modulo(k,N)] + PI;
if J geq i then
begin & update is delayed ;
deiay[i]~ delay[i] + Plx(temp + T + Rt + pt[8,31/2);
delay[iJe delay[i] + P2sx(W[J] + IsxEY + pt[8,3]1/2);
rateRV[LJjle rateRV[j] + P2; _
end
else
begin § Update is DR ;
remtime~ pt[6,31/2; ke j; execltimee temp; skipse 8;
while remtime > & do
begin
k- modulo(k + 1, N); skipse skips + 1;
exec!timee execitime + T + IsxEY + W[k];
rateRV[k]~ rateRV[k] + Pl;
rentimes remtime - (T + IsxEY + W[k]);
end;
delay[i]- delay[i] + Plx{exec!time + T + Rt);
deiay[i]~ delay[i] + P2x(Execitime - temp + W[J] - W[k]);
for 1« (i+MAJ-1)+]1 step 1 until (i+NAJ-1)+skips do
rateRV[modulo(1,N)]~ rateRV[modulo(1,N)] + PZ;
end;
end;
if not odd then speciallcase;
end "conflicts main loop®
end "conflicts";

271

while truc do
begin “"main"
print("number of nodes N = "); rep-intty; ke intscan(rep,bk};
if Iskip! = cr then N« k else print(N,crif);

print("number of items = "); rep-intty; we intscan(rep,bk);

if tskip! = cr then M~ k else print(M,crif);

print("interarrival time Ar = "); rep-intty; temperealscan{rep,bk);
if Iskip! = cr then Ar<temp else print(Ar,crif);

print("mecan base set Bs = "); repeintty; temperealscan(rep,bk);
if !skip! = cr then Bs~temp else print(8s,crif);

print("I0 slice Is = "); rep~intty; temperealscan(rep,bk);
if Iskipi = c¢r ihen Is-tenp else print{Is,crif);

print("I0 data Id = "); rep~intty; tempe«realscan{rep,bk);

if Iskip! = cr then Idetemp else print{Id,crif);
print{“"transmission time T = "); rep-intty; temp-realscan(rep,bk);
if iskip! = cr then T« temp else print(T,crif);

print(“retry time Rt = "); repeintty; temperealscan{rep,bk);
if Iskip! = cr then Rt~temp else print(Rt, crif};

lambda~ 1/Ar; EY+ 1/(1 - exp{ -1/Bs });
EY2«~ EY % EY = (1 + exp(-1/Bs)});
EZ~ (EY + 1.8)/2.8;
EZ2+~ EY2/3.8 + EY/2.8 + 1.8/6.0;
Pce EY x EZ / M;
Pcle EZ % EY / NM; Pc2~ EZx(EY - EZ)/M;
ke n/2; -
if k%2 = n then odade false else oddw~ true;
MAJ« (n/2.8 + 1.8);
for i« 8§ step 1 until n-1 do
begin
rateRRIT[i]~ 1; rateRV[iJ~ MAJ; delay[il- 8;
end;
SolveSystem;
counte« 8;
do begin
computelptlq;
old!ts;
conflicts;
counte count + 1; oldrestime~ restime;
SolveSystem;
end
until (count > 5) or ((restime - oldrestime)/restime < .81 };

print{crif,”"==> mcan response time = ", restime,
" jterations = *, count, crif, crif);
end "main";
end "program"

272

APPENDIX 5.

begin "program"

require "{} {}" delimiters;
define crif = {("15&'12)};
define cr = {{"15)};
define $ = {comment};

$

This SAIL program computes the average response time of an update
in the MCLA centralized locking algorithm. This program is a
nodified version of the program in appendix 3.

The correspondance between the program variables and the names
used in the chapter 5 is as follows: L is E[L], Lc is E[Lc],

Lnc is E[Lnc], Lgc is E[L]C], Lege is E[LelC], Lacge is E[Lnc|C],
EY is E[Y], EY2 is E[YxY], EYgc is E[Y|C], EY2gc is E[YxY|C],

EZ is E[Z], EZ2 is E[Z*Z], EZgc is E[Z|C], EYrem is E[REM|C],
EY2rem is E[REMxREM|C], Pw is P(W), Pwl is P{W1), Pw2 is P(W2),
b2w is P{2nd wait), and Pc is P(C);

external integer iskip!;

integer bk; string rep;

integer J;

real temp,N,1,Ar,Bs,Is,Id,T,lanbda,EY,EY2,EZ,EZ2;
real Pw,L,restime,oldrestime,Llnc,Lc;

real rcte,Xc,Xc2,roo,¥Wc,Xne, Xnce, Wne,Rnc,Re;
real EYgc, EY2gc, EZgc, Lec, Lnege, Lege;;

real Pc, P2w, Pwl, Pw2, EYrem, EVirenm;

273

procedure SolveSystem;
begin "compute®
rate~ (2+#N + 1) + PwxN;
Xce N % 2 % Is % EY;
Xce Xc + Id*EY;
Xce Xc + N % (Is*EY + Id*EZ);
Xce Xc + Pw x N * 2 * Is %x(EYrem + P2wx(EYrem-1)/2);
Xce~ Xc / rate;
Xc2e¢ N x 4 % IsxIs x EYZ;
Xc2+~ Xc2 + IdxId * EYZ;
Xc2e Xc2 + N % (IsxIsxEY2 + IsxId*x(EY + EY2) + IdxIdxEZ2);
Xc2e« Xc2 + Pw % N # 4xIsxIsx
(EY2rem + P2wx(EY2rem/3 - EYrem/2 + 1.6/6.8));
Xc2+ Xc2 / rate;
roo~ lambda » rate % Xc;
if roo geq 1 then
begin
print(crif, "skxsxxt SYSTEM IS UNSTABLE xx«xxxx");
roo~ lambda« §;
end; :
Wee ((lambda % rate /2) % Xc2 }/(1 - reo };
rate- N + 1;
Xnce { Id#EY + N % Id%EZ)/rate;
Xnc2« (IdxId«xEY2 + N % IdxIdxEZ2)/rate;
roo~ lambda % rate % Xnc;
if roo geq 1 then
begin ’
print{crlf, "ssxuixs SYSTEM IS UNSTABLE *®xxxxx");
roo+~ lamhdae 8;
end; .
Wnce (. (lambda % rate /2) % Xnc2 }/(1 - roc);
Rnce- 2 % Wnc + We + 2xIsxEY + Idx(EY + EZ) + 2%T;
Rce 3 % Wec + 3 % Is « EY + Idx{ EY + EZ };
restime~ { (N « 1)*Rnc + Rc)/N + Pwxz({Lgc/2 + Wc + Isx{EYgc-1))
+ Pw2xlgc + PwxP2wx(Lgc/2 + Mc + Isx(EYrem - 1));
end “compute";

procedure conflictlanalysis;
begin "conflictlanalysis"
Lnce T + VWnc + Id%EY + T + Wc + IssEY + IdxEZ;
Lee We + IdxEY + Wec + Is*EY + Id#*EZ;
L« ((N-1)xLnc + Lc)/N;
Lncge~ T + Wnc + IdsEYge + T + ¥Wc + IsxEYgc + IdxEZgc;
Lcgee Ve + IdsxEYgc + We + IsiEYge + IdxEZgc;
Lgce ((N-1)%* Lncgc + Legec)/N;
Lgee Lge + ((Lgc/2)xNxTlambdaxEY/H)sLgc;
Pwle Pc % N % lambda % L;
Pw2e Pcx{Lgc/2 + Wc + Isx(EYgc-1))#Nxlambda*Pwl;
P2we (EYremxEY/M)xNxlambdaxl;
Pwe Pwl + Pw2;
end "conflictlanalysis";

274 .

while true do
begin "main"
print("number of nodes N = "); rep~intty; temperealscan(rep,bk)};
if lskip! = cr then N~ temp else print(N,crif); _
print{"number of items M = "); repeintty; temperealscan(rep,bk);
if Iskip! = cr then M« temp else print{M,crif);
print("interarrival time Ar = 7); rep-intty; temperealscan(rep,bk);
if Iskip! = cr then Ar«temp else print(Ar,crif);
print("mean base set Bs = "); repeintty; temp-realscan(rep,bk);
if Iskip! = cr then Bs«temp else print(8s,crif);
print("I0 slice Is = "); rep~intty; temperealscan(rep,bk);
if iskip! = cr then Is-temp else print{Is,crif};
print(”I0 data Id = "); rep~intty; temperealscan(rep,bk};
if !skip! = cr then Id-temp else print{Id,crif);
print("transmission time T = *); rep~intty; temperealscan(rep,bk);
if 1skip! = cr then T« temp else print(T,crif);

lambda«~ 1/Ar; EYe 1/7(1 - exp(-1/8s });
EY2« EY % EY % {1 + exp(~1/Bs));
EZ« (EY + 1.8)/2.9;

