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In this chaptcr wc givc a bricf ovcrvicw of thc nrca of distributed databases 
and we define the problem that wc will addrcss in' this thcsis. In section 1 we 
dcfinc what wc mean by a distributcd databasc. In thc following two sections 
&c Iist some of thc poter;tisl advantages and disadvantages of thcse systems. In 
scction 4 wr: list sornc of thc current arcas of rcscarch in the distributed database 
ficld. Then in scction 5 wc dcfinc the particular arca that we will concentrate on 
in this tllcsis. Wc discuss thc issucs wc would like to acldrcss, and we describe 
the approach taken by giving an outline of this thcsis. 

1. DEFINITIONS. 

One of thc most serious problcms in the fast growing area of distributed 
drrtabnscs is that there is no wcll dcfincd vocabulary: the same words are given 
diflcrent mcanings and divcrsc narncs arc zscd for the same thing. This is espe- 
cially truc Tor thc tcrm "distributed databasc" itself, so in this'section we will 
try to dcfinc it.. 

The first step is to define what we mean by a standard (non-distributed) 
dntnbasc: A database is n collcction of rclated data that is acccssiblc by a com- 
puter. Vsually, the data is shared by sevcral users wit11 divcrse objectives. A 
database must also havc a sct of procedures for handling thc data. Thc operations 
on the daiz includc storing, updating, starching and retrieval of the data itcrns. 
The system that handlcs thz databasc is callcd thcdatabasc management system. 

For our definition of distributcd databascs, wc \vili try to give tbe most 
gcncral one possibic. This way we will bc able to encompass all of the types of 
distributed databases. Our dcl'inition is the following: 

A distributcd database is a systcrn that alto\vs intcgrated access 
to n collcction of logically indcpendcnt databases. 



Notice that we did not mention thc tcrm "nctwork of computers" in our 
definition. There will be o conlputing facility, callcd a node, associated with each . 

database in the distributcd database and thcrc wiII be communication mechanisms 
between the nodcs. EIowever, a distributed database docs not ncccssarily have to 
bc spatially distributcd, nor is it necessary to havc a difTcrcnt computer for each 
databasc. Two or more of the databascs may be physically located in a single 
computcr. Jn this case, the communication rncchanisrns arc straightforward (e.g. 
through shared memory). To direrentiatc a single non-distributed database in 
a singlc computcr from a set of databascs on a singlc machine, i t  is important 
that  the sct of databases be logically indcpcndcrit. That is, it is necessary that - 
from a logical point of view they could as wcll bc locatcd on separate machines. 
(In the rcmaindcr of this thcsis, wc will still usc terms likc "nctwork" or "remote 
site1' to simplify  explanation^.) 

By intcgratcd acccss we mean that a transaction entered a t  any node can 
access data in any onc of the databascs. This is a minimum requirement for 
integmtcd access; in particular note that bcing able to update or add data  at. a 
rcrnotc node is not a rcquircmcnt. 

A typical example of a distributcd database ~vould be a system used by a 
large manufacturing company. The company llas sevcral sitcs and a t  each site 

. thcrc is a computcr. All the co~nputcrs arc intcrconncctcd through a network. 
Tiic databases a t  each of the sites might contain data on the locd raw miterials 
and finished products inventory, thc plsnncd production a t  the site, as well as 
sornc data on the crnployccs that worlr thcrc (c.g. namc, addrcss, shift, extra 
hours, etc.). Tlic database a t  the company's headquarters might have data on all 
of thc employccs (c.g. namc, salary, site where crnploycd, ctc.) and data on t he  
purchase arid salc ordcrs. Typical operations with thc database could be to find 
ou t  the addrcss of a givcn wo~kcr, to update the inventory, to shift production 
from onc site to anothcr, oi  to give employccs of a certain classification (at 'any 
site) a raise. 

2. ADVANTAGES OF DISTZBUTED DATABASZS. 

Distribu Lcd database systcms are by no means thc final solution to  all d a t a  
management problems; thcy arc only an alternative to the more cornnlon central- 
izcd database systems. Not all databases should bc designed as distributed sys- 
tems. Only by understanding the particular objcctivcs of a given system and 
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by knowing tllc advantycs ofl'ered by a distributcd systcrn, will it, be possible - 

to  dccidc if dislributiorl pays off. It is also important to understand the ad- 
vnntagcs and disadvantages of a distributcd solution bccause emphasizing certain 
advantages will rcfiult in widely varying systems. 

Tllc potential advantages of distributed databasc systcms are the following. 
Wc could also call this list the reasons for choosing a distributcd system over a 
ccntralizcd onc. 

1) PEWORMANCE. By taking advnntagc of the availablc parallelism and 
of Lhc increased computc power, we can spccd up operations in the database 
systcrn. Our gains can be of thrcc typcs: 

a) Rcsponsc times lor scarches can be dccrcascd. 
b) IT thc data of immcdiatc importancc to the uscr is kcpt locally, then 

this data can bc kcpt morc up io  datc khan thc cntirc databasc since 
local updatcs can bc donc faster. 

c) Larger databases can be lmndlcd without degrading performance. 
2) RFTJIARLITY. By having duplicate data st diriercnt nodes, the system . 

will bc morc reliable. If one nodc goes down wc can still acccss data from 
anotbcr node. . . 

3) CONTROL and QUALITY of data. If thc data is distributed among the  
'iiscrs, tllcy will havc direct control'of their bwn data whilc still bcing abk a 

to share it  with othcr users. When'a, uscr is in chargc of his own data, he 
will bc rcsponsiblc for it and will takc bcttcr carc of it. Therefore, the da t a  
in t1.c system will bc of higher quality. 

4) SHARING of gcographically distribu ted data. If tlic databasc already exists 
and ifi gcographically distributcd, then a distributcd database systcm will 
inhcrconncct the databascs and allow thc sharing of the data. 

5) ECONOMY. If thc databasc users arc gcograpliically distributcd and if 
thcir in tcractions cxhibi t strong "iocali ty" , then it rnigli t be lcss expensive 
to  do thc processing locally. That is, the tclc-communications costs can be 
highcr than the tclc-processing costs. 

6) LOAD DISTRIBUTION. The distributed databasc will allo*.~ us to  move 
programs and/or data from overloaded nodcs to nodcs with availablc capacity. 

7) hIODLL ARITY. A distributcd database system can be modular and there- 
fore easier to expand. 

8) SECUXITY. Distributcd databasc systcns havc B potential lor greater 
security bccausc thc databases can bc kcpt in complcbcly independent om- 
putcrs with acccss from othcr nodes in the network carclully controlled. 
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3. DISADVANTAGES OF A DISTRBVTED DATABASE. 

Now wc will give a list of thc potential disadvantages of data distribution. 
Ij COMPLEXITY. Thc main problem with distributcd database systems is 

that  they arc considerably morc complex than ccntralizcd systems. In ad- 
dition to somc of thc cominon issues rclatcd to standard databases, there is 
an entire set of qucstions that are rclatcd to the data distribution. (These 
problcms wi1I bc trentcd in scction 4.) The highcr complexity implies greatcr 
design costs and more sources for error. 

2) HARDWARE COSTS. A good distributed databasc systcm inherently has 
morc hardwarc than n centralized systein. Some of thc sources of extra 
hardware arc Ihc communication rncchanisms, thc rcplicatcd processors and 
the extra storagc nccdcd for redundant data. Although hardware prices are 
changing rapidly, most distributed altcrnativcs will bc more expensive. 

3)' LACK OF EXPE12ENCE. Tiicrc are currently only a few experimental 
and Iirnited distributcd database systcrns bcing dcsigncd. So there is none 
of thc sccurity implied by tcstcd and ~vidcly uscd idcas. 

4) LACK OF CENTRAL CONTROL. It is commonly stated that centralized 
control is an advantage of ccntralizcd databasc systcn~s. J. F ry  and E. Sibley 
statc that ccntralizcd control "is ncccssary for cficicnt data administration" 
[FRY76]; Howcvcr, tllc truth of this statement is dcbalablc. If by "cficicntl! 
wc rcfer t o  hardware cmcicncy (c.g. no I\-astcd rcsourccs), thcn a centralized 
systcm would bc advisable; but if wc arc tnlking about cflicicnt service for 
the uscrs, then n distributcd systcm might bc bcttcr. Paul G. Comba uses the 
following nrgumcnt against ccntralizcd control [COMB75]: "A large complex 
entcrpri~c docs not sta.nd still loilg cnough for ihc databasc administrator 
and his s tag  to lindcrstand the information nceds of cvcry uscr and integrate 
them into a complctc dalabasc spccification. . . . TEic only scnsible way 
to  procccd is for the uscrs to participate dircctly in thc spccification and . 
de~~clopmcnt of thosc parts of thc dntabasc systcm that arc intcndcd to 
facilitate tllcir work; and for the dcsign/implemcnlation process to  proceed 
in tcract ivcly!' 

4. CURRENT AREAS OF RESEARCE. 

Thc ficld of distribu tcd databases. is a complcx one whcre there a re  still 
o. lot of unrcsolvcd issues. It is a relatively young field whcre some research 



has bccn donc but whcrc much morc is nccdcd. Wc will now list and bricfly 
dcsiribc tllc currcnt arcas of rcscaich and some of tllc mairl problcrns of dis- 
tributcd datnbascs. Notice that thcsc arcas of rcscaich arc not disjoint. (A 
dctailcd description of tIlcsc arcas can bc found in somc of the overview papers 
[ASCII74,GARC77,MARY77,ROTI-I77].) 

1) PROGRAhl Ah9 DATA ALLOCATION. Thc problcm here is to  find the 
opt.ima1 location arlcl tllc optimal nunlbcr of copics of the program and d a t a  
filcs in thc distributcd database. Mihat is to bc rninimizcd arc the combined 
storage, cornrnunication and processing costs. By choosing different sets of 
assurnplions, scvcral solutions of varying complexity have becn obtained 

a 

[CASE72,CFN69,MAI-Ih476b 
2) hIAINTENANCI3 OF DUPLICATE COPE'S. Sincc copics of the data  may  

cxist a t  diffcrcnt nodcs, it is ncccssary t,o haw algorithms that make sure 
A ~ a t  all copics arc updatctl propci.1~. Spccini rncchanisrns arc rlccdcd to know 
whcrc thc duplicate copics, if any, cxist. Scvcral algorithms for different 
typcs of distributcd databascs have bccn suggcstcd and work is in progress 
for proving the a!gori thms corrcct [JO~~75,ETJL177,TT.30M76]. \ 

3) CONCURRENCY CONTROL. In a distributcd database systcrn, several 
uscrs may LC attcrrlpting to read and/or updr?tc a scl of data. In order to 

' always providc uscrs with a consistent vicw of the data, i t  is necessary to . 

have corlcurrcncy control. This conlrol, which can ei thcr bc centialized o r  . 

distributcd, should inciudc synchronizatiorl and locking mcchanisms. Some 
work has bccn donc defining the basic conccpts pSbVA76j and analyzing 
thc nvnilablc optiorls [GRAY77,ROSE78]. 

4) DEADJAOCI<S. Just likc in any systcm whcre multiple uscrs compete for 
a.cccss to a set of finitc rcsourccs, in distributcd database systcrns there is 
a possibility for dcndlocks. Thcic arc two w w s  to deal with deadlocks: 
dcadlock prevention, and dcsdlock dctcction and resolution. Both of these 
altcrnativcs have been analyzcd for gcncral systcrns [COFF71] and in par- 
ticular for distributcd databasc systcrns [CI-N74]. 

5) TRANSACTION PROCESSNG. This arca involvcs tlic dcsign of alga- 
ri thms that process transactions into stringsof data manipulation commands. 
These algorithms arc morc complcx than t.hc usual algorithms for centralized 
databascs. First of all, thc local knowledge at the node where tlic transaction 
is p~ocessed might not bc enough to understand the transaction so that 
hcip f ron  othcr nodcs is nccded. Thcn thcrc is the problem of locating the 
rclcvant data. If the data is duplicated, wc must choose the copy to use. 
Finally, one must decide how to actually manipulate the data. There are 
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tlirce options for this: transmit commands and transmit results back; move 
all of thc necessary data to a node and work thcrc; or a mixturc of these 
two mcthods (i.c. filtcr data bcforc moving). These problcrns are discussed 
in [STON77,WONG77]. . .  . 

6) DIRECTORY MANAGEMENT, A directory contains a description and 
tllc location of lilcs'(or relations) in thc systcm. ~ircctorics can be global or  
locil, distributed or ccntralizcd and thcy can havc one or many copies. The  
tradcoffs involved with the dircrcnt options arc being analyzcd [CHU75]. , 

If the distributed database is dynamicdly changing, it  is necessary to have 
mcchanisms to add or dctcte narncs to .;hc directory. 

7) DATA AND PROGRAM TRANSLATION. In  a non-homogeneous dis- 
tributcd databnsc, it is mandatory to havc transIation mcchanisms between 
thc do.tabascs. Sincc it wauld be very incfiicicnt to dcsign an intcrfacc for 
cvcry possiblc pair of dissimilar databasc~, it is necessary to design general 
proccdurcs for translating data and programs. Thcse proccdurcs can include , 

1angua.g~~ for describing the data and program formats plus definition of a 
cornmon inlcrmediatc format [hIl3F?,T71]. 

. 8) P13IVACY. Thcrc has bccn vcry little \ifark donc in thc area of data privacy. 
I t  is ncccssary to dcsign good ways of identifying uscrs, both local and rcrnote. 
It would also bc nice to bc ablc to rcstrict access not only by-yho the  user 
is b11 t by \dial his application is. For examplc, a uscr mi$ht not-be allowed 
lo  acccss n. particular cmployec's salary, hut hc may bc permitted to look 
a t  the average salary of a group of employccs. 

. 9) Rl3COVE~~~'. If a distributcd datebasc systcm is to bc rcliablc, procedures 
for dctccting errors and recovering from :a.ilures arc rcquircd. It is important 
that wheii some databasc fails, the rest of thc data is 1c:t in a consistent . 

form. When a node corncs up after a faifurc, it is indispcnsablc to get its 
database up to dntc. Rccovcrr can become cxtrcmcly hard if failures cause 
tltc nclwork to partition (i.e. to split up into several i d a t c d  pieces). These 
problems are treated in [ALSB76,GRA1777]. 

5.  TXIESIS OBJECTIVE AND OUTLXNE. 

Jn t.his t.hesis we will concentrate on only one of the rcscarch arcas described: 
thcmi~intcnanccoIrcplicntcdcopicsofdata.Inpartici~lar,~wstudytheperfor- . .  

mance of update algorithms for replicated data in a distributed database. Of 
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course, it  is irnpossiblc to isolatc a ccrtain rcscarch arcn, and in fact, in thc thesis 
we also touch on thc problcrns of concurrency control and recovery. However, 
we do attcrnpt to conccntratc on one singlc prohlcrn arca as rnuch .as possible in 
order to rcducc the complexity and lcrigth of thc prcscntation. 

In any real distributed databasc systcrn, all thc issues of &ction 4 must 
bc considcrcd togethcr in order to dcsign a complete systcm. Since we arc not . , .  

considering all issucs hcrc, wc do not cxpcct to obtain a cornplctc system dcsign 
out  of this thesis. Thc objcctivc of this ~vork is sinlply to study and compare some 
of the f undan~cntal rnanagerncnt tcchniqucs for replicated data. It is hoped tha t  
by shedding somc light on thcsc issues wc can help the dcsigncr of a complete 
distribu tcd databasc sjslcm. 

Since wc will bc looking a t  rcylicatcd data, it is important to  understand 
why scvcrnl copics of thc samc data may bc storcd a t  dircrcnt nodes in the  
cystern. Thcre arc two rnaii~ rcasons for rcplicatling data. Onc of the reasons for 
replicating data is to in~provc its availability. Anotl~cr reason is to  distribute the 
load by allowing transactions to read the data at diflcrcnt sitcs. Tbc price tha t  
must bc paid for tlrc incrcn:;cd avziinbility and tlic option 01 concurrent reads at 
diffcrcnt nodcs is an incrca.sed cost for proccssing updatcs. Updating ieplicated 
copics of data is morc expc~~sivc than updating a sirlglc copy of thc data bccause 
in the replicated case updatcs must be pcrrormcd on all copics. Furthcrmorc, it 
is harder to  coordinate conflicting updntcs ivhca thcrc arc multiple copies to . be . 
rnodificd than it is to coorclinatc tile updatcs when thcrc is a singlc copy to be  
updated. 