EZ2+ EY2/3 + EY/2 + 1.8/6.0;

EYgce 2 % exp{-1/Bs) % EY + 1;

EY2gce Gxexp(-1/Bs)*EYx({ exp(-1/Bs)*EY + 1) + 1;
EZgee (EYge + 1.8)/2.0;

EYrem~ (EYgc - 1.8 }/2.8;

EY2rem- EY2¢c/3.8 - EYgc/2.8 + 1.8/6.8;

Pce EY ® EY / M;

Pwe Pwle Pw2+ P2vi- B; Jj- 8; Le Lgce 8; oldrestime« 8;
SolveSystem; ~ $ Result is restime, Wc, Wnc;

do begin
print(cir1¥,restine); .
JJd+ 1;

conflictlanalysis; & Result is Pw, L, Lgc;
oldrestime«~ restime;
3olveSystem; % Result is restime, Wc, Wnc;
end
until (g > 5) or ((restime -~ oldrestime)/restime < .81);
print(crlf,"==> mecan response time = *, restime,
% jterations = %, j, crlf, crify;
end "main"
end "programn"

275

APPENDIX 6.

begin "program"

require "{} {}" delimiters;
define crlf = {(*15&'12)};
define cr = {{"15)};
define §& = {comment};

3

This SAIL program computes the average response time of an update

in the distributed voting algorithm (DVA). This program is & modified
version of the program in appendix 4. In this program,

EY is E[Y], EY2 is E[Y*Y], EYgc is ELY|C], EY2gc is E[Y=Y|C],

EZ is E[Z], EZ2 is E[Z*Z], EZgc is E[Z|C]. Variable ptgc[i,Jj] is
defined as pt[i,J] given that the update involved has confiicted.
rateRRIT[i] is "arrival rate of RRIT[i]" in chapter 4 divided by lambda.
Similarly, rateRV[i] is "arrival rate of RV[i]" in chapter 4 divided by
lambda. However, here we initialize rateRRITLi] and rateRV[i] to

8. The components of these arrival rates not due to conflicts

are handled in procedure SolveSysten;

external integer !{skip!;

integer bk; string rep;

boolean odd;

integer i, Jj, k, h, g, 1, skips;

integer N, M, MAJ, count;

real temp, sum, restime, oldrestime, remtime, P, Pc, Pcl, Pc2, Psc;
real Ar, Bs, Is, Id, T, lambda, limit, Rt, EY, EY2, EZ, EZ2;

real X, X2, roo, rate, Pl, P2, execltime;

real EYgc, EY2gc, EZgc, sumgce;

real array pt, ptgc, q[8:11, 8:20];
real array W, delay, rateRRIT, rateRV[8:28];

integer procedure modulo{value integer X,¥);

begin

while X < 8 do X~ X + y;
return{ x mod y };

end; .

276

procedure SolveSystem;
begin "SolveSystem"
for i« 8 step 1 until N-1 do
begin $ compute wait times w[i] at each node;
rate- N + { 1 + rateRRIT[i]) + (MAJ + rateRV[i]);
Xe rateRRIT[iJx{ Is + Id)x EYgc + 1x(Is + Id)*EY;
Xe X + rateRV[iJ* Is % EYgc + MAJx Is » EY;
Xe X + Nx(Is + Id)*EZ;
X« X/rate;
X2« rateRRIT[iJx(Is + Id)x(Is + Id)xEY2gc + 1x(Is+Id}*(Is+Id)*xEY2;
X2« X2 + rateRV[i]xIsxIs*EY2gc + MAJxIssIsxEY2;
X2« X2 + N#x(Is + Id)*(Is + Id)*EZ2;
X2+ X2/rate;
roo~ lambdasratexX;
if roo geq 1 then
begin
print{crif, “sxxrxks SYSTEM UNSTABLE ###zxxx"};
roc~ lambda~ B;
end;
WliJe ((lambdaxrate/2)=X2)/{(1l - roo);
end;
restime~ §;
for i« 8 step 1 until N-1 do
begin $ compute response times;
sume 3%W[i];
for je 1 step 1 until NAJ - 1 do
sume sum + W[modulo(i+J, N)J;
tempe sum + (Is + Id)*EY + MAJ#(IsxEY + T) +
(Is + Id)*EZ + delay[i];
restine+~ restime + temp;
end;
restime~ restime/N;
end "SolveSystem";

procedure speciallcase;
begin "specialicase"
je modulo(i + MAJ - 1, N); § Update B originated at node J ;
sSume~ sumgce 8; .
for ke B step 1 until N-1 do
begin
sume- sum + { W[k] + IssEY + T);
sumgc~ sumgc + { W[k] + IsxEYge + T);
cnd; '
Psce (Pcl + Pc2)* lambda % sum;
if J geq i then
begin $ delay only;
delay[il delay[i] + Pscx(sumgc/2 + W[Jjl + IszEYgc);
ratelRV{ jl~ rateRV[Ji] + Psc;

end
else
begin & dr case ;
delayfil~ delay[i] + Psc#(W[i] + (Is + Id)%EYgc + sumgc + Rt);
rateRRITIi3» rateRRIT[i] + Psc;
for k- £ step 1 until N-1 do
ratsPVi k]~ rateRV[k] + Psc;
enc;

277

procedure compute!ptlq;
begin “"compute!pt!qg"
for i« 8 step 1 until N-1 do
begin
rateRRIT[i]+ 8; rateRV[il~ 8; delay[i]~ 8;
end;
for Jje B8 step 1 until N-1 do
for i+~ 8 step 1 until MAJ - 1 do
begin 3§ Consider updates with i OK votes at node J ;
ptli,3)- (MAJ - 1 = 1)x(IszEY + T) + T + W[J] + (Is + Id)+EZ;
ptgcli,jle (MAJ - i-1)x(IsxE¥gc + T) + T + W[J] + (Is + Id)*EZgc;
if i+l = MAJ then
begin pt[i,3]- ptli,d] - T; ptocli,d)- ptgcli,j] - T; end;
for ke j+l step 1 until j + (MAJ- i - 1) do
begin
pti,31- pt[i,J] + Ymodulo{ k, N) J;
ptgeli,j]- ptgc[i,J] + Wmodulo(k, N) I;
end;
afi,31e ptli,jJxlanmbda;
end;
end "compute!ptlq";

procedure oldits;
begin "old!ts"
$ compute delays and extra loads caused by old timestamps;
for i~ 8 step 1 until N-1 do
begin
Pe Pc = (W[il + (N-1)x{ W[i] + (Is + Id)*EY))* lambda;
tempe- W[i] + (Is +Id)*EYgc + W[i] + IsxEYgc + Rt;
delay[i)~ delay[i] + Pxtenmp;
rateRRIT[i] rateRRIT[i] + P;
rateRV[iJe rateRV[i] + P;
temp~ temp + T;
for je 1 step 1 until N - MAJ do
begin
Pe Pcx((N = MAJ + 1) - j)*x(MImodulo(i+j~1,N)] + Is*EY + T)*Tambda;
tempe~ temp + W modulo(i+j, N)J + IsxEYgc + T;
delay[i]~ delay[i] + Pxtemp;
rateRRIT[i)~ rateRRIT[i] + P;
for ke i step 1 until i+Jj do
rateRVImodulo(k,N)]~ rateRV[modulo(k,N)] + P;
end;
end;
end "oldits";

278

procedure conflicts;
begin "cont'licts"
for i~ 8 step 1 until N-1 do
begin "conflicts main loop"
$ compute effect of conflict at first voting at node 1i;
tempe W[i] + (Is + Id)xEYge + W[i] + IsxEYgc + R%;
for he« 8 step 1 until MAJ-1 do
begin
S update at i conflicts with update from node J = i-h mod N;
Jj~ modulo(i - h, N);
Ple Pcl % g[h,i]; P2« Pc2 % q[h,i];
if J geq i then
begin $.update is delayed at node i;
detay[i]~ delay[i] + Px(temp + ptgc[h,11/2);
rateRRIT{ 1]~ rateRRIT[i] + P;
rateRV{ i~ rateRV[i] + P;
delay[i]~ delay[i] + P2%(W[i] + Is%EYgc + ptgc[h,i]/2 };
rateRV[i~ rateRV[i] + P2;
end
else
begin § update gets DR... then proceeds to get more DRs;
remtime~ ptgelh,i]/2; ke« i; execltime~ temp - Rt; skips« 8;
rateRRIT[i])~ rateRRIT[i] + P1;
rateRV{ije rateRV[i] + P1;
while remtime > 8 do
begin
ke modulo(k + 1, N); skips~ skips + I;
exccltime~ execltime + T + W[Kk] + IsxEVgc;
rateRV[k]~ rateRV[k] + Pl;
remtime~ remtime - (T + W[k] + IsxEYgc);
end;
delay[ile delay[i] + Plx(execitime + T + Rt);
delay[i]- delay[i] + P2x{ exec!time - W[i1] - (Is + Id)xEYgc);
for le (i+MAd-1)+] step 1 until (i+MAJ-1)+skips do
rateRV[modulo{1,N)]~ rateRV[modulo(1,N}] + P2;
end;
end;