In ibis thcsis, wc will not study the tradcors involved in replicating data. 
We  \v,ill assumc that tllc dccision to rcplicatc a subsct of the data  has been 
n~ade .  Tiiat is, it is cithcr impcrativc that thc data bc available even in. t he  
face of failurcs, or it is cxpcctcd that thc numbcr of updatcs to the data will be 
considerably smaller t ;hn  the nurnbcr of reads on thc data. Once we decide to 
rcplicatc the partic~rlnr subsct of the data, wc nccd to dcsign an  algorithm fo? . 

performing the updatcs. Hcrc, wc will (zddrcss this.last problem. 
This thcsis is divided into two main parts. In tlic first part (chapters 2 . 

througli 6) wc make a sct of assumptions that fiirnplify thc'anaiysis of thevarious 
redundant data updatc algorithms. Some of thcsc assumptions arc that  t he  
databasc is complctcly replicatcd at each nodc, that all transactions are updates 
and that no failures occur in thc systcrn. I n  thc second part (chapters 7 through . 

12) we relax the  sssumptions made and wc study the erect of doing this on the 
results obtained in thc first part. 

Chapter 2 describes ttrc database mode: we use, Some important concepts 
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likc transaction and databasc consistcncy arc also dcfincd. (Thc database model 
is cxtendcd to  include partitioncd data in chnptcr 10.) Chapter 2 also lists tlie 
ar;sumptions that are madc in the first part of thc thesis. 

CTi:=;ptcr 3 presents the update algorithms that will bc studied in this thesis. 
Thc ricw algorithms in this chapter (i.c., the M'CLA, MCLA, MCLA-h, TWCLA, 
MEAS, MEAT') wcrc actually dcvelopcd after some of the othcr algorithms were 
analyzcd. That is, the pcrformancc analysis of chaptcr 4 was uscful in identify- 
ing thc critical systcm rcsourccs. This in turn Icad to the design of the new 
atgoritllni~s. EIowever, in chaptcr 3 wc present nil the algoritl~ms together in order 
to  simpIify thc organization of thc thesis. 

Thc performance analysis of two of thc updatc algoritllms is described in 
cha ptcr 4. The performance of thc algorithms is studicd through simulations as 
wcll as through n new itcrativc analysis tcchniquc bascd on qucucing theory. Thc  
analysjs of thc other nlgoritlims in prcscntcd in tllc appcndiccs bccausc thcse 
nnalyzcs arc similar to  thc orics in chaptcr 4. In chapter 5 wc comparc the rcsults 
of thc  analysis with the sirnulation rcsults. Somc rcfincmcnts of the analysis are  
also givcn. Thc fact that t11c sinlulation and analysis rcsults agree fairly closcly 
provides n good valicl~tion of both tcchniqucs. In chaptcr G wc actually give the 
pcrformaricc rcsults for thc algorithms. Thc rcsults show that ccntralizcd con- 
trol nlgoritlims ncarly always pcrform bcttcr than the morc popular distributed 
control algorithms. This is a surprising result bccausc thc distribu tcd algorithms * 

wcrc thought to bc morc cacicnt. In particular, thc MCLA algorithm, which 
uscs tllc r~ovcl concept oi  ho!c lists 80 iilcrcnsc parallel cxccution of updates, has 
thc bcst pcrformancc in many cascs of intcrcst. 

Chapter 7 starts thc second pai-t of thc thcsis by investigating the effects 
of tlie no fnilurc restriction. Wc show tllnt it is possible to makc a centralized 
control algorithm rcsilicrlt in the faceof many typcs of fa.ilurcs. We show tha t  the  
cost in tcrms of pcrforrnancc of cloing this is roughly the same for all algorithms 
and thus, tile original pcrfornlancc comparisons arc still valid in thc case of crash 
rcsistnn t algorithms. 111 particular, in chnptcr 7 wc ou tlinc thc basic mechanisms 
that  arc r~ccdcd Lo mnkc tlic MCLA-h algorithm rcsilicnt. 

Jn chapter 8 wc justify our dccision to only study algorithms that are able 
to proccfis nibi trarg u pdabc transactions. \Vc give cxamplcs of algorithms that 
take adva n tagc of a particular trizrisaction typc in ordcr to improve performance, 
and wc discuss why it would bc hard to study such algorithms. 

Rcad only transactions (queries) arc analyzcd in chaptcr 9. We classify 
qucrics into f rcc, consistent, and ctrrrcnt quciics, and we prcscnt algorithms for 
processing each typc of query urldcr thc diffcient updatc algorithms. In orcier 

. . 
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to  urldcrstand consistent qucrics, wc cornc back to tfic issiics of consistency tha t  
wcrc discur;sccl in chaptcr 2, and wc study thc typcs of consistency provided by 
the updatc algorithms. Wc also discuss thc pcrforn~aii.cc of thc qucry algorithms. 

In chapter 10 wc consider how updatcs that do not specify thcir read set 
ir~itinlly can bc proccsscd. Somc of thc algorithms of chaptcr 3 havc t o  be modified 
in this  casc. Wc prcscnt thrcc fundamental stratcgics for transactions that cannot 
request thcir locks bcforcl~nnd. We also study thc pcrrorrnance of Ihcse strategies.. 

- Up to chapter 10, wc assumc that the datz in thc system is cor;..pIctcly 
rcplicatcd a t  cncli node in thc systcm. In chapter 11 wc relax this assumption 
by allowing pnrtitioncd data as wcli as multiplc indcpcndcnt "controllers". A 
controllcr is e control mcch a riism that is rcsp~nsiblc lor thc concurrency control 
of a given slllsct of thc dat.a. Wc present updatc slgorithms for the partitioned 
da ta  onc controllcr cnsc as well as for thc partitioned data multiplc controllcr 
casc. \Vc discuss how the pcrfoi-mancc results of chaptcrs 4, 5 and 6 can be used 
l o  cvnluatc Ihc pcrfornlancc 01 these algorithms. In chaptcr 11 wc also prcsent 
qucry algorithms for the partitioncd data onc controllcr and for thc partitioned 
data mulCiplc coritrollcrs cascs. Tl;c pcr:ormz;ncc of thcsc8 qucry algorithms is 
also disctisscd, At tllc end of chaptcr 11, cornc back to the crash recovery 
problcm. Wc discuss how thc crash recovery ideas of diaptcr 7 can be extended 
to t f ~ c  pariitioncd de?a multiple controllcr casc. 

Finally, in chaptcr 12, vrc prcsent sornc conclusions and we identify some . 

arcas that  necd further research. 
' 



CHAPTER 2 

TIIE DISTRIBUTED DATAEASE AMODGL 

Wc start this chapter by dcfining a simplc rnodcl for a singlc databasc and for 
transactions on this databasc. \Vc aIso informally discuss the conccpt of database 
consistcncy for a single dntabasc. Thcn, in scction 2, we cxtcnd these idcas to a 
distributed databasc. In  scction 3, wc list all the assumptions tlmt are embedded 
in this distribuied databasc model. In addition, wc list; thc otllcr assumptions 
that  arc madc in order to simplify the analysis of the updatc algorithms. 

1. A SINGLE DATABASE hiODEL. 

Rciorc we considcr a distributcd database, wc must dcfinc a model for a , 

sinplc dstobnsc. (M:my of thc idcas in this scction arc taken from [Eswa76].) 
We vicw n singlc htabascas  s collcctiori of M sllarcd namcd resources called 

itcms [Eswa7GJ. Each itcrn has a namc and a va.luc nssocintcd with it. We  use 
the notatiori d[i] to rcprcscnt the valuc of itcrn i. This is a vcry fiirnplc model; 
howcvcr, it is suficicnt for studying thc concuricncy control and consistencr 
issucs wc want to (zddrcss. 

An cxa.mp1c of a vcry small databasc is givcn in figurc 2.1. This database 
contains three i tcms only. Tllc namcs of tt~csc iicrns arc "dcposi ts" , "withdrawals" 
and "bnlancc" . Tile valuc associated with itcrn "dcposi ts" , d["dcposits"], is 100. 
This value rcfcis to tlic total amount of dcposits that have bccn znadc to a certain 
bnnk a.ccount.. Similarly, thc valucs of itcms "withdr,z~vals" and "balance" rep- 
rcscnf; t l ~ c  total wi tl~drawals and the bnlancc of this same bnnk account. When 
\YC talk about a datnbai;~, it may not bc convcnicnt to usc the complete narncs 
of Chc items as wc hnvc done in this cxamplc. Thcicrorc, in other examples we 
may use thc int.egcrs bctwccn 1 and M as the namcs of thc itcms of an M item 
dntnbnsc. Hcncc, wc may \\.ark with itcrn 3 or itcin j (whcre 1 5 j.5 M) instead 
of workirig with itcm "balancct'. 
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Figurcr; 2.1 and 2.2 

deposits 

withdrastals 

balance 

Figure 2.1. A? ex;l=lple of a single database. 

- 
node 2 

Figure 2.2. An e m ? l e  of a distributed database. 
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1.1 Consistency Condr~ints. 

Associated with a database wc havc a collection of consistcncy constraints 
or  assertions [Eswa76]. These constraints are prcdicatcs dcfincd on thc database 
which describe thc rc1atio~r;hips that must hold among thc itcrns of the database, 
For  cxan~ple, in thc dailabasc of figure 2.1, wc might have the consistcncy con- 
straints "balance > 0" 2nd "dcposits - withdrawals = balancc". TIre values 
sllown in the figure satisfy thcse constraints, so the databasc is said to be con- 
sistcnt. 

Wc would Iikc that the databasc always bc consistcnt. However, due to 
u pdatirig activity, the consistency constraiilts must be tcmporarify violated. For 
exarnplc, if somconc makes n 10 dollar dcposit into thc account described by the  
databasc or figurc 2.1, wc must add this amount to tlic "dcpositsl' and to t h e  
"balance" i terns. Since thcsc two operations cannot be performed simultaneously 
a s  a single atomic action, a t  somc point the constraint "dcposits - withdrawals 
= balailce" will be false. But'iirhcn both opeiations arc completed, the database 
will bc consistcnt again. 

Since IW are unabIc to guarantee consistcncy bctwccn actions, we group . 
actions irlto transactions pfiwa76). A transaction is thc unit of consistency. That 
is, if a transaction T is run on a consistcnt databasc and without intcrfercnce 
from otlicr transactions, thcn T should Ieavc thc database consistcnt when i t  
complctcs. A samplc transaction for thc databasc of figure 2.1 is "Dcposit 10. 
doliars into thc account". This transaction consists of several actions: (a) Rcad 
t.hc value of ilcrn "dcposits", (b) Rcad the valnc of itcm "balance", (c) Add 10 
do1la.rs to  thc valuc rcad for itcm "dcposits", (d) Add 10 dollars to the value read 
for itcm "bnlnncc", (e) Storc the ncw Galoc cornputcd lor item "dcposits" into 
thc  databnsc, and (1) Store thc new valuc conputcd for item "balancc" into the  
databasc. Clcarly, iT the datnbasc is consistcnt to bcgin with, thcn the database 
will bc corlsistcnt aftcr tlrcsc actions arc performed (at lcast if thcy are per!ormed 
without intcifcrcnce from othcr transactions.) 

Sincc tfic databasc cannot hc consistcnt a t  a11 timcs, thcn a t  least we would 
Iikc that  all transactions "gct a consistcnt vicw of thc dntabasc". By this we mean 
that thr: data rcad by any transaction should satisfy thc consistcncy constraints. 
(More specifically, all consistcncy constraints that can bc fully evaluated with the  
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data  rcn.d by a transaction should bc true. consistcncy cor~straints that cannot 
be fully cvnIuated arc irrclcvant as far as this transaction is concerned.) Since 
trimsactions arc the only cntitics that will cvcr read data from the database sys- 
tcrn, it i ~ i  suficic~~fi to gunrnntce that transactions will scc a consistent database. 
For cxamplc, a uscr wishing to rcad somc valucs out of the database will have to 
do so through a transaction. Tllat uscr will gct consistent data; the fact that the 
datnba.sc may have bccn inconsistcnt foi intervals bcfore or aftcr thc transaction 
rcad its data is unimportant to thc user. 

hl this tllcsis we vicw a trarlsaciion T as consisting of thrce steps: . , 

(1) RI3AD STEP. T l ~ c  transaction T rcads thc valucs for items il, i2,. . . z, 
(Thj t  i ~ ,  T rcnds d[G], d[C], ;. . dli,].) . 

(2) COMPUTE STEP. Using the valucs obtaincd, T pcrfoims some arbitrary 
cornputa.tions and corncs up with a sct of ncw valucs for n subset of the itcrns 
rcad il, i2,. . . i,,, whcre rn ( n. 

(3) WRITE STEP. Thc ncw values pioduccd arc stored in the database. 
(That is, T pcrforms "du:= new valuc for itcm j" for all itcins j E {il, i2,. . . i,).) 

Tile fact that we modcl transactioils in this particular way has somc iin- 
plications that will bc discussed in scction 3: (Notice that we do not considcr 
cach slcp to  bc n single atomic operation.) Using thc sample database of figure 
2.1, tJic transaction TI: "llcposit !O dollars into the account" consists of the  , 
following slcps: (1) x:  = d["dcpodts"], y: ='d["balancc"] (where s and y a re  
local vn.rinblcs of TI); (2) x: = x + 10, y: = y + 10; and (3) d["depositsl']: = x, 
d["balance"]: = y. 

1.3 Conflicts Among Transactions. 

As wc have statcd, a transaction that is executed all by itself preserves ' 

- database consistcncy. I.Iowcvcr, if several transactions arc exec-utcd in parallel or . 
concurrently, thcrc is a possibility that consistcncy will bc violated. By this we 
ncan that E O M ~  transactions may rcad inconsistcnt data. As wc have stated ear- . 
licr, wc do not wish this to happcn; A11 transactions should get a consistent vicw 
of thc databasc. To scc how transactions can iritcrrcrc and cause ,z transaction 
to rcad inconsistent data, consider a sccond transaction T2: "Dcposit 5 dollars 
into t11c account" that is cxccutcd a t  thc samc time as transaction TI above. 
Su pposc that transaction T2 is completely cxccu tcd bctwecn thc time TI reads 
d ["d eposi ts"] and the time T1 reads d["balnncc"]. Thus, the value for "deposits" 
read by TI will not reflcct thc deposit of 5 dollars made by T2, but the value 
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for "balancctt rcad by T1 will rcflcct thc 5 dollar dcposit of T2. In other words,' 
T1 reads 100 as tbc vnluc for "deposits" and 65 as the vnluc for "balance1'. (See . 

figurc 2.1.) Hcncc, T1 will storc d["dcposits"]: = 110 and d["balnncctl]: = 75, 
Icaving tilt dntabasc inconsislcnt. (That is, 110 minus 40 is not equal to  75.) 

Now, any transaction that folloiv~ can read fhc "dcpositstl, thc "withdrawals" 
and tllc "balance" and gct an inconsislcnt vicw of thc databasc. (As a fine 
point, notice that T1 qccs a consistcnt vicw of tlrc databasc. If T i  had also read 

. "withdrawals", then it could havc cvaldatcd thc consislcncy constraint "deposits 
- withdrawals = balance", and TI ii~ould havc obscrvcd that this consistency 
constraint was fnlsc. But since TI did not rcad thc "withdrawals" item, then it 
has no way of knowing that the database is incor;sistcr~t.) 