219

$ now compute effects of conflicts at nodes j+l, Jj+2, etc. ;
temp~ W[iJ] + (Is + Id)=EYgc + W[i] + IsxEYgc;
if odd then limite MAJ -1 else limite MAJ - 2;
for g~ 1 step 1 until limit do
begin
je modulo(i + g, N); ,
$ request from node i conflicts with pending request at node j.
The conflicting request originated at node J;
Ple Pcl % q[8,3]; P2~ Pc2 % qf6,31;
temp- temp + T + IsxEYgc + W[Jj]; § Temp is exec. time up to node j;
rateRRIT[i)~ rateRRIT[i] + PI;
for k- i step 1 until i + g do
rateRV[modulo(k,N)J~ ratcRV[modulo(k,N}] + Pl;
if J geg i then
begin $ update is delayed ;
delay[i]- delay[i] + Plx(temp + T + Rt + ptgc[8,31/2);
delay[i]- delay[i] + P2+{W[Jj] + IsxEYgc + ptgc[§,31/2);
rateRV[jJ« rateRV[j] + P2;
end
else
begin $ Update is DR ;
remtime- ptge[6,31/2; ke« j; exec!time~ temp; skips« 8;
while remtime > 8 (o
begin
k+ modulo(k + 1, N); skips+~ skips + 1;
execlitime~ exec!time + T + IsxEYge + W[K];
rateRV[Kk]+~ rateRV[k] + P1;
remtime~ remtime - (T + IsxEYgc + W[k]);
end; .
delay[i]- delay[i] + Plx{execitime + T + Rt);
delay[i]~ delay[i] + P2x(ctxecitime - temp : W[j] - W[k]);
for 1« (i+MAJ-1)+] step 1 until (i+MAJ-1)+skips do
rateRV{modulo(3,N)]~ rateRV[modulo(1,N)] + P2;
- end;
end;
if not odd then speciallcase;
end "conflicts main loop"
end "conflicts";

280

while truc do
begin "main"

print("number of nodes N= "y,

if iskip! = cr then Ne
print{"number of items = ");
if Iskip! = cr then Me

print("interarrival tine Ar = ');

if tskip! = c¢r then Ar«temp
print("mean base set Bs =

if Iskip! = cr then Bs~temp
print("I0 slice Is = %);
if iskip! = ¢r then Isetemp
print("I0 data Id = ");
if !skip! = cr then Id~temp

T=")

print(”"transmission time

if tskipl = cr then T« temp
print(retry tine Rt = ");
if Iskip! = cr then Rte~temp

lambda~ 1/Ar; EYe« 1/(1 -
EY2~ EY = EY * (1 + exp(-1/Bs)}};
EZ- (EY + 1.8)/2.8;

EZ2- EY2/3.8 + EY/Z g8 + 1.8/5.8;
EYgce 2 = exp(-1/Bs) = EY + 1;

rep-intty; ke intscan{rep,bk);

3 c]se orint(N,crif);

repintty; ke« intscan(rep,bk);

K e]se print(M,crif);

repeintty; tempﬁrealscan(rep bk):

else print(Ar,crif);
"); rep-intty; temperealscan{rep,bk);
else print(Bs,crif);

rep~intty; tempereaiscan(rep,bk);

else print(Is,crif);

rep~intty; tempereaiscan(rep,bk);

else print(Id,crif);

repeintty; temp«realscan(rep,bk);

else print(T,crif);

repeintty; temperealscan{rep,bk);

else print(Rt, crif);
exp(-1/Bs));

EY2gce O#exp{-1/Bs)*EYx{ exp(-1/Bs)*EY + 1) + 1;

EZgc+ (EYge + 1.8)/2.0;

Pce Pcle EY*EZ/M;

Pc2+ EZx(EY - EZ)/M;

ke n/2;

if k&2 =

MAd= { n/z.8 + 1.8);

for i~ § step 1 until n-1 do
begin
rateRRIT[iJ+ 8
end;

SolveSystem;

count~ §;

do begin
print{crif, restime);
computelpt!q;
old!ts;
conflicts;
counte count + 1;
SolveSysten;
end

until (count > 5) or

; rateRVi{il- 8;

oldrestime«

,"==) nean

iterations
end "main®;
end "progran®"

print(cri

({restime - oldrestime)/restime <

response time
*, count, crlif,

n then odde false else odd~ true;

delay[il- B

restime;

.81);

%, restime,
crlfy;

281

APPENDIX 7.

In this appendix we compare two alternatives for handling hole lists when.
they exceed the limit h. The first aiternative is to delay updates at the central
pode until their hole lists shrink to a size less than or equal to the hole size limif A.
This alternative is used in the MCLA-h algorithm and we will call it the “delay
at central node” strategy. The sccond alternative is to truncate the hole list at
the central node and to send the update “grant” message immediately to the
update’s originating node. At that node thec update may be delayed until updates
that were truncated from the hole list are performed. We will call this second
alternative the “truncating” strategy.

Consider an update A which originated at node z and whose locks have just
been granted at the central node. Suppose that the hole iist at the central node
at that instant contains updates By, By, B3,...B;. (Assume that j > h or else
there would be no delays.) Let #;,%,13,...¢; be the times when the “perform
update” messages for updates By, By, B3, ... B;arrive at node z. The performance
of the truncating alternative depends very much on how well the central node
can predict or guess the valucs #,13,13,...¢; As we will see Jater, if the central
node can indeed know the values, then the truncating strategy will be superior
to the dclay at central node strategy. Il the central node cannot predict these
values, then the truncating alternative may noi be so attractive.

There are many heuristics that the central node could use to guess the times
t1, b2, 83,.. . 5, but it is almost impossible for us to evaluate these heuristics be-
cause they depend on the actual types of updates that are being performed. For
example, the central node could predict an update’s remaining execution time
based on how long the update has been running. Or maybe the number of locks
granted to an update B; is an indication of the update's execution time and could
thus be used for predicting the time ;.

Sinceit is so hard for us to know the central node's ability to guess iy, £y, 83, . . . £,
in this appendix we will simply consider {wo cases: In one case, the central node
has perfect future knowledge and can exactly predict the times 6,6, 3,... ¢
while in the other casc, thie central node has no idea what these values could be.
Any real system (using a decent heuristic) will be somewhere between these two
cxtremes, and hopefully, the results we obtain for the two special cases will be
uscful in choosing a strategy.

In the following discussion we use the same model that was used to study

282

APPENDIX 7

the performance of the update a]gonthms in chapter 4. In particular, we assume
that the network transmission time is a constant T

AT7.1 Assumptions.

To simplily the analysis, we will make some assumptions. We will assume
that all the “perform update” messages for a given update arrive at all nodes
at the same time. In our original model, the “perform update” message to the
update’s originating node arrives T scconds before the other messages because
the originating node is the one that is sending the “perform update” messages.
Our assumption is equivalent to saying that a message that a node sends to itself
will also take T seconds to arrive. This small modification to the original model
should noi alter our results significantly. In the introduction to this appendix, we
mentioned that ¢; was the time when the “perform update” message for update By
arrived at node £. The assumption that we have made implies that the ‘perform
update” message for B; arrives at all nodes at time {;.

The next assumption we make is that all nodes will look at a perform
update” mcssage for update B; at a high CPU priority as soon as the message
arrives and will relcase any other updates that were waiting for B;. In a non
central node, an update C could be waiting for B; because B; had a lower sequence
number and B; was not in C's hole list. If update C is not waiting for any other
updatcs to be performed, then it will immediatcly be relcased, that is, C will be
added to the qucue of updates that are to be performed. We assume that the
CPU time needed to look at the “perform update” message for B; is negligible
and hence update C will be queued {or service at time ;.