1.4 Concurrency Control idedlnnisms. 

Thc probl&n illustrated wilh thc prcvious cxample is a synchronization' , 

problcnl which appcnrs in clatnbasc manngcmcnt systcms, in  operating systems 
i~ilCl in a.ny systcrn wilh concurrent (or parallel) programs. Thc solution to  the 
problcrn is to havc a conctiri-cncy control rncchirilism which somchow eliminates * 

lllc dcs1rucL.i~~ inlcrfcrcncc bcl~ilccn transactions (or programs). The same syn- ' . . . 

cl~ronization problcm, in thc contcxt of distributcd databa.scs, is the  problcm we 
willbc addrcssing in this thesis. T l ~ c  solution lo the synchronization -problem for 
d istribu tccl databases is conccptunlIy tllc snmc as for a single databasc. That is, we 
nced n concurrcncy control rncctlanim for transactions in a distributed database 
system. But in prilclicc, thc concurrency coiltrol' mcchanisms for distributed 
dntabssc~,  arid in partici~llar for rcplicatcd data, arc implcmcntcd din'crcntly from 
thc rncchanisms for singlc databases. Thc dircrcncc in irnplcrncnEation mainly 
stcms from tlic fact that in a distributcd dntabasc Ihc data is distributcd and 
not uncicr thc control of a single C O M ~ U ~ C ~  or nodc. 

~ I c ~ o ~ c  wc go c11 to dcscribc our distributcd database modcl in scction 2, we 
will bricfly rncrltion two of thc most cornnlon concurrcncy corltrol mechanisms 
tllnt are n~;cd in sii~gic ciatabasc systcms. Onc way to clirl-tinate interference 
arnong transactions is to cxccutc tlicm oric at a. tiinc with no parallelism. Since 
each trailsact.ion is cxccuted iir its totality all by itself, isrc guarantcc. that the 
database is always consistcnt aftcr cnch transaction finishes. This implics tha t  
each transaction will sce a consistcnt dntabasc. This concurrcncy coritrol strategy 
is called sciiaIizition of thc transactioiis. 

The main pcsformnncc disadvnnta.gc with thc abovc stratcgy is precisely 
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that  no fra.nsactions a.rc cxccutcd in parallcl. Sincc transactions that  do not 
rcad or writc any cornrnon itcnls can in no way iritcrlcrc with each othcr, we 
would likc lo executc such non conflicting trnnsr;ctions concurrcntly if possible. 
A lock rnanagcr is a conctrrrcrlcy control mcchanisrn which dctccts iT transactions 
refcrcncc (i.c., rcad or writc) common items. Transactions lllnl have'no items in 
cornmon arc allowed to run concurrcntly by t l ~ c  lock manager, while conflicting 
transactions arc dclaycd and scrinlizcd by the rnanngcr. TIlc lock manager works 
by associating a lock with cach itcm in tlic databasc. Bcforc a transaction is 
cxccu ted, it must rcqucst locks from tllc rnafiagcr far all ilcms rcfcrcnccd by the  
transaction, Thc lock rnanagcr only grants a givcn lock to onc transaction at 
a timc. If a rcqucslcd lock is bcing Ilcld by anothcr transaction, the requcsting 
transaction is dclayccl until thc lock is rclcascd or rcturncd. Thus, once a trans- 
action obtains all rcqucsl;cd locks, it has cxclusivc acccss to the rcfcrcnccd itcms. 
Tha t  is, only transactions which i-cfercnce otllcr itcms can be cxccutcd concur- 
rcr~tly a.nd thcrc is no dangcr of intcrfcrcncc. When a transaction complctes, 
it rcturns the locks to tllc lock rnnringcr so thnt they rnny be assigned to some 
olhcr i.ra.nsnction. More dcf-ails cis to how and w~hy a lock manager works can be 
found in [Eswa76], [Gray77]. (Thcsc rcfcrcnccs a'rso dcfinc formally the concepts 
of transaction and consislcncy.) Also notice thnt deadlocks arc possible because 
transactions arc cornpcting foi a finite sct of rcsourccs (i.c., tlic locks). These 
dcadlo,cks can bc prcvcnted or cliri~inntcd by tllc lock manager. . . 

Jn cllaptcr 1 wc dcfincd a distributed dntabasc as a coll~ct~ion of databases. 
1%'~ will now assuinc that evcry dntabasc in tbc systcm is a complcte copy of 
onc databasc. In othcr words, thcrc is a singlc database which is rcplicated a t  all 
nodes. 'This assuxnption is madc to simplify the analysis of tlie updatc algorithms. 
Thc cKcct of rcla.xing this assumption is discussed in chaptcr 11. 

Rascd on this assumption, wc vic\v a distribu tcd drrlabasc as a collection 
of A4 shared namcd resources called itcms. Each itcm has a name and a set of 
N valuci associated with it.; cach of thcsc vrtlucs is storcd a t  a different node . 
in the N node systcm. Wc rcprcscnt tlic value of item i a t  node x by d[i,x] 
(1 ( s (_ IY). All thc valucs for a givcn itcm shonld be thc samc because the 
dntabasc at each node should bc identical. (That is, d[i, z] should equal d [ i ,  y] 
lor all nodes x,y.) However, due to thc updating activity, the values may be 
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temporarily diffcrcnt. Thc coilcction of itcm values storcd a t  a node is callcd the  
dotnbasc (or thc dnlabasc copy) at  that nodc. 

Figure 2.2 gives an exo.mplc of a two nodc distributed database. The namcs 
of the three itcms are "deposits", "withdrawals" and "balance". Each item Bas 
a vnluc storcd a t  each of the two nodcs as shown in thc figure. For example, 
d["balnncel', 21 = 60. As with a singie database, IYC will sometimes use integers 
bctwccn 1 and M as thc names of the itcms. 

2.1 Consistency Condraints. 

A distributed databasc also has associatcd with it a sct of consistcncy con- 
straints. Ar; bcforc, thcsc constraints arc prcdicatcs which describe the relation- 
ships that must hold among the itcms of thc distributed database. These con- 
straints arc exprcsscd in tcrrns of the itcm namcs; thc values stored in each 
nodc should satisfy thc consistency constraints.' For cxamplc, thc distributed . 

databasc of figure 2.2 may hnvc thc consistcncy conslraints "balance > 0" and 
"deposits - withdrawals = bnlancc". In order for the distributed database t o  
bc consistent, the constraints must evaluate to trr~c at  cacli node. For example, 
~~["hnlaacc", l] and d["bnlancc", 21 must both bc greater than zero. 

In addition lo Chc consistency constraints \frc havc dcscribcd, we havl  an 
additional sct of implicit constraints which state that thc values of the same item 
fihould bc cqual. That is, d[i, x] = d[i, ;;I for 1 <_ i < A{, 1 (_ x ( N, and 
l < y < N .  

Our nlodcl of a transaction is vcry siinilzr to ihc transaction model given in 
scction 1 tor a singlc dntabnsc. Tilt main dificrcncc is that a transaction must 
now store thc ncw valucs it produccs at  all nodcs. A transaction T consists of 
t hc  follo~t~ing stcps: 

(1) READ STEP. (At any nodc x.) The transaction T rcads the values for 
itcrns il , ti, . . . in from onc of thc nodcs. That is, T rcads d[il, x], d [iz, x), . . . d[i,, x] 
for S O ~ I C  node x. 

(2) COhTdTE STEP. (At any node.) Using thc valllcs obtained, T performs 
sonlc ai-bit.rnry computations arrd comcs rxp with a sct of ncw values for a subset 
of the itcins rcad, il, iz,. . . i,, whcre rn < n. 



C3I. 2: TIIE DISTRmUTED DATABASE MODEL 

(3) WlEITE STEPS. (Onc writcstcp at clrcry nodc.) The new valucs produced 
arc slorcd in ihc distribl~tcd database. That is, T docs "d[j, y]:= new value for 
ilcm j" for all nodes y (1 < y 5 N), and for all ilcrns j E {il, i2,. ..it,,}. 

2.3 Conflicts Among Tronsijctionc. 

ll'c assumc that a transaction that is exccutcd without interference from 
othcr transactioits, tranfilorms a consistcnt distributcd datnbasc into another 
consistcnt distributcd databasc. EIDWCVC~, if scvcral transactions arc exccutcd 
concurrently, therc may be intcrfcrcnce and the consistency of thc data may 
bc violated. That is, transactions mag intcikre with cach othcr and cause a 
transaction to get an inconsistcnt vicw of the dalabasc. Thus, just like in t he  
single databasc casc, wc nccd a concurrency control mcchanism that guarantees 
tha t  all trarlsactions scc a consistcnt database. 

There is onc diircrcncc with thc singlc databasc casc. In a distributed database 
\vc llavc dcfirlcd a specific lransactio~l xnodcl wllicll docs not allow inter database 
rcada. (Scc scction 2.2.) That is, no transactions vcill cvcr rcad data a t  morc than 
orlc nodc, and tl~ercforc, it will be impossible for any transnctiorl to check the 
implicit coiisistcncy c0nstraint.s. Rccall that thc implicit constraints s ts te  t ha t  
thc  valucs of an itcm should bc thc-same at  all nodcs. l[t is conceivable that  we 
design a coesislcncy control mcchanism wliicll gunrantcc~ that all transactions 
(as dclincd in scction 2.2) scc a consistcnt databasc a t  cach node but which allows 
tlrc values of n single ilcm to bc dircrcnt at  diKcrcnt nodcs. This mcans tha t  
\trc havc placed a sccond rcquircment on ihc cor.carrency control mcchanism for 
distributcd databases. Onc way to stalc this additional rcquircmcnt is as follows: . 
If a t  any point in time thc sgstcm stops rccciving ncw transactions, then all 
t l ~ c  values of n given itcm should convc;gc to t l ~ c  same valuc. In other words, 
if no morc ncw transactions arrivc into the systcrn, and if thc systcm finishes 
processing all prcvious transactions, thcn the distributed database should be lcft 
in a state where the implicit consistency constraints arc truc. (This is called 
mutual ~oilsiat~ency in [TEIOM76]].) 

2.4 Loctl Concurrency Control Mechanisms. 

First let us nssumc that cach nodc in thc systcm has a local concurrency 
mcchanism similar to thc one dcscribcd in section 1 for a single database. This 
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mcchanisn; guarantees that a stcp of a transaction is cxccutcd as a single atomic 
opcration at that nodc. (By a stcp wc mean cithcr the rcad stcp, the compute 
stcp or onc of thc writc stcps, as dcfir~cd in section 2.2.) Thus, if a transaction T is 
rcading data a t  nodc x (rcad stcp), T will rcad thc data without any interference 
from othcr transactions. In othcr words, it will bc irnpossiblc that somc values 
and not others rcad by T rcficct tlic output of somc othcr transaction. This 
avoids problems likc thc one illustrated by the cxanplc of scction 1.3. Similarly, 
thc writc st.cp of n transaction T at  node x will LC pcriormcd as a singlc atomic 
opcration a t  nodc x. Notice that thc iocal concurrcncy control mechanisms are  
unnblc to prcvcrlt intcrfcrcncc from othcr transzctions between thc rcad and write 
stcps or bctwccn thc writc steps at  differcnt nodes. For cxamplc, between the 
time a tra.nsaction T finishcs rcading at nodc x and the timc it starts writing at 
that  sarnc nodc, scvcral othcr transactions may havc read or writtcn data into 
thc databasc at i~odc x. 

2.5 Global Concurrency Control Mcchanisrnl;. 

The local concurrcncy control rncchaaisrns climincrtc many of tlie potchtial 
coriflicts bctwccn, t-ransactions. I.Io~yevcr, it.is still possiblc that transactions in- 
tcrlcrc, cvcn if tlic nodes llavc sud; local controls. Wc now give an cxnmple that  
sllows how this can occur. 

Assurnc that transaction TI: "Dcposit 10 dollars into tlic account" is to be 
pcrformcd on t l ~ c  distributed database o: figure 2.2. Suppose that this transac- 
tion a.rrivcs froin a user to nodc 1.. Node 1 cxecutcs the first two stcps of TI, 
obtaining thc ncw valucs of 110 for itcm "dcposits" and 70 for itcm "balance". 
Thc writc step of T1 at  nodc 1 is cxccutcd leaving d("dcposils", l] = 110 and 
d("balance", l] = 70. To pcriorm the writc stcp of T I  a t  nodc 2, a message is 
scnt, to nodc 2 instructing it to store thc ncw values into tilc database at node 2. 
Thc situation nt this point is illustratlcd in I'igurc 2.3. In this figure, the message 
is shown on its way to 11odc 2. (Notice that at  this instant some of thc implicit 
consistency constraints havc bccn violated. For cxamplc, d ["dcposits", 11 is not 
cqual to  d["dcposits", 21. This docs not rcprcscnt a problem yct bccausc TI has 
not complctcd.) 

Bciorc the rncssagc arrivcs at  nodc 2, a second transaclion T2: "Withdraw 5 
dol1ai.s from thc account" arrives at nodc 1. This second transaction is processed 
in a similar way. Figure 2.4 shows the situation aftcr T2 has been executed at 
nodc I and its messagc to nodc 2 is also on its way. 
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Figurcs 2.3, 2.4 ond 2.5 

Transaction Tl: "Depcsit 10 d o l l ~ r s  into account* (at node 1) 

deposits 

with&awals 

balance 

Figure 2.3. A sanple transaction. 

Ransaction T2: "WithZrsd 10 doll&-s fron accour-t" (at node 1) 

deposits 

withL-awals 

balance 

Figure 2.4. Transaction T2 i s  processed a t  n&e 1. 

deposits 

withdrawals 

balance 

Figure 2.5. D.e fixal result. 
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Now suppose that thc two mcssagcs arrivc in thc wrong ordcr at  node 2. If 
Ihc commands from tllc sccond rncssagc (LC., thc withdrawal) arc exccu ted before . 

thc commands from Ihc first mcssagc (i.c., thc dcposit), wc obtain the system 
of figurc 2.5. Now thc databasc a t  nodc 2 is inconsistcnt and any subsequent 
transaction that rcads thc "deposits", "withCra~vals" and "balance" itcrns a t  nodc 
2 will scc an inconsistcnt databasc (i.c., 110 - 45 is not 70). Tlicrefore, we see 
thc nccd for a global concurrcncy control mcchanisrn that docs not pcrmit this 
to h'appcrl. Notpice that in figurc 2.5 one of +F- implicit consistcncy constraints 
has bccn violated (i.c., dlUbalancc", l] is not cqual to d["balar.ccl', 21) and both 
transact ions have complclcd. Thc global concui-rcncy control mcchanisrn should 
also climinatc this problcnl (cvcn though no trailsactioils will ever be able to 
dctcct this situation). 

In this thcsis wc will study somcof theseglobal coricurrcncy control mcchanisnls 
which wc cn.11 updnlc algoritlin~s. The algorithms \trc sludy arc presented in 
cl~n.ptcr 3. Dut bcforc wc go into that chaptcr, we must rcalizc exactlywhat 
a.ssumptions and rcstrictions havc bccn c~~~bcddcd in thc distribu tcd daf abase 
xnoclcl we 11nvc dcfincd in illis section. These rcstrictions, as wcll as some other 
additional assumptioils, will bc discosscd in tllc ncxt scction. (We will rcturn 
to thc issucs of consislcncy and transactions in dist~.ibu tcd dntabascs in c h a p t c ~  
9. In thz1.t clla,pter we r;llow ihat somc o: thc updntc algoritl~rns that will be' 
prcscn tcd in chaptcr 3 actua!iy satisfy thc two rcquircnlcnts we formulated in 
this scction.) 

I n  this scclioil ;tfc will discuss Ihc assumpt.ions that are rnadc in ordcr to 
simplify thc, analysis of the updalc algorithms. Jn scction 3.1 wc list thc assump- 
tions that \\'tic irnpiicitly made whcn choosing tfic distributed databasc mode! of 
scction 2. Tilea in scclion 3.2) we dcscribc a set of furthcr assumptions wc make. 
Later on in thc thcsis, rilany of thcsc assumptions will bc clirninatcd. We believe 
t11at it is si~npIcr to start ~vitli a rcslrictcd situation and tflcn to generalize, than 
it is to start thc analysis dircctly with a gcnc~aI systcm. 



3.1 Implicit; Alisump tions. 

Ernbcd dcd in thc distribuhcd dntabasc modcl of scctio~i 2 wcrc the following 
a.ssump tioris: 

a) Tlic databases arc complctclg rcplicatcd at cncli nodc in tlic systcm. We 
Innkc this assurnptioa bccttl~sc the mnb  crnp:lasisol this tlicsis is to study tlie 
rnanagcmcnt of rcplicatcd data. Of courac, in most rcal distributed database 
systcms, data will not bc rcplicztcd at a11 iiodcs, and i:: chnptcr 11 we dis- 
cuss sysicms w l ~  cre data is not ' necessarily rcplicntcd cvcry where (LC., we 
discuss partitioncd data). In that cllnptc; ulc aslso sllow how tlic performance 
rcsu!Ls obt;rincd in tliis thcsis can bc crtcndcd lo tlic partitioned data case. 
ITowcvcr, leL 11s point out that in a limited n~irnbcr of systcms, data  will 
actually bc folly rcplicntcd. For mample, a distributcd systcm directory is 
oric distributcd databcisc ~vlicrc thc sarnc data may bc storcd at all nodes. 

) Tllc updatc algorithms must bc ablc to proccss thc arbitrary transactions 
dcfir~cd in scction 2. As will Sc dcscribcd in chaptcr 8, it is possiblc to  dcsign 
spccializcd ~rpclatc algorithms that ta.kc advantage of particular transaction 
typcs. In this tlicsis wc will not study thcsc spccializcd algorithms, and in 
chnptcr 8 wc will justify our decision. 

c) All transactions know that thc databasc is fully rcplicatccl a t  each node. 
Altliough this may seem an unimportant assumption, i t  ~c tea l ly  allows us tb . 

avoid two irr~porLnn i i:;s~lcs: tmnsclction proccssing and dircctory managc- 
mcnt. (Scc scction 4 in chaptc; 1.) If a transaction knows that a value for any 
itcni can bc found at  any nodc, thcn thcrc is no rlccd lo corisult a dircctory. 

-Furtllcrmorc, if a transaction can find all thc data it nccds at any single 
nodc, thcn no decisions as to ?vl~crc and how thc data is to bc read must 
bc takcn. Transactions simply can read tlic data t h y  riccd a t  onc node. * 

Sincc wc considcr the rcscarch arcas of transaction processing and dircctory 
nianagcmcnt to bc bcyond thc scopc of this tlicsis, wc will not at tempt 
to  c1imi'ila.t~ tliis assumption. In chaptcr 11 whcrc wc look a t  partitioncd 
data, \YC 1viI1 continuc to sidcstcp tlic issues of dircctory n~anagemcnt and - 
trnn saction proccssing. 

d) Traiia~ci.ions spccify a t  thcir iilccption tbc itcms tlicy will rcicrcnce. That is, 
wVc assume that a transaction knows what itcn~s it will rcacl and what items . . 
1:. *.a.-;ill modify bcforc it pcrforms any computations. This allows us  to dcsign 
u pd aic algorithms whcrc transactions lock all the ilcrns tlicy refcrcnce as  an 
initial sicp. Tlrc iinplications of eliminating this assumption are discussed 
in chapter 10. 
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e) The writc sct of a transaction is a subsct of thc rcad (or basc) set. T h e  rcad 
(or bs,sc) sct of a transaction is tllc sct of itcrns wliosc valucs arc read by the 
transaction. Similarly, tllc wri tc set of a transzction is thc sct of i tcrns whose 
valucs arc modificd by thc transaction. Thc fact that the write sct,is a subsct 
of thr: rcad sct sirnplifics thc prcscnlation of sonlc of thc update algorithms. 
This is not n serious rcstriction. It is simplc to force all transactions to  rcad 
any ilcm t l~cy will modify. Oi coursc, the value docs not rcally have to  
bc rcad if it \vill not bc uscd; thc systcm sirnply handlcs the itcm as  if i t  
liad bccn rcad. (In somc algorithms, thc timestamp of an itcrn will have to  
bc rcad evcn if t l ~ c  va.luc is not. Scc ci~aplcr 3.) In tliis thcsis we will not 
clirninate this assumption. (Noticc tllat in a biockcd systcrn). pcriormance 
docs not cllange anyhow sincc a block hag to bc rcad in order to update an 
item.) 

I) Transactions writc out tllcir rcsulls to tlic databases after all data has bccn 
rcad and all coinputations pcriormcd. That is, trarisactions have a final 
writc pltasc wllcrc only ~vritcs arc pcrio;mcd. This assumption sinlplifies 
ttlc update algoi-ithms trcrncndously, cspccinlly w11c11 thc algorithms arc 
made crash resistant. (Scc chaptcr 7.) It is rclativcly ca.sy for transactions 

.. tol opcratc in this fashion. Transactions . . simply savc thcir output valucs as 
thcy arc produccd in tcm1>~iiir). sloragc; whcn the transiclion complctes 
its computations, thc valucs arc writtcn from thc tcrnporary storage into 
tlic databnscs as a last stcp. Wc will makc this assunlption throughout this 
tlicsis. 

g) No items arc addcd to or dclctcd from thc distribi~tcd databasc. In this thcsis 
wc conlplctely avoid thc prob1crr.s of dynamically crcabing new items and 
climinnting old itcrns. Thcsc problcins haw bccn discusscd in thc 1ite:ature 
[.Es\va7G]. Similar solulions can be dcsigncd for a distributed database, but  
wc wiil not discuss thcsc hcre. (For cxzn~plc) in thc locking algorithms of 
cl~nplc: 3, wc can use prcdicatc locks [Eswa7G], or \vc can lock the index 

' pa.gc that poii,ts to lllc itcm that is to bc created or climinatcd.) 

h) A11 nodcs linvc iocal concurrcncy contrcl mechanisms. This assumption 
again sirnpiifics all t l~c  updntc nlgorithms. Since it is rcasonablc to  expect 
that. any nodc in thc system will bavc thcsc local controls, we will make this 
a.ssumption throughout this thcsis. 
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Fiilally, wc mnkc thrcc rnorc assumptioiis about t1lc operation of the systcrn: 
i) TIicrc is a cornmunicntion 6ystcrn which allows any node to communicate 

wit11 any olhcr node. That is, an update algoritlim cnil hand tllc communica- 
tion systcm n messa.gc with any ilodc as a dcstination, arid thc communica- 
tion sgstcm will dclivcr this mcssagc. Thc coinrnunication systcm does not 
gsnranlce tllat mcssagcs wil! arrivc in the same oidcr that they were sent. 
The cornrnrinicntion system wilf dctcct transmissior~ errors and lost messages. 
Howcvcr, aftcr u~~succcssfulIy attempting to s c ~ d  a rncssagc a numbcr of 
tirncs, tlie communication systcni may give up and tell the user (i.e., the  
updntc algorithm) that it has bccii unabIc to dclivcr the message. 

j) Nc iailercfi occur in t l ~ c  system. 12'c nssunc tha t  tlic cornmunication system 
ncvcr fails to dclivcr a mcsszgc, arid that; thc N noclcs in the  systcrn are 
in opcrstion a t  all tirncs. In cllapici 7 ~vc  will study thc possible typcs of 
failures and wc will show how thc updzt.c algorithms can bc rnadc crash 
rcsistnnt. I n  t1ia.t chzpicr wc will also study the pcrforrnancc of thc crash 
rcsistarlt a1goril;hnls. 

k) All tinnsnctioris arc updntc l;niisactions. \17e assuinc that all transaciions 
modify a t  lcast orlc i tcm. In chn.ptcr 9 wc will consider read only transactions 
(queries) and liow t l ~ c  u pda.tc glgo;itlims cirri bc si,mplificd t o  handlc thcm. 
Up to cl~nptcr 9, wc will usc thc  lcrn~s "lransa.ction", "vpclate transaction" ' 

a.11 d siiriply "u pdatcl' i n  tcrchangcnbly. Noticc that wc will usc "upda.tc" as 
a noun rncnning "updatc transaction". Whcn wc wish to relcr to the action 
of modifying values in a. database, KC usc thc term "pcrform an update" 
(instcad of thc vcrb "updatc") in ordci to avoid confusion. 

Wc havc now complclcd thc list of asssmptioss 2nd 2rc r c d y  to  look at some 
of tlic updatc algorilhms. But in chapter 4 wc will makc somc more assumptions 
rcgarcling thc perforrnancc of the distributed database systcrn. 



CHAPTER 3 

THE ALGORITHMS 

In  this chapter we will present a set of update algorithms. Each of these 
algorithms is a global concurrcncy control mechanism of the type described in 
chapter 2. The sct of algorithms is in no way exhaustive: we have only chosen 
a small set of representative algorithms. In addition, we also present some new 
algorithms that were developed as part of this thesis research. The performance 
of most of the algorithms we include in this chaptcr will be analyzed in chapters 
4, 5 and 6. 

The goals of the update algorithms are to (1) guarantee that a11 transactions 
observe a consistent dntnbnse, and (2) guarantee that the values of an item con- 
verge to the same value if no new transactions are rcceived. (See section 2 in 
chapter 2.) In this cllapter we will only give inlormal arguments as to why the 
algorithms presented comply with the two rcquirernents. In chapter 9 we will 
show how these informal ideas czii 52 made formal. We give complete formal 
proofs for two of the algorithms in this chapter (i.e, the MCLA-h and the DVA 
algorithms). 

The update algorithms can bc divided into two classes: the centralized and 
thc distribu tcd control algorithms. In thc centralized control algorithms, one 
spccial node, the central nodc, is assigned the concurrency control function. These 
centralized algorithms arc presented in section 1. In the distributed control algo- . 

rithrns, there is no distinguished central node and all nodes share the concurrency 
control function. The distributed control algorithms are given in section 2. 
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1. THE CENTRALIZED CONTROL ALGORITHMS. 

1.1 The CompIete Centralization AIgorithm With Acknowledgments, CCAA. 

When we discussed single database systems in section 1 of chapter 2, we 
mentioned that one way to eliminate interference between transactions was to  
execute them one at a time. In a distributed database, we can do exactly the 
same thing. We call this solution the complete centralization algorithm with 
acknowledgments or CCAA. (This solution is also called the primary copy al- 
gorithm in [Alsb76]). We select one of tlie nodes as the "central nodc". This 
nodc will bc in charge of serializing the update transactions. All transactions 
are forwa.rdcd to the central node where they are executed one at a time. All . 

data needed by a transaction will be read at the central nodc, Similarly, all 
computations will be pcrformcd thcrc. When the update values are ready, the 
central node broadcasts the new values to all nodcs in the system. The central 
nodc will wait until the vnlues arc stored at all nodes before starting to process 
a new transaction. Sincc there is absolutely no possibility of interference among 
transactions, we can guarantee that all update transactions see consistent data. 

We now give a brier description of the CCAA algorithm: 
(1) Update transaction A arrives at node x from a user. 
(2) Node s forwards transaction A to the central nodc. 
(3) When the central node receives an update transacticm A, it places it in 

a qucue. Update transaction A waits in the queue until its turn to be executed 
comes up. . 

(4) When A's turn comes, it is excculcd at the central node. (At this point, 
all previous transactions hnve completed at all nodes.) The valucs requested by 
A arc read from the databasc at the cciltral nodc, the computations are carried 
out, and thc ncw values are stored in the local database. 

(5) Teriorm update A" mcssagcs arc sent out by the central node to all 
other nodcs giving them the new valucs that must be storcd at each site. 

(6) Each node that receivcs a "perform update A" message, stores thc new 
valucs produced by A into its database. Then nr. acknowledgment message is 
sent back to the central node. 

(7) When the central nodc receives acknowledgments for the "perform update 
A" messages from all the nodcs in the system, then it knows that A has completed 
everywhere. Thus, the central nodc gets the next update transaction that is 
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waiting in its queue and processcs it. (Sce step 4.) (End of CCAA algorithm.) 

One important advantage of the CCAA algorithm is that it is very simple. 
On the other hand, there are three potential disadvantages with the CCAA 
algorithm. The first problem is that update transactions are executed serially, 
with absolutely no parallelism. Thus, we do not expect this algorithm to be very 
efficient. 

Thc two remaining potential disadvantages are due to the fact that there is 
a centralized coritrol node. Sincc these disadvantages occur in all the centralized 
control algorithms, we will discuss them in the following section. 

. . 

6.2 Potential Disadvantages of the Centralized Control Algorithms. 

Another potential problcm of the CCAA algorithm is that if the central 
node crashes, then no more transactions can be processed. This problem also 
ariscs in all the othcr centralized control updatc algorithms. Since for the time 
being we have assu~ned that no failures occur in the system (see scction 3.2 of 
chapter Z), we do not have to worry about this problcrn a t  this point. In chapter 
7 wc will consider failures and how they affect the performance of the algorithms. 
EIowever, it is appropriate to make a few short comments here regardingfailures 
so tllat readers may have an idea of what is coming up in chapter 7. It is possible 
to make the CCAA algorithm, as well as the othcr ccntralizcd control algorithms, 
rcsilicnt in the face of hilures. The main idea is to have a protocol for electing a 
new ccntral node when the old central node crashes. The new central node can 
colicct all the statc information from the activc nodcs in the system, and based on 
this, it can complete any unfinished update transactions and start processing new 
ones. Whcn we analyze the performance of the update algorithms (in chapters 
4, 5 and 6) we will study the algorithms presented in this chapter and not the  
crash resist.ant algorithms of chapter 7. 

A secsad problem with all the centralized control algorithms is that  t he  
centrzI node is a performance bottleneck because ail update transactions must 
pass through that special node. Such a boitlencck can significantly dcgradc sys- 
tcm pc:iormancc. In this thesis we will study this problem. Wc will show when 
the bott.leneck problem arises and how serious a problem it is for the centralizec! 
control algorithms. 
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1.3 The Complete Centrnlizstion Algorithm (With No Acknowlcdgments), 
CCA. 

The complete centralization algorithm with acknowledgaents (CCAA) can 
bc made more efficient by eliminating the acknowlcdgmcnts to  the "pcrform 
updatev1 mcssages sent by the central nodc. The acknowledgments of the CCAA 
algorithm (step 6) were used by the central node to  find out when the write steps 
of a transaction had completed a t  every node. (Scc section 2.2 in chapter 2.) Bu t  
it  is not necessary for the central node to wait until these steps complete; i t  is 
suficicnt for the centrzI node to guarantee that the write steps of transactions 
arc pcrformcd at every node in the same order as they were performed a t  the  
central node. This can be done by assigning a sequence number to each update ' 

transaction that is executed at thc centralnode, Thesequencenumbei. assigned to 
an upclate transaction is an intger equal to one plus the sequence number of the  
previous update transaction processed. The sequence number of a transaction is 
appcndcd to ail the "pcrform update" mcssagcs for that transaction, and is used 
to ordcr the storagc of the new valucs (the xrite steps) into the database a t  each 
nodc. Since with this sequence number mechanism the steps of all transactions 
arc cxccutcd in the same ordcr as in the CCAA algorithm, the CCA algorithm 
is logically cquivalcnt t.o thc CCAA algorithm. 

In summary, the CCA algorithm opci-atcs as follows: 
(1) Update transaction A arrives at  node x from a user. 
(2) Node s forwards transaction A to the central node. 
(3) When the central node rcceivcs an update transaction A, it places i t  

in a qucuc. Transactions from this qucuc arc exccutcd one at a time at the 
central node. That is, the valucs requested by A are read from the local database, 
the computations are carricd out, and the acw values are stored in the local 
database. (Update transactions can be executcd in parallel a t  the central node 
as  Iong as a IocaI concurrency controI guarantees that the eiTect on the database 
is as if transactions were pei-formed one at  a time.) A sequence number is as- 
signed to transaction A. This number represents the ordcr, with respect to  other 
transactions, in which A was exccutcd. 

(4) 'Fcrform update A" mcssagcs are sent out by the central node to ail 
other nodes giving thcm thc new valucs that must bc stored at each site. T h e  
scqucnce number of A is appended to tllcse mcssagcs. After the ccntral node 
sends o u t  fhcse "pcrform update A" messages, it is done with A and can s ta r t  
processing any other update transactions on its queue. 