The central node also looks at a “perform update” message for update By as
soon as it arrives and releases any waiting updates that can proceed. If update C
is delayed at the central node because its hole list is too large, and the removal
of B; from the list ~~uses it to shrink to size h, then the grant message for C will
be sent immediately (e.g., at time £;).

Our iast assumption deals with the time that an update remains on the hole
list at the central node. Let X; be the time that update B; remains on the hole
list at the central node. Time X; is the difference between the time when the
“perform update” message for B; arrives at the nodes and the time when ali locks -
for B; were obtained. We will assume that X; is an exponentially distributed
random variable. To justily this, we note that thc main component in X; is
in computing the update values for B; at B;'s originating node. The service
time for computing these values is approximately exponential. (See chapter 4.)

283

APPENDIX 7

The waiting time at that node will be roughly exponential because the node is
approximately a M/M/1 system. Of course, the distribution of X; is not exactly
cxponential because there is a constant 2T factor due to the {wo transmissions
needed before B; is removed from the hole list. However, we still choose to use
the exponential distribution because (a) it is a simple distribution and (b) it is
our best guess. o '

. We also assume that random variables X; for 1 < ¢ < j are identically
distributed and indcpendent. We will let be the mean of the exponential dis-

tribution of X;. The value of § can bc estimated from the analysis of chapter 4. If

‘B; originated &t a non central node, then B; on the average remains on the hole
list for T - Wy - Iy E[Y] + T scconds (where W, is the average 10 wait.time
at B;'s originating node , Ij is the time to read onc item from the database and
E[Y] is the average number of items in the base set of an update). I B; originates
at.the central node, then on the average B; remains for W, LE[Y] 4T seconds
(where W, is the average IO wait time at the central node). Therefore we choose
0 to be the weighted average

0= (Wt LB+ 1)+ (T W LBV HT))

For example, using the typical values of chapter 0 (i.e., six nodes, interarrival
time A, of 6 seconds, Jy = 0.025 sec., T' = 0.1 scc., etc.), we find that 6 = 0.37
scconds. : ‘

The analysis in chapter 4 assumed that the value of h was large enough so
that no updates were unnecessarily delayed. However, the value of # we have
obtained is valid for any k (as long as the system is stable) because none of the
quantitics of equation (1) depend on h. The wait times W, and Wy only depend
on the IO load at the nodes and these loads are independent of h. Notice that the
value obtaincd for 8 by dividing I (for large h) from figure 6.26 by N\ 'is larger
than the above because in the simulation, an update B; remains on the hole list
until after B; releases its locks at the central node. Here we are assuming that
B; disappears [rom the hole list as soon as the “periorm update” message for B;
arrives at the central node.

AT7.2 The Delay at Central Node Alternative.

In this section we will compute an updatce's delay when the delay at central
node strategy is used. Update A, which originated at node z, obtains its locks at
the central node at time #. At that instant, updatics By, B, B3, ...B,{j > h) are

284

-

APPENDIX 7

in the hole list. Update A must wait at thic central node uxtii its hole list shrinks
in sizc and then a grant message can be sent to node z. Thus, on the average,
updale A's computations will be started at node z at time 74, ¢

Yo =to+ 84+ T @

where 84 is the average delay until —h of the "perform update” messages for
the updates By, By, Bs,...B; arrive at the central node. We will now compute
Odc.

As stated earlier, exponentially distributed random variable X; is the time
that B; remains on the hole list. At time fp, update B; has alrcady been on the
hole list for some tiine, but bacause of the memoryless property of the expenential
distribution, the remaining time for update B; given that it has remained until &
is also exponentially distributed with mean 6. In other words, random variables
Yi=1t;—tp (1 <7<j7), which are the remaining times for updates B; on the
hole list are independent identically distributed with an exponential distribution
with mean @, i.e,, '

Fely) = %eip (—y/0) fory>0. 3)

This implies that
Pr[Y < y] = L —exp(—y/6),)
Pr{Y > y} = exp (—y/9).

Let random variable Z be the delay until any 5 — b of the 7 updates are
removed from the hole list. Let the number of updates that do not fit in update
A’s hole list be m, that is,

m=j—h (5)

We want the probability distribution function of Z so we can compute E[Z] = ;..
The probability that Z is greater than z is given by

m—l
PriZ >z = Z Prlexactly ¢ updates were removed in z sec.). (5)

=0

Notice that the events on the right are mutually exclusive and they represent
the only ways in which z seconds could have gonc by without m or more updates
having been removed from the hole list. The probability of each of these eventis

is the probability that exactly ¢ updates are removed, times the number of ways

285

-

APPENDIX 7

in which we can choose the ¢ updates that finish out of the j total updates.
Therefore, '

m—1 ,.
PriZ > z] = E (‘7) PrlY <2)'PeY > 2. (7)

1=0 :
Using equation (4) and the fact that the cumulative probability distribution Iz»\z)
is 1 —Pr[Z > 2], we get
m—1 J. . L. .
r)=i— 3 (Ji—ewcsplio @
=0

The expected value of Z is given by

EjZ) = fo 2fz(2) dz, S {9)

where d
fz(z) = &;Fz ().

By integrating by parts in the above equation, one can show that

pE= [(-Fele (o)

so substituting the value of Fy(z) found in equation (8), we find that

=0 \?

com—1 ,. .
B[z} = J{ 2 (f)[c@(z/e) — 1} exp(—j/0) . (1)

Exchanging the integral and the sum and substituting exp(z/6)—1 by its binomial

expansion [KNUTT73, sec. 1.2.6, eq. 13},
m—1 J oo ; ok zj‘
YA el 28\ 1yi—k _z
EiZ} = ; (i)ﬁ ?_:'fl:)(k) cxp(7)(1) exp(4)dz. (12)

286

Fl

APPENDIX 7
Again, exchanging the integral with the sum, we gst

E[Z] = "‘2—1 (z) E ()(1)""/ exp (z(k ;‘7)) dz. {13)

=0 k=0

Evaluating the integral,

E[z]—'f()()Z‘()("”k” . | 19

=0

(Notice thet k— 7 < 0.) Using [KNUTT3, sec. 1.2.6, prob. 48], we sxmphfy this
to

=5 ()L o= 09

=0 '_")
T (el)
then . 9

E[Z] = 27 (17)

Equation (17) can also be written as
b3 = E[2) = 0{H; — Hy_n), (18)

where H; is the well known sum of the first 4 harmonic numbers:

Z . (19)
=1

Equations (2) and (18) allow us to compute 4., the time when the grant
message for update A will arrive at node = when the delay at central node strategy
is used:

e =ty 0, — Ei) +T. (20

287

APPENDIX 7

A7.3 - The Truncating Alternative With No Future Knowledge.

In this section we will compute an update’s delay when the central node
truncates m holes in update A’s hole list at random. Update A obtains its locks at
the central node at time fy. The grant message for A is immediately sent (at time
to) and T seconds later it arrives at node z. Since some holes were climinated,
A will be delayed at = unless the updates that were truncated happen to have
finished during the T scconds it took the grant message fo reach z.

Let B, B;,B3,...8,, be the updates that were truncated, and let exponen-
tially distributed random variables Xj, Xz, X3,... X be the times that these
updates remain on the hole list. If random variables Y, Y9, Y3,... Yy, are the
remaining times of the updates on the hole list at time ¢y, then these random
variables are also exponential, independent and identically distributed with mean
6. Hence equations (3) and (4) apply for random varigble Y.

Update A will have to wait at node z for all the truncated updates to
complete. Let random variable U be the delay (starting at time ¢g) until the
m updates are removed from the hole list (i.c., the dclay until their “perform
update” messages arrive). If U < T then update A will only be delayed for the
T scconds needed to transmit the “grant” message from the central node to node
z. On the other hand, if U > T, then A will be delayed U seconds. In other
words, update A's computations will be started at node £ on the average at time
Ytr:

VYer = to + E[V], (21)

where random variable V is defined by
V = max(T, U). - {22)
To compute E[V], we first find the cumulative probability distribution func-

tion of U, Fy(z). Random variable U can be less than a value z only if all of the
m updates have been removed from the hole list in less than = seconds. That is,

PriU<z] = f_[PrlY; < g). (23)

1=l :

Using equation {4), we get

PrU < 2] = Fy(z) = [1 — exp(—=z/8)]™. (24)

288

APPENDIX 7

Equation 24 can now be used to find the cumulative probability distribution
function of V, Fy(z). From equation (22), we observe that :

0, ifz< T

Fy{z) = {Fu(z), ifz>T. (25)

Next, we find E[V] as o | :
E[V] =/; [1 —Fy(z)]dz (28)

E[V]=T+ f [1 —[1 — exp(—z/0)]"™] dz. (27)

Using the binomial expansion of {1 — exp{(—z/0)]"™ and interchanging the integral
with the sum, we get

E[V]=T— E} (k)(—l)kf?‘ exp(—zk/0) dz. (28)

Evaluating the integral, we find that

— Z() —exp —T/0)] 3 e

Using [KNUT13, sec. 1.2.7, prob. 13], we simplify this to

m ¢ mipvik .
E[V]=T+0 Hm—E““""p{“’"’H | © (30)

k=1
\

(where H,, is given in equation (19)). This can also be written as

Al

exp -—T/B)] 31)

E[V] = T-,—HZ

Equations (21) and (31) give us 7, the average time when processing of
update A can start at node £ when the truncating strategy is used and the updates

289

APPENDIX 7

in the hole list are truncated at random:

" 1 —[1 —exp(—T/6)]F
sy =t T 0 Y L L X T/OT (32)
k=1
If T/8 is small, equation (32) can be simplified further. If
) v
/) fork>2
k .
is negligible as compared to T'/0, then exp(—T'/6) can be approximaied by i—7'/6
and equaticn (32) becomes '
' Nty = lo - OHp,.) (33)

A7.4 Comparison.