(5) When a node y receives a "pcrform update A" message, it waits until 
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i t  has proccsscd all "perform update" n~cssagcs 'from transactions with lower 
scquence nurnbcrs. (Notice that tllc largeat scquence number processed so far 
must be rem,nrnbcrcd by all nodcs.) Then node y stores the new valucs into its 
local database, as indicatcd by the message. (End of the CCA algorithm.) 

Sincc thc CCA algorilhm is clearly more efficient and only slightly more 
complex than the CCAA dgorithm, we will only study the CCA algorithm in 
this thesis. (In addition to bcing more cficicnt, the CCA algorithm has one other 
advantage over the CCAA algorithm: It is simpler to make thc CCA algorithm 
crash resistant than it is to make the CCAA algorithm crash resistant. This is 
actually a topic for chapter 7, but since we will not consider the CCAA algorithm 
furthcr, we make this comment at this point. Notice that if any noncentrai nsde 
in thc  CCAA algorithm is down, the central node cannot process transactions 
bccause it is unable to get thc required acknowlcdgmcnts. This docs not happen in 
the CCA algorithm. Furthermore, the sequence numbers of the CCA aIgorithm 
arc very useful for discovering transactions that were missed when A node was 
down.) 

1.4 The Centralized Locking Algorithm With Acknowledgments, CLAA. 

Wc will now investigate otlicr ccnf:alized control approaches in order to 
t ry  t o  improve the perlorrnance of thc CCA algorithm. If wc look a t  thc CCA 
algorilhm, we realize that the central node is the system bottlcneck because it 
Ilns Ihc llighcst joad. If we could 6;~iiic:iow reduce thc amount of work that is 
done a t  the,central nodc, wc could improve the performance of the system. 

In the CCA algoritllm, the central node is performing two distinct functions: 
(a) the ccntml node is reading the data and performing thc computations for all 
update transactions, and (b) thc central node provides the necessary concurrency 
control for the transactions (i.e., it scrinlizcs the transactions). In the algorithm 
wc will propose now, the centralized locking algorithm with acknowlcdgmcnts 
,CLAA, we will move function (a) to the other nodes in oider to reducc the load 
at the ceotral nodc. Function (b), which is naturally periormed a t  the central 
node, will remain thcre. 

In thc3 CLAA algorithm, the ccntral node will provide concurrency control 
by managiilg locks for the items in the database. (The central node acts just 
like the lock rnanagcr described in section 1.4 of chapter 2.) Before an update 
transaction is executed, it will request lccks for the items it  references. When 
the locks are granted by thc central node, the transaction will be able to proceed 
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knowing that no other updatc transaction will interlere. 
In the CLAA algorithm, an update transaction A that arrives a t  node x is 

processed as  follows: 
(1) Node s requests from the central node locks for all the items referenced 

by transaction A, 
(2) The central node cllecks all of the rcqucsted locks. If all can be granted, 

then n "grant" message is sent back to node x. If some items arc already locked, 
then the request is queued. There is a queue for each itzrn and a request only 
waits in onc queue a t  a time. To prevent deadlocks, all transactions request !ocks 
for their items in the same predefined order. 

(3) Once node s gcts all of the requested locks, i t  can proceed with the 
transaction. (At this point, node x knows that all previous transactions tha t  
referenced items referenced by A have completed everywhere in the systerr..) The 
items are read from the local database, and the update values are computed. A 
"?erform update A" message is sent to all other nodcs Iaforming them of the 
update. Nodc x updates the values stored in its local database. 

(4) Whcn the other nodes (including thc central node) receive "perform 
update A" messages, they perform the indicated update on their copy of the  
database. After a node has processed the "perform update A" message, it sends 
an acknowlcdgrncnt rncssagc to node x. 

(5) When node s receives acknowledgments for the "perform update A" 
mcssagcs from all the nodes in the system, then it knows that A has completed 
everywhere. Thus, node x can send a "release locks of A" message to the central 
nodc. 

(6) When the ccntral nodc rcccivcs the "release locks of A" message, i t  
rcleascs thc locks of the involvcd items. Transactions that were waiting on these 
locks are notified and can continue their locking process a t  the central node. (End 
of CLAA a!gorithm.) 

1.5 ' The Centralized Locking Algorithm (With No Acknowledgments), CLA. 

We can now use the same idea that was used to  eliminate the need for 
acknowiedgments in the CCAA algoritIlm to eliminate the acknowledgments of 
s t e j  4 of t.he CLAA algorithin. As a further simplification, the "release locks" 
rncssage (step 5 of the CLAA algorithm) can be mcrged with the ''perform up- 
date" rncssagc (stcp 3) to the central node. If we do this weobtain the  centralized 
locking algorithm with no ocknowlcdgments or CLA.  In tihe CLA algorithm, the  
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ccntral nodc assigns n scqucnce numbcr to cach update transaction after i t  has 
obtained its locks. This scquence number is sent to thc transaction originating 
node via the "grant" nlcssagc and is thcn appended to all "perform update" 
messages. Thc sequcnce numbers are used to ordcr aH the steps of the transactions 
so that  rnro inte,~fercficc can occur. 

Wc now give an outline of the CLA stgorithm: 
(1) An update transaction A arrivcs at  node s. Node s requests from the  

central node locks for all the items rcfercnced by the transaction. 
(2) Tlie central node checks all o: thc requested locks. If all can bc granted, 

thcn a "grant" mcssagc is sent back to node x. If some items are already !ockcd, 
then the request is qucued. Tliere is a queue for each item and a request only 
waits in one queue at  a time. To prevent deadlocks, all transact;ions request locks 
for thcir i tcn~s in the same predefincd ordcr. 

(3) Whcn nodc s gets the "grant" mcssagc for A (together with A's sequence 
numbcr), it must wait until all transactions with lower sequence number than 
A's scquence numbcr have complcted a t  node x. (This was not required in 
thc CLAA algorithm. This wait is now needed because in thc CLA algorithm 
(without acknowledgments), the fact that a transaction holds locks on the items 
it rcfcrences docs not imply that all previous conflicting transactions have corn- 
plctcd cvcrywhcrc.) Aitcr all transacticnr with lower sequence numbcr than A's 
scquence numbcr have compIeted a t  node x (LC., after the "perform update" 
messages for these transaclions have bccn rcceivcd and processed), the items 
rcqucstcd by A arc read from the local database and the update values arc corn- 
pu ted. A "pcriorm update A" message (with A's sequcnce number) is sent to  all 
other nodcs informing them of thc update. Node x updates the values stored in 
i ts  local database. 

(4) When another nodc rcccivcs its "perlorrn update A" mcssagc, it  writs 
until it 1las processed all "perform update" messages from t~ansactions with tower 
sequcnce numbcr. (Noticc that the largest sequcnce number processed so far must 
bc remembered by cach nodc.) Then the indicated update is performed on the  
local database. When the central nodc rcceivcs its "pcrform update A" message, 
i t  releases the locks of the involved items and thcn pcrforms the update on the  
local daiabasc as indicated above. Transactions that were waiting on the released 
locks are ii3tiEed and can continue their locking process a t  the central node. '(End 
of C I A  aigcrithm.) 

Some readers might suspect that by serializing the steps of transactions with 
scqucnce numbers we havc lost somc of the parallelism that was obtained by 
using a Iock manager. We show this to be true in the next section. 
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1.6 Sequence Numbers Produce Unnecessary Delays. 

The centralized locking algorithm as stated above may produce unnecessary 
delays in update transactions due to  the sequence number restriction. An example 
is the  bcst way to  illustrate this problem. 

Suppose that a large update transaction (i.e., one tr.volving many items) 
arrives a t  nodc 1. A lock rcqucst is sent to the central node. At ihe ccntral 
nodc, the locks are granted and the transaction is assigned a sequence number, 
say number 10. The grant message is sent to node 1 where the transaction is 
executed (assuming that node 1 has processed all updatcs with sequence numbers 
less than 10). Executing transaction 10 consists of wading all items in its read 
set  and doing some computations with the values read. Since we assumed tha t  
this transaction refercnecd many itcms, executing the transaction a t  node 1 wil: .., 

take a long time. 
Supposc that whilc transaction 10 is being cxecutcd nt node 1, another 

transaction arrives a t  node 2. Nodc 2 scnds a lock rcqucst to the central nodc. Le t  
us' nssurnc that this new transaction has no itcms in common with transaction 10 
or  any other transactions which arc still in progress; Then the central node can 
grant the rcquestcd locks and assigns sequence nurnbcr 11 to this transaction. A 
grant message is tlierr sent to nodc 2 indicating that it can procecd with trans- 
action 11. But ncdc 2 will not be able to cxccutc the transaction because it has 
not sccn transaction 10 yet (i.e., bccausc of the sequence ntiaber rule). EIowever, 
we know that transactions 10 and 11 hnvc no items in common and that  they . 

could bc performcd concurrently. Unfortunatciy, nodc 2 does not know this fact. 
A s  1a.r as node 2 knows, tiie following sequence might have occurrcd: The  . 

locks of transaction 10 were granted, the 'updatc pcrformed a t  all nodcs except 
node 2 and the locks relcascd a t  thc central node. The "pcriorrn update1' message 
to nodc 2 (step 4 in the C L A  aIgori thm) has been dclaycd and is on its way. Then 
transaction 11 arrivcd. It conflicts with transaction 10, but since the Jocks of 
transaction 10 have bccn relcascd, transaction 11 can procecd. Thus transaction 
11 has obtained its locks but it cannot bc performed a t  node 2 until node 2 113s 
pcrforrncci updatc 10. 

Going back to our original situation, if we want node 2 to be sbIc to  proceed 
with transaction 11 while transaction !O is being executed st node i, w c  must 
givc node 2 additional inrorrnation that permits it to distinguish tiie ciirrent case 
from t h e  hypothetical case whcre transactions 10 and 11 conflict. This additional ' 

information is available a t  thc central node. Thcrc are several ways in which the  
central nodc can givc node 2 this information. In this thesis we will discuss three 
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ways in which this can be donc. The algorithm that uses the first method (called 
the WCLA algorithm) will bc prcscnted in scction 1.7; the algorithm that uses the 
second eltcrnative (called the MCLA algorithm) is given in scction 1.8; the third 
mctllod is used by thc TWCLA algorithm of scction 1.10. Several variations of 
iihe MCLA algorithm are considered in section 1.9. 

1.7 The Centralized Locking Algorithm With "Wait-For'' Lists, W CL A. 

In the WCL.4 algorithm, the ccntral node keeps track of the last update 
transaction that rcfcrcnccd each itcrn in the database. In other words, the central 
node kceps a tabie, LhST(i), where LAST(i) is the sequence number of thc last 
updatc transaction that lock.\! itcrn i. Thcn, ~vhcn an update transaction A 
obtains its locks, thc ccatral node constructs a "wait-for" list for transaction 
A. This list, which we will call wait-for(A), includes the sequence number of all 
updatc transactions that A must wait for bciore being cxecutcd. Wait-for(A) is 
simply thc list of the LAST(;) entrics for all items i rclcrcnccd by A. The wait- 
lor(;?) list is appended to thc grant mcssagc to A's originating nodc s. Before 
nodc x cxccutcs transaction A, it must wait until all "perform update" messages 
for transactions in wait-for(A) bavc bccil ~ ~ * O C C S S ~ ~  locally. Notice that node s 
will only wait for transactions whose resulting values are absolutely nccessary 
for cxccuting A. In our examplc, update transaction 11 will not be dclaycd by 
transaction 10 because transaction 10 did not conflict with iransaction 11 and 
hence i s  not in the wait-lor list of transaction 11. Wait-for(A) must also be 
appcndcd to all "pcrform update" mcssagcs for A, so that the new update values 
produced by A can be stored at  all nodes in the proper sequence and without 
unnccefisary delays. 

There are two potential overhead sources in the WCLA algorithm. One is 
thc processing that is necdcd before an updatc can be performed. That is, bciore 
pcrloiming an updatc, a node must check that all "perform update" mcssagcs . 
for transactions in the wait-for list of the update have been seen. To do this, 
nodcs need to have n list of the scqucnce numbers of all previously proccssed 
"perform u?datel' mcssagcs. This list may be vcry long, but there are many ways 
to. compact it. Thus, we expect this list to fit in main memory a t  each node, 
and the CPU time needed to check the wait-for list against this list of pcrforrned 
updates should be relatively small. 

A more serious sourcc of overhead is thc construction of the wait-for lists 
at the central nodc. This node must keep a sequence number (i.e., LAST(i)) for 
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each item in the database, and in most cases this information will not fit in main 
memory. Thus, in order to read or modify this information, the central node 
must use an I0 dcvice. This is undesirable because we are trying to reduce t he  
processing Ioads art the critical central node. 

1.8 The Centralized Locking Algorithm With Hole Lists, MCLA. 

In  this scction we present an alternative to the WCLA algorithm which does 
not ham the I0 overhead at  the central node associated with wait-for lists. The 
idca again is to send additional sequencing information with the grant messages, 
bu t  we choosc information which is more casily accessible at  the central node. 

Le t  us use the term hole list for the list of update transactions in progress 
(i.e., locks granted but not released) at  the central node. (We use the term holc list 
bccczusc each entry in  the list is a holc or a missing entry in the list of transactions 
tha t  have released their locks.) When the locks of an update transaction a re  . 
granted, the transaction's sequence number is addcd to the hole list. When a n  
update rclcascs its Iocks a t  the central nodc, its sequence number is removed 
horn the hole list. 

Now consider the relationship bctwecn an update transaction A which has  
just obtaincd all its Iocks a t  the central nodc and the hole list existing at tha t  
instant. If update transaction B is in the holc list, thcn A and B can not have 
rcfcrenced common items (clsc A could not have gotten its locks). Therefore, A 
docs not havc to wait for B. In other words, the hole list cxisting a t  the instant 
wl~cn  A obtains its Iocks is a do-not-wait-for list bccausc it contains the sequence 
number of transactions that can be exccuted in parallel with A. If we append the  
holc list to  the "grant" messagc to A's originating node x, thcn transaction A 
can be exccuted a t  nodc s even if node s has not performed the updates in the  
holc list. In ovr example, sequence number 10 would be in transaction 11's hole 
list, so transaction 11 will not be ddaycd, 

Notice that there may be other update transactions which are not in t h e  
holc list but do not conflict with A cithcr. For cxample, n transaction C which 
docs not conflict with A, but rclcascd its locks before A got its locks is in this 
category. b'e then see that the hole list is a partial "do-not-wait-lor" list. If we 
compare the hoIc list f o ~  an update transaction A with a complcte list of all the  
transactions that do not conflict with A, we find Chat the hole list contains t he  
more recent entries in the complete list. I-Io~vcvcr, the older transactions in the  
cornplctc list havc probably already bccn processed a t  all nodcs and are therefore 
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not ca.pable of producing delays like the one illustrated in section 1.6. So the 
llolc list will probably be enough to eliminate almost all unnecessary clelays. As 
a matter of fact, if the transmission delays arc uniform (as we-wili assume in 
our pcrforrnance model of chapter 4), the usc of a hole list will eliminate all 
unnecessary delays. This is true because in this case all the "perform uplate'' 
mcssagcs for transactions not in A's holc list will arrive a t  A's originating node 
bcforc the "grant" message arrives at that nodc. 

111 summary, hole lists are used as foliowvs. When an update transaction A 
obtains its locks at  the ccntral nodc, a sequence number S(A) and a copy of the 
holc list I-I(A) are appended to thc "grant" message for A. Transaction A will be 
exccutcd at A's originating nodc only whcri all transactions with lower sequence 
number than S(A) but not in H(A) have bcen seen locally. The sequencc number 
S(A) and thc holc list H(A) are also appended to all "perform update'' messages so 
that thc va.lucs produced by A can be stored .at all nodes in the proper sequence. 
That is, before a node stores the values produced by A, it must have stored all 
valucs for updates with lower scquence number than S(A) but not in II(A). 