Equations (20) and (32) can be used to compare the performance of the delay
at central node with the truncating stratcgy when the central node has no future
knowledge. ’

Bcfore substituting actual valucs for the parameters, we can observe some
gencral trends in the equation for v and 7, , the times when update A's com-
putations can bestarted at node z for the delay at central node and the truncating
alternatives respectively.

(a) As the transmission time T approaches 0, ¢ approaches ip 4 8H,,. In
this case,ygc < Vir because (Hy — Hj—m) < Hpn and 7 > m. Therelore, for small
transmission times (i.e.,exp(—7/0) < 1), the dclay at central node strategy is
superior.,

(b) For j = myY4c = o+ T - 0Hm. Therefore, i, will always be smaller
than 44, because of the factor [I — exp(—T/0)]F in equation (32). (If (7/6)*/k for
k > 2 is negligible as compared to T/0, we can use equation (32] for 7, and we
find that 4, is stnaller than v by T scconds for j = m.) However, as j increases
while m is held constant, 4, remains at its same value while 4. starts decreasing
because of the Hj_,, factor. As j increases, Y4c approaches to T because I,
approachies H; for large 5. Thus, for some value of j, 5. will become smaller
than <. This can be interpreted as follows: As the number of updates we can
choose irom in order to truncate the m updates that do not fit in A increases,
the delay at central node alternative becomes more and more attractive.

290

APPENDIX 7

(c) If 7 is held constant, then we see that both 74, and 7, decrease as m is
decreased. At m = j we saw that v < 74, but this inequality may be reversed
for some smaller value of m. In particular, for m =1, yye = to+ T+ 6/7 and -
Ve = to -+ T -+ 9 exp(—T/6). If § > exp(T/6) (which is usually the case), we see
that y4¢ < vir at m = 1. In other words, (if 7 = exp(T'/0)) as the Iraction of
the updates in the hole list that do not fit in A's hole list decreases, the delay at -
central node strategy performs better. :

Table A7.1 shows the values of 4. and 4, for the typical paramcter values
used in chapter 6. In this case, the nctwork transmission time T is 0.1 scconds
and the mean of the hole remaining time distribution is § = 0.37 seconds (see
section A7.1). For convenience we assume that & = 0. Notice that in this case
the approximation of equation (33) can be uscd. Also notice thai only when
§ = m (i.c., hole size limit & is 0) does the truncating altcrnative perform better.

" In all other cases, 7y, is smaller and the delay at central node strategy is more
efficient.

The results for this case arc also shown in figure A7.1. In that figure, we plot
Yee and 7, as a function of 7, the number of updates in the hole list, for various
valucs of h, the hole list size limit. Recall that h = 7 — m. In this figure we see
that as h increases, the delay at central node strategy becomes more and more
attractive over the truncating strategy with no future knowledge. In chapter 6,
we stated that a value for h of 4 or 5 would be 2 good choice. For this value of
h, the delay at central node strategy is definitely superior.

A7.5 The Truncating Altcrhativc With Perfect Future Knowledge.

In this section we will compute an update’s delay when the truncating
strategy is used and the central node knows the times 3,8, 83, . . . £;. Recall that
t; is the time when the “perform update” message for update B; arrives at all
nodes (1 <1 < j). ‘

1f the central node truncates update B; from update A's hole list, then update
A’s computations at node z will be delayed at least until time ¢;. Therciore, since
the central ncde must truncate m updates, it should choose the ones with the
smallest value of ¢&. If the central node does this, then update A will be able
to proceed at node z as soon as the first m “perform update” messages arrive.
However, if this occurs before the “grant” message for A with the truncated hole
list arrives at node z, then A's processing will start when the “grant” message
arrives and not beicre. In other words, update A's computations will be started
at node z on the average at time -y

291

APPENDIX 7

Teble AT.1

TABLE A7.1

COMPARISON OF THE TRUNCATING WITH NO KNOWLEDGE STRATEGY
TO THE DELAY AT CENTRAL NODE STRATEGY FOR THE TYPICAL
PARAMETER VALUES. ‘

T
N

8.1 sec., ©= 8.37 ssc., t8 =8,
G, Ar = 6sec., Id = Is = 8.825 sec., M = 1688 items, Bs = 5 items.

The top entry in each box is %r. the time when update A's computations
are started at node x when the truncating with no knowledge strategy is
used, while the bottom entry in cach box is 7. , the time when A's
computations are started when the delay at central node strategy is used.

jremm—— i

[% |

| [

| e |
- .
;m\.3%1=2=3}4||5E6’!7!
__ i
1 | 6.38 | 6.38] 6.38] 06.38 | 6.38] 6.38 | 8.38 |
| 6.47 | 6.29 | 8.22 | 8.19 | 8.17 | 6.16 | 8.15 |
------ R e Rt R L R B et |
2 | | 6.56 | 0.56 | 6.56 | 8.56 | 8.56 | 8.56 |
| | 8.66 | 6.41 | 6.32 | 8.27 | 8.24 | 8.21 |
------ R R R R Rttt EEDL I EXEELEY
3 |] | 6.68 | 8.68 | 8.63 | 6.68 | 8.68 |
[| | 6.78 | 6.58 | .39 | 6.33 | 8.29 |
------ it R R R] B bttt B DL DI EELE LY
4 | [| | 8.77 | 6.77 { 6.77 | 8.77 |
|] i | 8.87 | 8.57 | 8.45 | 8.38 |
------ R e D et i B Rl EE e
5 | i | | | .84 | 8.84 | 8.84 |
i | | |] 8.94 | 8.64 | B.58 |
------ R e R B e el Bl
6 | [I [| | 6.91 | 8.91 |
| | | | | | 1.81] 8.69 |
------ R R R R R R S L by ELL LY
7 | | | | | { | 8.96 {
| | I | | | | 1.86 |

292

APPENDIX 7

delay
{sec)

Figure A7.1

24
1.2 h=0
1.0 .
h=l
0.9+
h=2
0.8+
h=d
0.7+ h=l
0.6+
0.5+ h=2
0.4t
0.34 nea
0.24
0.1
; t . - 3 ; ; :
12 3 4 s 6 1 8

j» number of updates in central
node hole list

Figure A7.1. Comparison of the truncating with

no knowledge to the delay at central node strategies.
N=6, Ar=6 sec., M=1000, Bs=5, Is=1d=0.025 sec.,

T=0.1 sec.

293

APPENDIX 7
=t +E[V] (34) .

where random variable V is defined by
V = max(T, U). (35)

and random variable U is the delay from time {y to the time when the “perform
update” messages for the m truncated updates have arrived. Notice that random
variable U is exactly the same as random variable Z of section A7.2. Thus,

m—l v y . . -
R =1~ 3 (1)~ expiefaliemptssol . (30

=0

The cumulative distribution function of V, Fy(z), is the same as Fy(z) if
z > T and is 0 otherwise. So using eq‘.aé."n (26), we find the average value of
V to be

oo m—1 . L.
B[V =T+ f ()u — expl—afO)lexpl—sa/O)dz. (37)

c—-D

Except for the lower integration bound, the integral is the same as the one in
equation (11). Following the same stcps we followed with that integral, we get

B[V =T +'§() Z(k)(—l)kaexp«k /0 N

§=0 k=0 j—Fk

Unfortunately, the extra factor cxp((k — j)T'/0) does not allow us to simplify
this cquation as was done with cquation (14). Hence, we will have to evaluate
7tp with this equation.

A7.6 Comparison.

In this sub-scction we will compare the performance of the truncating alter-
native with perfect future knowledge with the delay at central node alternative.
We can make the following general observations regarding ~p, the tirne when

294

APPENDIX 7

update A's computations are started at node £ when the truncatmg alternative
with perlect knowledge is used.

(a) If T is very small (i.c., exp(—T/0) ~ 1}, then Y = Yae and both the
truncating strategy with perf cct knowledge and the delay at central node strategy
arc equivalent (sce equation (38)). If T is not small, then vz, will be smaller than
~dc because of the exp{—T'/0) factor in the sum of equation (38), (Compare this
cquation to equation (14).)

(b) As j increases for a fixed m, both v, and g, approach & 4 T. ~ip
approaches) 4 T because in equation (38), ¥ < m and the limit as j goes to
infinity of exp ((k — 5)T'/0) is 0. In other words, as the number of updates we can
choose from in order to truncatc the m updatcs that do not fit in A increases,
the delay in both stratcgies becomes the same and is equal to T seconds.

(c) If the hole list size limit his 0 (i.c., 7 = m), then the truncating alternative
with perfect knowledge should perform exactly like the truncating alternative
with no knowledge because aii j updates must be truncated in either case. This
can be shown to be true by making m = j in equation (38). Fortunately, in this
special case, this equation can be simplified as follows: With m == 3, 7, becomes

BV =T+ E() iy E() "l}ex[;(_g—‘k)’l’/()). (39)

1=0 k=0

Exchanging the summations and rcarranging, we get

j—1 |
B[V =T +Z “9CXP (J"‘ k)T [0) Z(i)(k>(). (40)

k=0 1=k

Using [KNUT’#B, sec. 1.2.6, eq. 23] we find that
J—1 . i '
10 A) SR

§O

EV] =T — ’“‘ (i)(_ 1Y ~Hexp(—(i—KT/0)) .

k=0 \ j—k

295

APPENDIX 7

Finally, by changing the summation index variable k to § — n, where 7 goes
from 1 to j, we see that equation (42) is the samc as equation (29) with m = j.
Therefore, in this case, 7;p = v, and both truncating alternatives are equivalent.
It (T'/6)*/k for k > 2 is ncgligible as compared to T/0, then vy, and -, are
approximately to-}-8H; when m = j. Hence, either truncating strategy will save
about T seconds in average response-time as compared to the delay at central
node strategy.

Table A7.2 shows the values of yp and vg. for the typical parameter values
of chapter 6, assuming that fp = 0. The network transmission time is 7" = 0.1
seconds and the average hole remaining time is § = 0.37 secconds. Recall that
in this case, /0 = 0.27 and (T/0)*/k for k > 2 will be almost negligible com-
pared to T/6. Also notice that the difference in average response time of the
two strategies is always less than or equal to T, with the truncating with perfect
knowledge strategy always being superior, as expected. In figure A7.2 we plot
-the values of 7y, and 7y, as a function of 7, the number of vpdates in the hole
list, for various values of h, the hole list size limit.

AT7.7 Conclusion.

If the central node has perfect future knowledge as to when vpdates will
finish, then the truncating alternative is always superior. However, the saving
as compared to the delay at central node strategy never seem to be more than T
seconds in average response time. (In the cascs we tested, the savings are always
less than or equal to T scconds.)

If the central node has no idea when updates will finish, then the delay at
central node alternative performs better than the truncating alternative in most
cases of interest (c.g., b 52 0). The equations we have obtained could be used to
~ vary the strategy dynamically as each update is granted locks. Dcpending on
“the value of j (the number of updates in the hole list at the central node} and

of m (the number of updates that must be truncated), the alternative with the
lowest predicted response time could be chosen.

If the central node can only predict the termination of updates with a limited
ability, then the strategy we choose wii: depend on the accuracy of these guesses.
" The best way to decide on a particular strategy in this case would be e perform
actual tests in the real distribuied database system.

296

APPENDIX 7

Table A7.2

TABLE A7.2

COMPARISON OF THE TRUNCATING WITH PERFECT FUTURE KNOWLEDGE STRATEGY -
70 THE DELAY AT CENTRAL NODE STRATEGY FOR THE TYPICAL
PARAMETER VALUES.

8.1 sec., ©=8.37 sec., t8 =8

T ’
6, Ar = 6sec., Id = Is = 6.825 sec., M = 10600 items, Bs = 5 items.

N

The top entry in each box is‘?Q?, the time when update A's computations
are started at node x when the truncating with perfect knowledge strategy
is used, while the bottom entry in each box is Y , the time when A’s
computations are started when the delay at central node strategy is used.

I‘ytfl
7e
J----=- |
-
m\ Jj { 1 { 2 : 3 { 4 { 5 } 6 { 7 f
i | 6.38] 8.21 | 6.15] 8.13 | 8.12 | 8.11 | 8.11 |
| 8.47 | 8.29 | 8.22 | 6.19 | 6.17 | 8.16 | 8.15 {
------ [R R e e R Ko ttl R il
2 1 | 8.56 | 8.31 | 6.23] 6.18 | 8.15 | 8.14 |
| | 8.66 | 6.41 | 8.32 | 8.27 | 8.24 | 8.21 |
------ [t R R el Kl ol R C L lel St ideted |
3 | | | .68 | 6.46 | 8.29 | 6.23 | 8.208 |
! | | 8.78 | 8.56 | 0.39 | 8.33 | 8.29 {
------ R By B T Rt R tid Rttt
4 | | | | 8.77 | 6.48 | 8.35 | 8.28 |
| I I | 8.87 | 8.57 | .45 | 8.38 |
------ T R R it Rl L b bl Rttt |
5 | [i | | .84 | 6.54 | 5.48 |
| I I] | 8.94 | 8.64 | 8.58 |
------ O eiieieiel Beatetetd ELL T B Lt bl Rt |
6 I I | I } 8.91 | 8.59 |
] | | | | | 1.81 | 8.69 |
------ R R R el tatetteiel ELE LUt B L) Bt iatd |
7 | | | | | | 8.96 |
I | | ! f]] 1.86]

297

APPENDIX 7

delay
{sec)

Figure A7.2

|
1.1+
h=
.04
h=0
0.9+
0.8+
0.7+ hal
0.6+ ~ h=l
-~
0.5+ h=2
0.44. .~ h=2
0-3r h=4
0.2 h=4
0.1
t + + + t + + e
1 2 3 4 5 6 7 8

j, number of updates in central
node hole list

Figure A7.2. Comparsion of the truncating with
perfect future knowledge and the delay at ceatral
node strategies. N=6, Ar=6 sec., ¥=1000, Bs=3,
Is=Id=0.025 sec., T=0.l1 sec.

298

APPENDIX 7

A7.82 A Final Note.

In this analysis we studicd the delay until update A's computations could
be started at node z. The analysis did not take into account the following effect:
In the truncating alternative, update A is released 2t node z when the “perfcrm
“update” message of the last truncated hole list update B arrives at . This means
that it is more likely that A will wait longer for service at node z because we
know that another request for scrvice (mainly B's request) immediately preceded
A’s request. In the delay at central node strategy, this does not occur because B's
“perform update” message arrives T seconds before A's “grant” message. Thus,
update A’s delay will be slightly larger than what we have predicted when a
truncating strategy is used. Unfortunately, it scems hard to study these effects
without using simulations. Finally, notice that since A and B have no iterns
in common, a “smart” scheduler at node z could schedule the two requests “i

parallel”, thus eliminating the problem we have just described. (Exercise for the
rcader: Why do A and B have no items in common?)

(End of Appendix 7.)

299

APPENDIX 8.

In this appendix, we analyze the “read without locks and then request locks”
strategy for the MCLA-h algorithm. We use the performance model and analysis
techniques that were used in chapter 4 to analyze the MCLA-h algorithm. In
particular, we assume that all databases are completely duplicated at cach node’
and that all transactions are updates. We also assume negligible CPU times. The
analysis in this appendix is simplified and rather pessimistic. ’

When the “rcad without locks” strategy is used, an update first reads data
at its originating node and then requests locks at the central node. If there are
no rejection at all, then the fact that the read and compute step was performed
before the locks were requested instead of after (as in the original MCLA-h al-
gorithm) does not allect the performance. Thus, il we assume that no rejections
occurred, the performance of our “read without locks” algorithm will be the same
as the performance of the MCLA-h algorithm. {Sce appendix 5.)