The advantage of the MCLA algorithm over the WCLA algorithm is that 
thz hole list can bc kept in main mcmory and is casy to update. Thus, the I0 
overhead for locking in thc'MCLA algorithm is almost zero. (In most cases, ithe 
lock table can also bc kept in main memory as a hash tab1e.j The disadvantage 
of the MCLA algorithm is that it docs not climinatc all unnecessary dclays. But 
for n systcm where comn~unication delays have a small variance, the hole list 
mechanism will eliminate almost all unnecessary delays. 

1.9 Lisited IIo'rc Lists. 

In the MCLA algorithm of section 1.8, we assumed that the complete hole 
list copy can be sent in the "grant" and the "pcrform update" mcssagcs ol every - 
update tiailsaction. In some cases, it might not be possible or desirable to trans- 
mit holc lists of arbitrary length in messages, so wc must sit  a prtctical limit 
for the size oi the holc list copy. Let us call this preset limit h. Thc hole list 
a t  the ceixtral node will have to be complete; however, the copies made of it for 
transmissioil will be cut to size h in case they are longer than h. 

There are several alternatives for handling the case of an ovclgfowing hole 
list copy. In the next three subsections we will describe three options. 
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1.9.1 The IMCLA-h Algorithm, 

Wc call the first alternative for handling limited hole list copies the MmA-  
El algorithm. The basic idea in the MCLA-h algorithm is the following one. When 

. an updatc obtains .all of its locks, the central node checks the size 01 the hole 
list. If the size of this Iist is lcss than or equal to h, then a copy of the hole Iist 
is added to  the "grant" rncssage (and later to the perform updatc messages) and 
the  updatc can proceed, If the size of the holc list is greater than I t ,  thcn the 
updatc transaction is dcfcrred a t  the central node. The update and its copy of 
the  holc Iist are placed in a deferred queue. Then, as holes disappear from the list 
(i.~., as updates rclcasc their locks), we also remove those holcs from the copies 
of the hole list of deferred updates. As soon as a deferred update has a hole list 
copy of size lcss than or equal to h, the update is removed from the 'deferred 
queue and it  is allowed to proceed. 

We will now givc a brief outline of the MCLA-h algorithm: 
(1) An updatc transactioil A arrives a t  nodc x. Node x requests from the 

central nodc locks for all the itcn~s rcfcrcnccd by the transaction.. 
(2) Thc ccntral nodc checks all of the rcqucsted locks. If some items are 

nlrcady locked, then the request is queued. There i~ a queue for each itern and a 
rcqucst only waits in one qucue at a time. To prevent deadlocks, all transactions 
rcqucst locks for thcir items in the same predcfincd order. 

(3) When transaction A obtains all of its locks, the ccntral nodc assigns i t  
a scqucnce nur~bcr. Then the central node makcs a copy of the current llolc list 
and assigns this copy to transaction A. This hole Iist copy for A consists of the 

. 

scqucncc numbers of the update transactions that arc currently holding locks 
o.t the ccntral nodc. Tile transactions in A's holc list are thc transactions that  - 
A docs not hnvc to wait for bcforc being performed. Transaction A's scqucnce 
numbcr is added to  tlic holc list at the central node. 

(4) If the number of cntrics in A's holc list copy is lcss than or equal to  the 
limit h, t l~cn a "grant" mcssage (which includes A's sequence number and hole 
list copy) is sent to nodc s, If the hole list copy has more than h entries, then 
the "grant" messagc for A is dclaycd at the central node. As the transactions in 
A's holc list copy rclcasc thcir locks at  the ccntral node, their sequence number 
is removed horn A's holc list copy. As soon as thc holc Iist copy of A contains h 
(or Icss) entries, the "grant" message for A is sent out to  node x. 

(5) When nodes thc "grant" mcssagc lor A (together with A's sequence 
number and holc list copy), it must wait until all transactions with lower sequence 
nurnbcr than A's sequence number but that are not in the hole list copy of A have 
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completed a t  node x. Once the "perform updatc" messages for the necessary 
transactions arc rcccivcd at  nodc x, thc itcrns requested by A arc read from the 
local databasc and the updatc values arc computed. A "perform update" message 
(with A's sequence number and holc list copy) is sent to all other nodes. Node x 
updatcs thc values stored in its local databasc. 

(6) When anolllcr node receives its "per:orrn update A" message, i t  waits 
until it  has proccsscd all "perform update" nlessages from transactions with lower 
sequence number but that are not in thc holc lid copy of A. The indicated up- 
date  is thcn pcrforrncd on the local databasc. When the ccntral node receives 
its "pcrform update A" message, it relcnses the locks of the involved itcms. 
Transactions that were waiting on thc rcleascd locks arc notified and can continue 
their locking process at  thc central nodc. The sequence number of A is rcmovcd 
from thc 21olc list. Transaction A's scquencc numbcr is also removed horn the hole 
list copics of anytransactions that were dclaycd bclause their hole list copy was 
too large. (If any of these copics now have h entries, thc corresponding "grant" 
mcssagc is sent.) The local database at thc central nodc is also updated; (End of 
the MCLA-h algorithm.) 

Since the MCLA-h algorithm is one o: the most important algorithms we 
will study in this thesis, wc also givc a dctailcd description of this algorithm in 
appcndix 1. Notice that a MCLA-insnity algorithm is simply an algorithm that  
has no Iinlit for the sizc of thc holc lists, whilc a MCLA-0 algorithm only grants . 
locks to an update whcn all prcvious irpdntcs with locks granted have completed. 

Thc pcrformancc of the MCLA-0 algorithm should bc very similar to  the 
pcrforrnancc of the original ccntralizcd locking algorithm dcscribcd ot the begin- 
ning of this rcport. However, tllcsc algorithms are not identical since in the 
MCLA-0 algorithm the updates arc dclaycd at  thc central nodc, while in thc  
other algorithm, tile updates are dclayed at the originating node (after having 
been granted locks) waiting for updates with lower sequence numbers. 

1.9.2 The Truncating Altcrnativc. 

A seccnd alternative for handling hole list copies of a limited size is simply 
' to truilcste the lists that arc too long. Hence, instead 01 delaying the updatc 
transactims at  the central nodc before sending the "grant" message (as described 
above): we simply eliminate sonle entries lrom the hole list and send the "grant" 
messagc immediately. Notice that \ire can just take out scquence numbers ou t  
of the holc iist because it is a do-not-wait-for list. The fact that some sequence 
numbers (i.e., holes) are missing from the holc list of a transaction simpiy means 



CH. 3: THE ALGORITHMS 

that  the transaction will be delayed a t  its originating node. Of course, if thc 
"perform update" mcssagcs for the holcs that wcre not transmitted happcrl t o  
arrive before the "grant" message docs, then there will be no delay. 

The problem with this method is how to decide what holes to cut off thc  hole 
' 

list copy. If we could know in advance which will be the first holes to  disappear 
from the list (e.g., which updates in the hole list will release their locks first), 
we could truncate those holes frori~ the list and save time, IIowever, if wc do 
not know what holcs will disappcar first from the hole list, it might be better 
to  delay updates a t  the central nodc. The two altcrnativcs we have described so 
far, delaying a t  the central nodc and truncating the hole list, will be compared 
in chapter 6. 

1.9.3 Bit Maps. 

A third alternative for handling limited hole list copics is to use bit maps to  
compact the holc list. Since most updates that havc gotten their locks but not 
released t hcm (i.e., holcs) will probably have scqucnce numbcrs numerically close 
t o  the latcst scqucnce number issued, we can use a small bit map (c.g., 32 bits) to  
rcprcscnt thc holc list. I.Jowevcr, since therc can always bc holcs with vcry small 
scqucncc numbcrs (caused by updatcs that take a vcry long time to complete), a 
srnall bit map might not covcr all holcs. Thcrcfore, a hybrid method is suggested 
wherc part oi thc holc list is rcprcscnted by a bit map and the remaining holcs 
arc rcprcscntcd by a list of scqucnce numbers. EIopcfu'lly, in most- cascs the bit 
map will bc suficicnt to cover all holes, making the handling and transmission 
of holc lists very cficicnt, Clcarly, in some cascs, the compacted hole list will bc 
too large and will have to be cut. Thc options for doing this are the same as for 
the noncornpacted case. 

1.10 The Centmlized Locking Algorithm With "Total-Wait-For" Lists, TWCLA. 

In section 1.7 we considcrcd the use of wait-for lists to convey additional 
scqucncing in.formation. In this scction wc study a. diKcrcnt tjlpc of wait-for list 
which 1r.c call the "total-wait-for" list. Let thc total-wait-for list bc the list of 
all transzctions which have rdcascd their locks at  the central node. That  is, the 
gcquence number of an update transaction is added to the total-wait-for list when 
the  transaction rcleascs its locks at the central nodc. An update transaction T 
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which just obtaincd its locks could havc conflicted with any transaction on this 
list, but docs no'; conflict with transactions not on this list. Thus, the total- 
wait-for list existing a t  thc time when T obtains all its locks is the  list of all 
transactions that T must wait for before bcing exccutcd. . 

The way wc havc described the total-wait-for list, it would grow indefinitely. 
I-Iowevcr, cienlcnts can be dcletcd from the list: Say an update A relcascs its locks 
and its sequence number is addcd to the total-wait-for list. When A obtained i ts  
locks, a copy of the total-wait-for Iist that cxisted at that time was appcndcd to 
A. Suppose that A's total-wait-for list contained the scqucrlce numbers of updates 
B1,Bz,. . .B,. Since A is now in the total-wait-for list, wc can a t  this point dclete 
the  sequence numbers for updatcs B1, B2,. . .B, from the list because by waiting 
for A wc all tornatically have to wait for B1, B2,. . .B,. Therefore, the scquence 
number of an updatc Bi remains on the total-wit-for list only from the time Bi 
rclcase~ its locks to tile timc when anothcr update A with the sequence number 
of Bi in its total-wait-for list rcleascs its locks. 
. As with thc hole list, a copy of the total-wait-for list is addcd to all "grant" 

and "perform updatcl' messages. Beforc a node pcrforms an update A, it  must 
make surc that it has previously processed all updates on A's total-wait-for list. 
Again, there arc several altcrnativcs available if the size of thc total-wait-for list 
must bc limitcd to a sizc h. 

One alternative is to delay updatcs at the central node until their total-wait- 
for list shrinks to a size icss than or equal to h. Unfortunately this strategy docs 
not work as  wcll as it did for hole lists bccause in the case of total-wait-for lists, 
we cannot dclctc any clements without adding new ones. Thus, 2 might be a 
long time bdorc tlie total-wait-for list shrinks. .4r,cthcr alternative is to  truncate 
thc  total-wait-for list and to scnd thc "grant" messsgc immediately. Since we 
cannot sirnply drop clernents off the total-wait-for list (as ivc could do with the  
hole list), we must bc carcful. Onc way to handle truncated total-wait-for lists 
would bc to  only remove the elcrncnts with the smallest sequence numbers and 
to use the following updatc cxecu tion rulc: Before a node performs update A, i t  . 

must make surc that it  has previously processed all updates on A's total-wait- 
for list and it has also proccsscd all updatcs with sequence number less than t h e  ' . 

smallest sequence ntrrnber in A's total-wait-for list. 

2. THE DISTRIBUTED CONTROL ALGORITEMS. 



CH. 3: THE ALGORITHMS 

2.1 The Distributed Voting Algorithm, DVA, 

Another solution to  thc redundant update problem is a,distributcd voting 
algorithm suggcsted by Thomas [THOM76]. Vbfe call this algorithm the DVA . 

algorithm. In this thesis we only consider the daisy chain version of this algo- 
ri thm. We assume that the timestamp of a transaction is gencratcd whcn t h e  
transaction is acccptcd. (The reason for doing this is discussed a t  the end'of this 
section.) The DVA is a rclativcly complex algorithm, so we urge the reader to 
study [THOM76] carefully. Hcrc \ye will only give an cxt~cmely brief outline 
of thc algorithm. Most of the material in this outline is taken directly out of 
f TFIOM76J. 

, Let us assumc that cach node in the system has a perfect clock.. Le t  us  . 

also assumc that all thc clocks are synchronized. By reading the time from i ts  
clock, and by appending a nodc identification number to  this time, every node 
can produce a unique timcstamp. A timcstamp, ts(T), assigned to  each update 
transaction T proccsscd by the system. (We will shortly see how this timestamp . 

is assigned.) Each item value in the systcrn also has n timcstamp associated with 
it. Whcn transaction T modifics a value, the timestamp. of thc valuc becomcs 
ts(T). Hence, thc timcstarnp of a value records the last time when the item - 
was moclificd. (It is actually not neccssay to have perfect clocks; they can bc 
"simulated" with ~pccial countcrs [THOM?q. Here we assume that nodcs d o  
have pcricct clocks in order to simplify the presentation.) 

In the DVA algoritllk thcre is no central controller; the nodes communicate 
among thenlselves and dccidc what updates can be perforwed. The nodcs in the  . : 
syst&rn form 3 dasy chain or ring. Before a transaction can bbe perforrncd, it  must 
move along this chain obtaining votcs. After a transaction get6 a majority of 
"01<" votes, it can be performed. A transaction may also receive a "reject" vote, 
in which case it may not be performed. 

Whcn an update transaction A arrivcs at  a node, it irnmcdiately reads the  
items desired (and their tirncstampsj from the locai database. Thcn the new 
update values are.cornputcd. Ncxt corn= the voting phase where A visits t he  . 
nodcs along thc chain. Each node votcs 02 A using the voting rule given below. 
(As the tiansaction moves along the chain, it carrics with it the timestamps of 
thc  base sct items that were read at  the originating nodc.) After each vote, a 
node uses ihc request resolution rule to dccidc if A can be pcrforrned. The update 
application rule, also given below, describes how the "accept" messages for A (i.e., 
"perform update A" mcssagcs) arc proccsscd at  cach node.. The steps lollowed 
by an  update transaction in the DVA algorithm are illustrated through a. simple 
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Figure 3.1 

Wc i l l u s t r a t e  the s t cps  fol lovcl  by u,$atc t ransact ions  i n  t h e  DVA 
a lgo r i th  with thc following two san?le t ransact ions  A and B: 

( s l )  Transaction A arrii.cs a t  node 1 and gc:s its f i r s t  OR votc. 
(s2) Transaction A v i s i t s  n d c  2 irhcrc i t g c r s  its sccond 0::votc. 
(s3) Transaction A v i s i t s  node 3 vherc it g c t s  its t h i r d  OX vo tc  

and is acce?ted. (Noticc tht 3 votes constituLc a m j o r i t y  
i n  t h i s  5 node systm.) 

(so) "Accept A* (or  "pcrfom @ate A") ncssagcs a r c  sent  t o  a l l  nodes. 
(s5) Tr.ansaction B a r r ives  a t  nole 4 and gc t s  its f i r s t  OR vote. 
(s6) Transaction D v i s i t s  n d c  0 and g e t s  a r e j e c t  vote. (5 read 

obsolctc Li,cstaq,s o r  conflicted with anot11i.r transaction.) 
(c7) "Reject B" ncssa.;c.s a r c  sen t  t o  a l l  rides. (tlodc 4 re-starts 

transaction B f ron scratch a t  a l a t e r  time.) 

Figure 3.1. The DVA Algorithm: A n  Example. 
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examplc in figure 3.1. We now give the rules uscd by the DVA algorithm: 
1) Voting Rulc. Two update transactions conflict if thc intersection of the base 

set of one and the write set ol the other is not empty. (See section 3.1 in 
chaptcr 2.) Each updatc transaction is assigned a priority equal to  the node 
identification number of its originating nodc. Bctween the time a node votes 
for a transaction and the transaction is resolved, the transaction is said to 
be pcnding at  that node. The voting rule consists of five steps: ' 

a) Compare the timestamps for the transaction base set items with the  
corresponding timcst;amps in the local database. 

b) Vote "Rejcct" if any base set item is obsolete (i.e., if we find a timestamp 
which is more recent than the onc that was read a t  the transaction's 
originating node). 

c) Vote "01<11 is each base set item is current and the transaction does' 
not conflict with any pending transactions at  the node. 

d) Vote "Deadlock Reject" if each base set item is current but  the trans- 
action conflicts with a pcnding rcquest of higflzr priority. 

e) Othcrtvise, dcfer voting and rcmcmber the transaction for later recon- 
sideration. 