Our strategy to estimatc the average response time of updates will be as
follows. First we assume that no conflicts occurred, and we obtain the average
rcsponse time from our previous analysis. Based on these results, we compute
the average time during which an update is vulnerable to conilicts, and is hence
vulnerable to recjection. Based on this value, we find the probability that an
update is rcjected. We assume that rcjected updates place the same load on the
system as updatces that are not rejected. This is a pessimistic assumption because
in reality, updates can be aboried as soon as a conflict is detected. Frurthermore,
rejected updates are not performed at all nodes so they never make these IO
rcquests. However, to simplify the analysis, we assume that rejected updates
produce the same service requests as accepted updates. But we should keep in
~ mind thit the response time in a real system will be smaller than the response
time we obtain from this analysis.

Considering the rejected updates is equivalent to having an increase in the
arrive] rate of updates to sach node. Thus, we can repeat the MCILA-h analysis
with an increased arrival rate to obtain a better approximation. After this, we
can recompute the update vulnerable period and the probability of rejection to
repeat the MCLA-h analysis. We refinc the results in this itcrative fashion until
there is no change in average response time or until we detect that the strategy
does not converge. :

Aiter cach MCLA-h analysis, we can compute the vulnerable period and the
probability of rejection as fellews. The vulnerable period of an update A starts
when A arrives at its originating node and ends when A obtains all locks at the

300

APPENDIX §

central node. Thus, the average vulncrable period, Vp, is
V= Woo -+ LE[Y] -+ T+ W, + 2LE[Y]

where Wy, and W, arc the average IO wait times at a non-central and central
node, respectively, T is the transmission time, [E{Y] is the average time to read
the data and 2L, E[Y] is the average IO time to obtain the locks at the central
node. The vulnerable period of updates originating at the central node is slightly
different but we ignore this here. ’

If we assume that all updates are performed at all nodes at the same time
(sce appendix T), we can state that any “perform update” messages that arrive
during the vulnerable period may cause a conflict with A. The number of such
messages that arrive is

ne = number of completions = NA\Vp

where N is the number of nodes, and N\ is the rate of update completions (which
is also the original arrival ratc of updates in a stable systemn.)

Probability Pr{C) is the probability that two updatcs conflict and is given -
by equation (23) of chaptcr 4. Hence, the probability that A does not conflict
with one of the update: that completed in the vulnerable period is 1 — Pr{C).
The probability that A does not conflict with any of the updates is (1 —Pr(C))
to the power n., and the probability of rejection of A is

Pr(R) = 1 — [1 —Pr(c)]"™

This implics that the raic of rcjections is (arrival rate of updates) times 1°-7¢).
This rate is added to the arrival rate of updates to give the total arrival rate for
the next iteration of the MCLA-h analysis. The expected response of updates
will be (1 4 Pr(R)) times the average response time of a simple update that is
not rejected (assuming only one rejection per update transaction.)

We now we give a complete listing of the program that performs the analysis
we have described. Notice that the program for the MCLA-h analysis (appendix
5) is part of the new program.

301

begin "program"

require "{} {}" delimiters;
define crif = {(°15&'12)};
define cr = {(*15)};
define $ = {comment};

$ This program computes the average response time of an update
in the MCLA centralized locking algorithm when the base set is read
without locks initially. This program is based on the program of
appendix 5. The new variables are "origLam" (the original
value of lambda), "numComp" (the number of updates that complete in the
vulnerable period), "oldLam" (the last value of lambda), "Pr" (the
probability of rejection), and "jZ" (a counter};

external integer !skipl;

integer bk; string rep;

integer Jj, jé;

real temp,N,M,Ar,Bs,Is,Id,T,lambda,EY,EY2,EZ,EZ2;
real Pw,i,restime,oldrestime,lLnc,Lc;

real rate, Xc, Xc2,ro0,¥c, Xnc, Xnc2,¥nc,Rne,Re;
real EYgc, EY2gc, EZgc, Lge, Lncge, Lcge;;

real Pc, P2w, Pwl, Pw2, EYrem, EYZrem;

real origlam, oidLam, numComp, Pr;

real procedure power(real x, y);
begin
real temp;
if x = 6 then return(8.8); temp + yxlog{x);
if temp < -28 then return(8.8) else return(exp(temp) };
end;

302

procedure SolveSystem;
begin "compute”
rate- (24N + 1) + PwxN;
Xce- N % 2 # Is % EY;
Xce Xc + IdxEY;
Xce Xc + N « (Is*EY + Id»EZ);
Xce X + Pw «# N x 2 x Is %{ EYrem + P2wx(EYrem-1)/2);
Xce Xc [/ rate;
Xc2e N x 4 % IsxIs % EY2;
Xc2+« Xc2 + IdxId x EYZ;
Xc2+ Xc2 + N + { IsxIs*EY2 + Is#xIdx(EY + EY2) + Id#Id*EZ2);
Xc2+ Xc2 + Pw % N % 4%IsxIs
(EY2rem + P2wx{EYZrem/3 - EYrem/2 + 1.8/6.8));
Xc2e Xc2 / rate;
roo~ lambda * rate * Xc;
if roo geq i then
begin
print(crif, "xxxxxxx SYSTEM IS UNSTABLE ##xxxxx");
roo~ lambda+~ §;
end;
Wee ((lambda * rate /2) * Xc2)/(1 - roo);
rate- N + 1;
Xnce (Id=EY + N % Id*EZ)/rate;
Xnc2« { Id=Id*EY2 + N * IdxId*EZ2)/rate;
roo~ lambda * rate * Xnc;
if roo geq 1 then
begin
print{(crif, "xitaxxx SYSTEM IS UNSTABLE #a%ixx%");
roo+~ tambda+~ 9;
end;
Wnce ((lambda * rate /2) % Xnc2)/(1 - roo };
Rnce 2 % Wnc + We + 2+IsxEY + Id*{EY + EZ) + 2xT;
Rce 3 ¢« W + 3 & Is % EY + Idx{ EY + EZ);
restime- ((N - 1)xRnc + Rc)/N + Pwx(lgc/2 + Wc + Isx{E¥gc-1))
+ Pw2xlgc + PwxP2w=x{Lgc/2 + Wc + Is*{EYrem - 1});
end "compute";

procedure conflictlanalysis;
begin "conflictlanalysis"
Lhnce T + Wne + Id<EY + T + Wc + Is*EY + Id*xEZ;
Lce We + Id#EY + We + Is*EY + Id+EZ;
L« ((N-1)xLnc + Lc)/N;
Lncge~ T + Wne + Id#EYgc + T + Wc + IsxEYge + IdsEZgc;
l.ege Wc + IdxEYgc + Wc + IsxEYgc + Id*EZgc;
Lgce~ ((N-1)}x Lncgc + Lcge)/N;
Lgce Lgc + ({Lgc/2)xNxlambda*EY/M)xLgc;
Pwle Pc %« N % jambda * L;

- Pw2e Pcr{igc/2 + We + Isx(EYgc-1))xNxlambda*Pwl;
P2w~ (EYrem=EY/M)+N+lambdaxl;
Pwe Pwl + Pwl;
end "confiictlanalysis”";

303

while true do
begin "main”
$ Read in parameters; .
print("number of nodes = "}; rep~intty; temperealscan(rep,bk};
if Vskip! = cr then Ne temp else print{N,crif);
print{"number of items M= "); rep~intty; temp~rea15can(rep,bk),
if tskip! = cr then M~ temp else print(M,crif});
print{"interarrival time Ar = "); rep+~intty; temperealscan{(rep,bk)
if iskipt = cr then Ar«temp else print(Ar,crif);
print{"mean base set Bs = "); rep~intty; temperealscan(rep,bk);
if Iskip! = cr then Bse«temp else print{Bs,crif);
print("I0 slice Is = "); repeintty; tenp«realscan(rep bk);
if tskip! = cr then Is*temp else print{Is,crif);
print("I0 data = "); rep«intty; temphrealscan(rep,bk),
ifT !skip! = cr then Id*temp else print(Iid,crif);
print(“transmission time T = "); rep~intty; temperealscan{rep,bk);
if tskip! = cr then T+ temp else print(T,crif);

we

lambda« 1/Ar; EYe« 1/(1 - exp{ -1/Bs });

EY2« EY %= EY = (1 + exp(-1/8s));

EZ« (EY + 1.8)/2.8;

EZ2« EYZ2/3 + EY/2 + 1.8/6.8;

EYgce 2 % exp(-1/Bs) = EY + 1

EY2gce- Grexp(-1/Bs)*EYx{ exp(-1/Bs)*EY + 1) + 13
EZgc- (EYgc + 1.8)/2.8;

EYrem~ (EYgc - 1.8 }/2.6;

EY2reme~ EY2gc/3.8 - EYgc/2.0 + 1.8/6.8;

Pc- EY * EY / N;

jo+~ 8; origLam~ lambda; print{crif,"lambda= ", lambda);
do begin

$ This 1is the original MCLA-h analysis;
Pute Pwle Pw2e« P2w+- 8; Jje 8; Le Lgce 8; oldrestimee~ 8;
SolveSystem; $ Result is restime, Wc, Wnc;
do begin
print{crif,restime);
Je 3+ 1;
conflict!analysis; & Result is Pw, L, Lgc;
oldrestime~ restinme;
SolveSystem; $ Result is restime, We, VYnc;
end
untit (3 > 5) or ({restime - oldresvime)/restime < .81 };
print{crif,"==> mean response tine = ", restime,

" jterations = ", j);
print{crif," Wnc = ",Wnc,” Wc =", Wc);
print(crif," EY =", EY,* EZ =", EZ, crlf, crif);

$ End of the original MCLA-h analysis;

$ Now we compute the probability of rejection;

je+~ j2 + 1; oldLam~ lambda;

numCompe HxorigLamx(Wnc + Id*EY + T + Wc + 2xIsxEY);

Pre 1 - power{ {(1-Pc), numComp);

larmbda< origlams(1 + Pr);

print{crif, " new res time is ", restimex(1l + Pr),

" new lambda i1s ", lambda);

end
untii (j2 > 5) or ((lambda - oldLam)/lambda < §.881);
print(crif, "END", crif);

end "main"
end "program"

304

REFERENCES

[ALSBT8]

[ASCHT74]

[BADATS]

[BERNTS]

[CASET2]
[CHUSY]
[CHU74]

[CHU7S]

[COFF7]
[COMBT5]

[ELLITT]

edad}

MG W2
l.l_J (AXR N Uj .

[FREUT1]
[FRY76]

[GARCT7]

P. A. Alsberg and J. D. Day, A Principle for Resilient Sharing of
Distributed Resources,2nd Intl, Conf, on Software Engineering, San
Francisco (1976) 562-570.

F. Aschim, Data Basc Networks-An Ovcrvncw,Management Informatxcs
Vol. 3 Num. 1 (1974) 13-28.

D. Badal and G. Popek, A Proposal for Concurrency Control for
Partially Redundant Distribuied Database Systems,3rd Berkeley
Workshop on Distributed Data Management, San Francisco (1978)
273-285.

P. A. Bernstein, J. B. Rothnie Jr., N. Goodman, and C. A. Pa.padlmltnou,
The Concurrency Control Mechamsm of SDD-1: A System for
Distributed Databases (The Fully Redundant Case),[EEE Trans. on ’
Software Engincering, Vol. 4, Num. 3 (1978) 154-168.

R. G. Cascyr, Allocation of Copies of a File in an Information
Network,Spring Joint Computer Conf. (1972) 617-625.

W. W. Chu, Optimal File Allocation in 8 Multiple Computer System,
IEEE Trans. on Computcrs, Vol. 18 Num. 10 (1969) 885-889.

W. W. Chu and G. Ohlmacher, Avoiding Deadlock in Distributed
Databases,ACM National Symposium, Vol. 1 (1974) 156-160.

W. W. Chu and E, E. Nahouraii, File Directory Design Considerations
for Distributed Databases,Intl. Conf. on Very Large Databases,
Framingham (1975) 543-545.

E. G. Coffman, M. J. Elphick and A. Shoshani, Systcm Deadlocks,
Computing Surveys Vol. 3 Num. 2 (1971) .

P. G. Comba, Needed: Distributed Control,Intl. Conf. on Very -
Large Databases, Framingham (1975) 364-373.

C. A. Ellis, Consistency and Correctness of Duplicate Database
Systems,6th Symposium on Operating System Principles (1977) 67—
84.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, The
Notions of Consistency and Predicate Locks in a Database System,
Communications of the ACM Vol. 19 Num. 11 (1976) 624-633.

J. E. Freund, Mathematical Statistics,Prentice Hall (1971) .

J. P. Fry and E. H. Sibley, Evolution of Data-Base Management
Systems,ACM Computing Surveys Vol. 8 Num 1 (1978) 7-42.

H. Garcia-Molina, Overview and Bibliography of Distributed Data

305

[GARCTS)]

[GARCT8b]
[GORD78]
[GRAPT6]

[GRAY76]

[GRAYT7)

[GRAY79)]
[JACKS57]

[JOHNT75]
v i
[KLEI75)

[KNUT73]

[LAMP78]

[LAMP]

[MAHMT6]
[MARY77]

[MENATS]

Bases,Rcport HPP-77-27, Computer Scicnce Dcpartmcnt Stanford
University (1977) .

H. Garcia-Molina, Performance Comparison of Update n}gont‘lms

for Distributed Databases, Technical Note 143, Digital Systems
Laboratory, Departments of Electrical Engineering and Computer
Scicnce, Stanford University (1978) .

H. Garcia-Molina, Distributed Database Coupling,3rd USA-Japan
Computer Conference, San Francisco (1978) 75-T8. _

G. Gordon, System Simulation,Prentice Hall (1978) . C .
E. Grapa, Characterization of a Distributed Database System,UIUCDC‘S— '
R-76-831 Department of Computer Science, University of Illinois at
Urbana-Champaign (1976) .

J. N. Gray, R. A. Lorie, G. R. Putzolu, and L L. Traiger, Granularity
of Locks and Degrecs of Consistency in a Shared Data Base,Modclling
in Data Base Management Systems, North Holland {1976) 365-394.

J. N. Gray, Notes on Database Operating Systems,Advanced Caurse
on Operating Systems, Technical University Munich {1977) .

J. N. Gray, Pcrsonal Communication (1979).

J. R. Jackson, Nectworks of Waiting Lines,Operations Research 5
(1957) 518-521.
P. R. Johnson znd R. I. Thomas, The Maintcnance of Duphcaue
Databascs,Networking Working Group RFC 677 (1975) .

L. Kleinrock, Queueing Systems, Volumes 1 and 2,John Wiley and
Sons (1975) .
D. E. Knuth, The Arb of Computer Programming, Vol. 1,Addison-
Wesley (1973) .

L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed
System,Communications of the ACM Vol. 21 Nuin. 7 (1978) 558-
564,

B. Lampson, and H. Sturgis, Crash Recovery in a Distributed Data
Storage System, Technical Report XEROX PARC, Unknown Date.

S. Mahmoud and J. S. Riordon, Optimal Allocation of Resources

in Distributed Information Networks,ACM Trans. on Database
Systems Vol. 1 Num. I (1976) 66-T78.

F. J. Maryanski, A Survey of Developments in Distributed Database
Management Systems, Technical report CS77-08, Kansas State University
{1977) .
D. Menasce, G. Popek, and R. Muntz, A Locking Protocol for
Resource Coordination in Distributed Databascs,SIGMOD Intl. Conf.

306

on Management of Data, Austin (1978) .

[MERTT74] K. Yamaguchiand G. Merten, Mcthodology for Transferring Programs
and Data,ACM SIGMOD Workshop (1974) 141-155.

[METCT76] R. Metcalie and D. Boggs, Ethernet: Distributed Packet Switching
for Local Computer Networks, Communications of the ACM Vol. 19
Num. 7 (1976) . .

[PAPO85] A.Papoulis, Probability, Random Varisables, and Ste<hastic Processes,
McGraw Hill (1965) .

[ROSET78] D.Rosenkrantz, R. stearns, and P. Lewis, System Level Concurrcncy -
Control for Distributed Database Systems,ACM Trans. on Database
Systems Vol. 3 Num. 2 (1978) 178-198.

[ROTHT77] J.Rothnic and N. Goodman, A Survey of Research and Development
in Distributed Database Management,3rd Intl. Conf. on Very Large
Databascs, Tokyo (1977) .

[STONT7] M. Stonebraker and E. Neuhold, A Distributed Data Base Version of
INGRES, 2nd Berkeley Workshop on Distributed Data Managcmcnt
(1977) 19-36.

[STONT8] M. Stonebraker, Concurrency Control and Consistency of Multiple
Copics of Data in Distributed INGRES,3rd Berkcley Workshop on

~ Distributed Data Management (1978) 235-258.

[THOM?6] R. H. Thomas, A Solution to the Update Problem for Multiple
Copy Data Bascs Which Uses Distributed Control, BBN Report 3340
(1976)

[WONGT77] E. Wong, Retricving Dispersed Data from SDD-1: A System for
Distributed Databases,2nd Berkeley Workshop on Distributed Data
Management (1977) 217-235.

307