2) Update Resolution Rule. After voting on a transaction, each node uses this 
rule to decide what must bc done next. The update resolution rule consists 
of four parts: 

a) If tlre vote was "01<" and a majority of "01<" votcs for the transac- 
tion exist, thcn the transaction is acccptcd. A timestamp is assigned 
to the transaction at this timc. The timestamp must bc greater than 
any tirncstarnp seen in the voting process. (See chapter 9.) "Accept" 
messages (with the new update values and the new timestamp) are sent 
to  all nodcs. 

b) II the vote was "Reject", then reject the transaction by sending ou t  
"reject" messages to all nodcs. 

c) Ii the vote was 'Dcadlock Rcject" and a majority consensus is no longer 
possible 6.e.) the transaction received a majority of 'Deadlock Reject" 
votes), then reject the transaction by sending out "reject" messages to 
ail1 nodcs. 

d) Otherwise forward the transaction and the votes accumulated so far 
to the next node in the chain. 

3) Thc Vpdate Application Rulc, When a node learns that a transaction, A, 
has bccil resolved, it uses the update application rule to either perform the  
update or to reject it. 
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a) If the node receivcs an "accept A" message, the new values which are 
not obsolcie are stored i n  the local database. That is, for each item in 
A's write set, the node compares the item value timestamp, t, with the  
timestamp or A, ts(A). If t is less than ts(A), then the item is mcdified 
as  indicatcd and the timestamp for the item is set to &(A). If t is grcater 
than ts(A), then no modification is performed since the value is obsolete. 
All conflicting transactions Mlat were deferred a t  the node because of 
A are rejected. . .  

b) If the node receives a "rcjcct At' message, then thc node uses the voting 
rule to reconsider conflicting requests that were deferred because of A. 

(In the DVA algorithm we have described, the timestamp of a transaction A 
is assigned when A is acceptcd. An alternative is to gcnerate the timestamp for 
A nltcr A reads the values for the items in its base set a t  its originating node. 
The alternative we choose makes the proofs of chapter 9 simplcr. In a failure 
environment, a transaction may be acceptcd more than once. This means that the  
same transaction might ]lave different timestamps. We believe that this does not 
represent a serious problem because the cKect of having a transaction accepted 
twice with different tidestamps is equivalent to the effect of the transaction being 
acccp tcd once.) 

2.2 Tlle Ellis Ring Algorithm, OEA. 

Like the centralized locking and the distributcd voting algorithms we have 
studied up to now, theEllis ring algorithm (OEA) makes sure that all nodes receive 
thc same updatcs and gusrantccs database consistcncy in a completely duplicatcd 
distribu tcd databasc. (Thc "C)" in the namc OEA stands for "original". This i s  
to  distinguish it from the modilicd Ellis type algorithms that will be prescnted.) 
The Ellis ring algorithm is a distributed control algorithm. Here we will briefly 
dcscribc the opcration o: Iiie algorithm and rcfer the reader to  PLLI771 for the 
details and a proof of the corrcctncss of the algorithm. 

Each database in thc system has a statc associatcd with it. The state can 
be idlc, ;>assivc or active. Thc statc information can be viewed as a three way 
lock for the cornpletc database a t  that node. An idle state corresponds to  an 
unlockcd database, whilc the passivc and thc activc states corrcspond to special 
types of Iockcd dadabascs. A database is active when an update that originated 
thcrc is in thc piocess of locking all databascs. A database is passive when it is 
not activc but knows that an update that originated a t  another node is in the 



CH. 3: THE ALGORITHMS 

process of loclcing all databases. Whcncver a databasc is active or passive, the  
processing of all other updates that originate at  that nodc is delayed until the 
databasc becomes idle again. A first-in first-out queue, the internal qucue, is uscd ' 
for thcsc waiting updates. 

Before an update can be executed, it must obtain passive or active locks at 
all nodes in the systan. Tl~is is done by forming a ring (or daisy chain) with 
all nodm and by having each update move along this chain obtaining the locks. 
Whcn an update finishes this process and arrivcs a t  its originating node once 
more, then it can be performed. To pcrform the update, it is sent once more 
along thc chain. Each node in turn pcrforms the update on its local database and 
scts the state to  idle. (In some cnscs the state will not be changed; sce below.) 

All updates arc givcn a priority when they originally arrivc. This priority is 
the  nodc number of the originating nodc. Whcn several updates are concurrently 
in thc locking process, their priorities are used to order the updates as follows. 
When update A (which originated at nodc p) is in the locking proccss and arrives 
a.t a node q which is in thc active statc, it knows that there is anotl~cr update 
B (which originatcd at  q) which is also in the locking FiOCeSS. Thcrcfore, if the  
priorily of A is less than the priority of B (i.e., p < q )  then A waits in an external 
qucue a t  node q until update l3 is pcrformcd. If on the other band, A has higher 
priority (i.e., p > q ), then A can continue knowing that B will be delayed at 
nodc p. 

Assuming that A is delayed ( i .~ . ,  p < q ) ,  then when update B is performed, 
the locks must not be relcascd since A will need them. (This guarantees update 
A n turn; i.e., A will not be "starved" by other later updatcs.) Thus, a spccial ' 

flag in updatc 13, "update final", is set to false to indicate to all nodes that  they 
should only perform the updatc and not set their state to  idle. When update 
B axrives a t  node q alter having bccn pcrlormed, q's state is set to  passive and 
updatc A is relcasccl from the external qucuo, A t  thal point, update A already 
has all thc locks but it stiit has to complete its Ioop around the ring. Whcn A 
arrives a t  node p, the update can be performed and all the locks can be released. 
(Assuming that no other updatc was in p's extcrnal queue.) 

2.2.1 Outiine of the Ellis algorithm. 

These 2i.e the steps that must be followed when processing an update A tha t  
arrives at node p: . 

(1) If state(p) = passive or active thcn some other update(s) is in the process . 

of updating the database. Therefore, h is delayed by placing it at the end of the 
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internal queue at fiode p. If state(p) = idle, thcn we can proceed: Set state(p) 
to  active and send A to node successor(p) to obtain other locks. (Successor@) is 
the nodc that follows p in the ring.) 

(2) When A arrives a t  nodc q in the ring, we check state(q): If state(q)= 
idlc, wc set it to  passive. If statc(g) = passive, we change nothing. If statc(q) = 
active and p < g, wc change nothing. If state(q) = active and p > q, we delay 
A by placing it in the external qucue a t  nodc q. Unless A was delaycd, we send 
i t  on to  nodc succcssor(q). If succefisor(q) is not p, thcn we repeat this step at 
nodc successor(q); otherwise wc periorm step 3 at node p. 

(3) When A arrives a t  nodc p after having visited all nodes once, we arc 
rcady to  perform the updatc. First, update A is performed on the local database. 
Then, if the external queue a t  p is empty, wc sct the "update final" flag in A to 
truc; othcrwisc wc set it  to false, StatcCp) is not changed yet, and wc send A to 
node succcssor(p) to pcrlorm the updatc (step 4). 

(4) When update A arrivcs at iiode q to be pcrformed, we pcrform thc indi- 
cated update on the local database. If the update final flag in A is truc, then we 
set state(q) to idlc; else wc do not changc state(q). If successor(q) = p then we 
pcrform stcp 5 a t  nodc p; otherwise wc rcpcat this step crt node succcssor(q). If 
statc(q) was sct to idle and the internal qucue at, nodc g is not empty, then wc 
remove one entry from tIic qucue and start proccssing that updatc a t  step 1. 

(5) When A arrives at node p after being executed at all nodes, we check 
the queues a t  p: If the external qucuc is not cmpty, we remove thc updatc from 
the qucue and send it to node succcssor(p) (stcp 2). State(p) is set to passive. If 
thc cxlcrnal qucuc is empty, thcn wc set stat&) to idle and check the internal 
qucuc. If it is non-empty, then we rcmovc onc entry and start processing i t  at 
stcp 1. After stcp 5, update A has bccn completed. (End of OEA algorithm.) 

2.2.2 Cornments on the Ellis Algorithm. 

Notice that there is never more than one update waiting in a givcn external 
qucuc. Also notice that updntcs originating at  the highest priority nodc are never 
dclaycd in external queues, wliiIe updates originating a t  the lowest priority node 
could bc delayed in any external qucuc (except the one a t  that node). 

The o?cration of theEllis ring algorithm is based on the assumption that  an 
updatc t r(.-vc!:ing in the ring canriot ovcrtake or pass another update that  is ahead 

' 

of it in the ring. This means that all rcqucsts for service at every node must be 
handled in a first-in first-out fashion. Similarly, messages must arrive a t  a node 
i n ' t i l ~  same order they were sent to it. (If thc communications network does not 
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have this property, it can be added by using sequence numbers for messages.) 
To  scc why this assumption is important, consider the following example 

for na n nodc ring. Update A is being pcrforrncd (update final is true) wllile 
updates B and C wait a t  infernal qucucs in nodes n-1 and n respectively. When 
A's "perform updatc" arrives a t  node n - 1, state(n - 1) is set to  idle and B 
is pcrrnittcd to continue (step 5). Now suppose that B arrives at node n before 
A's "perform update" arrive8 there. In this case, B finds state(n) = passive and 
continues on (step 2). Since nodc n is the only one where update B could have 
bcen a'ciaycd again, wc know that B ivill continue around the ring and will obtain 
all locks. Latcr, A's "perform update1' arrives a t  nodc n. Statc(n) is sct to idle, 
updntc C is released, and state(n) is set to active (step 5). Update C also goes 
on to  lock a.11 databases. Thiis, both B ond C will bc pcrforrncd concurrcntly. 
Since this can causc problems, we must not allow B to be processed a t  node n 
before A's "perform'updatc" is seen a t  node n. 

2.3 Advantages and Discdvar;toges of the Ellis Ring Algorithm. 

TheEllis ring algorithm has sonc advantagcsover the ccntralizcd algorithms . 
of scction 1 and the distributed voting algorithm of scction 2.1. One advantage . 

is that  cach nodc only has to know about two other nodes in the ring: t he  
predcccssor and the successor nodes (cxcept if laiIures occur). Unlike the previous 
centralizcd locking algorithms, no prior knowledge of thc items rcfcrcnccd by an 
updalc is needed. (See chapter 10.) Therefore an update in the Ellis algorithm 
can dccidc what items to updatc after it has obtained its locks. (Updates in 
the  prcvious algoritlims would not need prior knowledge either if they simply 
locked (or referenced) all items in thc database.) Another advantage of the Ellis 
algori thin is that it requires very littlc state information. No timestamps or  locks 
for individual itcms arc needed. Thus no time will be spent reading timestamps 
or locks from an I0 device because all state information can be kept in main 
memory. 

The EIiis ring algorithm has two major disadvantages. First, updates must 
lock the complete database. This eliminates the possibility of concurrently per- 
forming updates that do not conflict. Exccpt in special circurnstanccs, this is a 
serious drawback. Another disadvantage of this algorithm is that  updates must 
travel aiozg the ring twice. This introduces transmission delays not found in t he  
other algorithms. We will now discuss modifications to the Eilis algorithm tha t  
solve the first problem and reduce thc magnitude of the second one. 
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2.4 The Modified Ellis Ring Algorithm, ME AS. 

In this section wc dcscribc a modificd Ellis ring algorithm (MXAS) which 
aliows updates that do not conflict to cxccute concurrently. The basic idea is to 
have state information associated with each item at cach databasc, Thus, the 
statc of itcm i at node j, state(i, j), can be idle, passive or active. Similarly, we 
providc internal and external queues for waiting on each itcm at each nodc. And 
now, each itcrn referenced by an update will be lockcd. (A priori knowlcdgc of 
the basc set is now rcquircd.) 

Thcre are two altcrnativcs for locking the items in an update. One is to lock 
each i tcrn scquen tially, i.e., attempt to lock item i only whcn locks for item i - 1 
ha-ire bccn sccurcd at 811 nodcs. Clcarly, this alternative is undesirable because 
it requires that the update circulate around the ring once for each item to bc 
locked. Therefore, we only consider the second alternative. 

The second alternative is to lock all the items as we visit each nodc in the 
ring. That is, when nn update A arrives at nodc p, wve sct state(i,p) to active 
for all items i rcfcrenced by A. If for some item k, slate(k,p) is already active or 
passive, the wc wait on Ic's internal queue at node p. After A has obtaincd all 
local locks, it travcls along the ring rcqucsting locks for all items referenced. If 
any itcm is not available, then A nlust wait on the item's external queue. Whcn 
A returns to node p, it has locked all relcrcnced items at all nodcs and the update 
can be pcrforrned. If no otttcr updates arc waiting in the extcrnaI queue of item 
i (rclcrcnccd by A), thcr. A's !O&S czn bc rc!cased at all nodes. If on the other 
hand an update is waiting, then the locks for that itcm are not released. In other 
words, cach itcm in A will havc an "update final" flag which will indicate to each 
nodc that pcrrorms the upclate what items are to be released. 

This alternative aIIows non-interfering concurrent updates and is more efficient 
than the first alternative. Unfortunately, thcrc are two problems that we must 
dcal with before this solution woi-ks properly: update overtake and deadlocks. . 

2.4.1 Update Ovcrtnkc in the Modified Algorithm. 

Since updates can bc dclaycd as they movc along the ring, it is possibIe for 
one update to overtake or pnss onc ahead of it. This violates an assumption that 
was made for the original Ellis algorithm. One of the problcms that can occur 
is iliust~atcd by the following cxampIc. 

Consider a four nodc nct~vork. Update A, referencing items i and j, originates 
a t  node 1. It scts statc(i,l) and statc(j,l) to active. A t  node 2, A locks item i 
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( i .~. ,  6et.s statc(i,2) t,o passive) but is dclaycd on item j .  Meanwhile, update R, 
rcfcrcncing item i only, originates at  node 3. It is not delayed and sets state(i,3) 
to active, sets statc(i,4) to passi-fe and lcavcs statc(i,l) and statc(i,2) as they wcre 
(activc and passive respectively). (See step 2 in original Ellis algorithm.) Thus, 
updatc B overtakes updatc A which is waiting at  node 2 on item j. Since node 3 
sees no updatcs in i's cxterrral qucuc at  that nodc, thcn update B is performed 
with itcm i's "update final" flag set to true. Statc(i,2) will therelore bc set to 
idle, but A still thinks that it  has a lock for item i at node 2. This situation can 
Icad two updntcs to modify item i at  tllc samc timc. 

In the modified algorithm, once an updatc B has obtained all locks for an 
itcm i, it  cannot find out if there arc othcr updatcs attempting to lock the item 
simply by checking thc cxtcrnal qucuc for that itcm. If there is an update in the' 
cxtcrnal qucuc, thcn t.hcrc is no problem: no locks arc rclcased for item i when B 
is performed. Howcvcr, if the external queue is empty, we cannot simply release 
all locks for itcm i (e.g., set statc(i,ali nodes) to idle). We would like to leave 
alonc any locks that arc bcing held by an updatc direrent from B and to  release 
any locks tlint arc exclusively held by updatc B. 

OIIC way to do this is to rcrncrnbcr at each node who has lockcd what items. 
A simplcr solution can bc obtained by noticing that only updntcs with a lower 
priority than B's could also bc holding locks on the items referenced by B. (If an  
updatc C with priority grcatcr than or equal to B's priority had locks on item 
i, i t  il~ufit l~avc set state(i,x) to active, where x is a node number grcater than 
on cqual to B's originating nodc number. This means that B cannot gct past 
nodc x and thus it cannot have all the locks for item i.) Therefore, we only need 
t o  rcrnembcr the mirlinlunl priority of thc updatcs that have obtained locks for 
item i. Furthermore, this only has to bc done for passive locks since active locks 
(other than ihc onc held by ij) must have bccn obtained by updates with bwcr  
prior; ty. 

Therefore, we define "lowest priority(i,x)" to be the smal!cst priority of the  
sel of updatcs that passive lockcd itcm i at  node x. An update "passivc locks" 
itcm i at node x when it eitlicr sets state(i,x) to passive or when it finds state(i,x) 
alrcady passive and con tinucs. Lowcst p;iority(i,x) is only defined when state(i,x) 
Is passive. IVhen an update B is performed with update final flag set to  true for 
item i, pcssive locks whcrc lowcst priority(i,x] is less than the priority of B will 
not be relcsscd. All other locks will bc released. 

This modification alIows updatcs to be delayed while requesting locks. T o  see 
that the modified algorithm operates correctly, consider the state of the systcm 
after an update B has been performed with updatc final flag set to true for item 



CH. 3: THE ALGORITHMS 

i. Updirtc I3 is pcrformed correctly since it did obtain all the locks for item i. 
All other updates that rcfcrencc item i are left as if they had arrived after B's 
cornplction and had gotten their locks thcn. Therefore, the othcr updates should 
be able to  continue from this state and finish correctly. 

2.4.2 Deadlocks in'tlie Modified Ellis Algorithm. 

The original Ellis algorithm avoidcd deadlocks by having updates only wait 
for higher priority nodcs to become availablc. For the modified aigoritlirn we 
must cxtcnd this idea in order to avoid deadlocks. 

Dcadlocks can bc avoidcd by a-priori ordering all the items in each database. 
We assign a scquencc numbcr to each itcm and each itcm should have the same 
numbcr in all databascs. Then wc form a global sequence numbcr for each itcrn by 
concntcnating its nodc number with the item's scqucnce numbcr. For example, 
itrein number 105 in nodc 3 has global scquencc number 3-105. Deadlocks can 
thcn bc avoidcd by using thc following ruIc: "An update should not wait for an 
itcm with global sequence nunlbcr x to bccome available while holding locks on 
an itcm with higher global sequence number than x." 

lf at each node wc rcqucfit locks by ssccnding sequence numbcr, then t he  
above rulc can be enforced. IJowevcr, therc is a special case we must deal with. 
Supposc that an updatc A is waiting in the external qucue a t  nodc p'for itcm 
i because anotllcr updatc I3 has lockcd itcm i (i.c., statc(i,p) = active). Whcn 
R is performed, the update final flag for item i will be set to false and ips locks 
will not be rclcascd. Whcn I3 has been pcrformcd, statc(i,p) is sct to passivc and 
updntc A is allowed to continue. Notice that a t  this point updatc A "inherits" 
locks for itern i a t  all nodcs from updatc B. Thus, updatc A is holding "forward" 
1ocks.which must be rclcascd if A cvcr has to wait for an item with lower global 
scqucncc number. For examplc, if laler A has to wait for itcm j at nodc q ( where 
q is greater than p but less than or equal to n, the number of nodes), then t h e  
locks that A holds for item i at nodcs q + 1, q + 2,. , . n must be released. If 
j < i, Ihcn the lock for itern i a t  nodc g must also be released. 

2.4.3 Thc Complete Modificd Algorithm. 

Appendix 2 givcs s stcp by stcp description of the modified Ellis ring algo- 
rithm. 
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2.5 The Modified Ellis Algorithm With Parallel Updates, MEAP. 

In this section we dcscribc one last modification to  the Ellis ring algorithm. 
This modification allot& an updatc to bc pcrformcd in parallcl once it has obtained 
all its iocks. This modification can bc used in the original algurithrn or  in the  
n-iodificd algorithm of Appendix 2. I.Iowcver, hcre wc only consider the modified 
algorithm of Appendix 2. Wc caII the new algorithm the MEAP algorithm. 

The basic idca is to take advantage of the fact that the network we are 
considering can tmnsmit mcssagcs from any node to any other nodc. (If this is not 
so, and the nctwork is actually a ring, thcn we cannot make any improvements.) 
So whcn update A has obtained locks for all its itcms a t  a11 nodes (procedure 
Locks-obtained in Appcndix 2)) thcn it can send messages to all othcr nodes in 
parallel informing thcm that they can pcrform updatc A. ~&vcr ,  in order not 
t o  violatc the assumption that updatcs cannot overtake updatcs ahead of them, 
we must make sure that an update PJ that has bcen releascd by A is not processed 
a t  a nodc that has not pcrformcd updatc A. 

Onc stratcgy that docs this is thc following one. Each nodc nun~bcrs all 
updatcs that originate a t  that nodc and that arc to be performed. Additionally, 
all nodcs rcmcrnbcr thc last updatc they havc pcrformcd from cach nodc. (For 
cxamplc, node 4 rcmcrnbcrs: I I~avc proccsscd up to updatc number 403 from 
nodc 1, up to update nurnbcr 100 from node 2, ctc.) Furthermore, any messages 
from nodc n to  nodc rn inust include the "status" of nodc n, the is, the list of 
~lpclalcs that havc bccn pcr1orrncd by nodc n. (For cxamplc, if nodc 4 above 
sends R metssagc, the rncfisnge must say: "Node 4 Ilas proccssed through update 
nurnbcr 403 irom nodc 1, through updatc nnrnbcr 100 from nodc 2, etc.) WIlen 
nodc nz rcccivcs thc rncssagr: from nodc tz, it will thc delay proccssing thc message 
until it has processed all of the updatcs processed by node n. This guarantees 
that  no update will bc pcrformcd or proccsscd out of sequence. (Notice tha t  
no acknowlcdgmcnts arc necdcd for thc "pcrform updatc" messages.) Update 
scqucncc numbcrs for updatcs at node n can bc pcriodically bc reset to 0. This 
proccss rcquircs cnrclul syncI~ronization which is controIlcd by nodc n. 

Undcr normal nctwork operation, updatcs should scldom get out of sequence 
an'cl tilcrclorc vcry few message proccfising delays will be incurred. Of course, the  
algorithm is now more complex and the messages transrnittcd are larger since 
thcy include "si.atusl' information, but this overhead should bc offset by the time 
savcd with the parallcl updatcs. If the nurnbcr of nodes in the system is large, 
thc "status" information for cach ilodc can bccome vcry large, making parallel 
updates uneconomical. 
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Thc MXAP is thc  last algorithm wc consider in this chnptcr. In the next 
chapter, we will analyze somc of the algorithms presented in this chapter. 



CHAPTER 4 

PERFORMANCE ANALY SXS 

In this chapter we analyze the performance of some of the updatc algorithms 
that were presented in chapter 3. In section 1 we describe a simple performance 
model of a distributed database. In section 2 we give a. brief overview of the 
analysis technique, and in scction 3 wc give 6omc queueing 'theory results that 
will bc needed for thc analysis of the algorithms. Then, in section 4, we analyze 
thc MCLA nlgori,Lhm. The analysis of the DVA algorithm is described in section 
5. Thc analysis technique we describe in this chapter can also be used toanalyze 
most of thc other algorithms. Ho~vcvcr, in this thesis we will not analyze the 
othcr algorithms. because their analysis is similar to the analysis of the first two 
algorithms. Thc analysis of the CLA algorithm and of the Ellis type.aIgorithms 
can be found in [GARC78]. 

1, TEE PERFORMANCE MODEL, 

Figure 4.1 sliows the model that was used to represent the distributed 
database system at cach nodc. Tile mcJe1 was designed to be as simple as possible 
while still dispIaying the principal characteristics of such a system. Requests for 
scrvicc arrive a t  a nodc from three sources: the users a t  the nodc, the network 
and the node itsclf. Each request for service can be of two types: a request for 
CPU time only and u request for I0 service follo~vcd by CPU time. Both the 
I0 and the CPU scrvcrs at  each node service at most one request at  a time, so 
that first-in-first-out queues are provided for waiting rcquests. Once the request 
is serviced, it can generate iurther requests, either at the same node or a t  other 
nodes. The request can also change various CPU controlled queucs. The entries 
in tlicse queues may cause more requests for service at  a later time. 

To illustrate the operation of the model, we will briefly describe how a vote 
request (in the DVA elgorithm) is processed. An update transaction arrives a t  a 
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nodc and requests a vote. In order to vote, the node needs the local timestamps 
of all thc items involved. Assuming that the timestamps are stored in an I 0  
device, the request must first obtain scrvicc from the I0 server. The scrvice time 
is proportional to the number timestamps read. (The fact that the timestamps 
arc storcd in an I0  dcvice and not in main memory can easily bc changed through 
a parameter to  be described later.) Next the request will procecd to  the CPU 
server where it wiIi receive CPU time roughly proportional to the number of steps 
needed in the voting proccdurc. Then, depending on the outcome of the voting 
procedure, the transaction will cithcr move on and rcquest service a t  another 
nodc, or  it will be deferred locally because of a conflict with anotlier transaction. 
In CSEC the transaction is deferred, it will wait until its fate can be decided. When 
it is time to decide its late, the transaction will request more CPU time at the 
node. 

The operation a t  a real distribu tcd database nodc is probably not as simple as 
we have described it. The 10 operations for a rcquest will be intcrleavcd with the  
CPU computations for the same request. However, we bclieve that the effect of a 
collection of small I0 operations and smaI1 CPU operations for a scrvice rcquest 
is approximately equivalent 60 the effect of lumping all of the I0 operations into 
one and of similarly lumping the CPU operations. 

Another di~crence'bctween our modcl a t  cach node and a real computer is 
that  in our model there is no multi-processing. This means that the rcquests are  
scrviccd seriaily instead of having several requests receiving service concurrently. 
Nevertheless, since most of the rcquests for service are small, the scheduling al- 
gorithm should not have n noticeable erect on the response times and the rcsults 
obtained with thc model should bc comparable to the results obtaincd with a 
multi-processing model. 

In a multi-processing environment, the different operations in progress can 
interfere with each other. Therefore a local concurrency control is needed a t  each 

' nodc for both algorithms. This extra overhead can be added to  our model by 
varying some of the model parameters that will be described in the next section. 

1 The Parameters. 

The model parameters describe a particular instantiation of our model. In 
order to  obtain useful results, it is very important to select a small number of 
mcaningful paramcters. If too many parameters are chosen, there will bc too 
many variables and it will be hard to understand the interrelationship of all the 
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pii{:lmctcrs and the systcrn pcrforrnance. If the parameters are not meaningful 
and intuitive, it will be hard to relate them to real systems in order to  assign 
them actual values. 

The parameters we sclccted for thc modcl are the following: 
1) Mcan interarrival timc of updates at each node, A,. We assume that the  

updatc intcrarrival tirnc is cxponcntially distributed, that is, we assume 
Poisson arrivals. The mean of the distribution is A,. This means that on 
thc avera.ge 1/A, updates pcr sccond arrive a t  each node. Poisson arrivals 
arise in many real life systems with n largc number of independent users, 
and seem to  be a good assumption for our case too. 

2) Mcan base set, B,. We assume that the numbcr of items refcrenccd by an 
update transaction (the basc sct) has a discrcte exponential distribution. 
A discrcte exponential d'istribution is obtaincd by making a continuous ex- 
poncntial distribution discrcte. (This will bc explained in detail in section 
2.) Thc mcan of the continuous cxponcntial distribution is B,. The fact tha t  
the base set is exponentially distributed means that updates that  reference a 
small numbcr of itcms will occur more frcqucntly than updates that  rclerence 
many updatcs. We assume that an update transaction references random 
itcms in thc database. 
Wc bclicve that the discrete exponcntial distribution is one of several rea- 
sonable distributions for the base set, Other oncs arc the Erlang and tEc 
normal dis6ributions. Howcvcr, in this thcsis we will only consider the dis- 
crete cxponcntial distribution 
Out  of the refcrenccd items, sarnc will be read-only itcms while the rcst (at 
'least one) will be readfwrite. We will assume that the number d rcadlwrite 
items (c.g., items in the write 6ct) in an updatc is uniformly distributed 
bctwccn 1 and the number of items in thc basc set. On the average, about 
half of the items refcrcnced by an update will be read-only. (See section 
3.5.) 

3) Thc numbcr of items, M. This parameter dcscribcs the total numbcr of 
itcms in the system. 

4) The nilrnber of nodcs, N. The numbcr of nodcs and databases in the system . 

is N. 
5) The network transmission time, T. In order to simplify the simulation, we . 

assume that the time if; takes any mcssage to go from any node to any other 
node is a constant T. This is an acceptable assumption if the cornnlunications 
network is lightly loaded or if the distributed database message traffic is 
only a small fraction of the total nettfork traffic. In both of these cases, t h e  
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message delay is independent of the nurnbcr of database messages generated. 
On the other hand, in some net~vorks the transmission time may be very 
sensitive to  messagc size, to network load and to the distance between nodes. 
Our constant transmission timc docs not model these cases as well. 

6) CPU time slice, 4. The CPU time slice is the time it takcs any CPU server 
to  do a "small" computation. For examplc, in C, seconds, a processor can 
check and set one lock (in memory), compare two timestamps (in memory) 
and maybe add something to a queue, send a lock request to  the central 
node, etc. 

7) CPU updatc compute time, C,. If an update references x items, then t h e  
time to  compute the actual update valucs is xC,. That is, once a transaction 

' 

has becn acccptcd or all of its locks have becn granted, it will nccd xCu CPU 
seconds before a message with the update values can bc sent to  all nodes. 

8) I0  timc slice, I,. This is the timc it takcs to read or write a lock or a 
timestamp froman I0 device. For examplc, if n transaction at a node needs 
to  rcad x timestamps, thcn it must gct XI, seconds of service timc from the 
I 0  server. 

9) I0 item update timc, 1'. The timc needed to read or writc one item value 
from or to the'IO device is Id. 

10) Rctry delay timc, Ri. The last parameter is a special one since it only 
a.pplics to  the distributed voting algoiithm. The retry time is the time a 
node must wait before retrying a rejected transaction. 

In selecting the parameters, sevcial additional assumptions have bcen made 
(c.g., constant transmission tirnc). Thc list of assumption has grown considerably 
i$ now. (The great numbcr of assumptions that havc bcen made simply illustrate 
the great number of factor6 that must bc considcred in designing a distributed 
database.) With so many assumptions, how rclcvant can wc expect the results 
obtained from thc simulation to be? This is hard to say, but wc do havc one 
thing in our fnvor. We arc only trying to compare the performance 01 different 
algori%hns; we arc not trying to picdict thc exact performance of a given system. 
Each of ihe  factors we havc considered (c.g., constant transmission timc) may  
alter our resu!ts, but it will probably affect all the algorithms in a similar way. 
So even if we arc unable to guarantee exact rcsults, wc will hopefully bc able to 
discover general trends for cach of the algorithms. (We will later study the effect 
of each assumption on the simulation results.) 
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1.2 The Performance Mcnsurcs. 

There arc many variables one can choose to evaluate the pcrformance of the 
system. I11 this thcsis we will study the following variables: 

1) Update rcsponsc timc. The response time of an update is defined as the 
difference between the finish time and the time whcn the update arrived . 
at the originating nodc. There are several ways of defining the finish time; 
hcre wc will consider the update to be finished whcn the originating nodc 
has finished all work on the update. At that point the node can inform the 
uscr that his or her update has bccn completed. Noticc that at the finish 
timc, othcr nodes might not be done with the update. Thc averagc response 
time of updatc transactions, El i,will be the main performance variable in 
this thesis. 

2) Number of mcssagcs. Anothcr important perrormance variable is the num- 
ber of mcssages that rnust be sent pcr update transaction, The messages 
to  and from a uscr arc considered intc~nal mcssagcs to a nodc and are not 
counted here. A broadcast mcs~zge is counted as N - 1 mcssagcs, where N 
is the number of nodes. 

3) I0 and CPU utilization. The I0 and CPU utilizations at each node arc also 
of intcrcst. The utilizatioil is defined as thc fraction of the available time 
that  u server is busy, 

1.3 Using the Model, 

The performance mcdcl we have described was used to study the algorithms 
of chapter 3. Twc techniques iverc ubcd Tor this: simulation and analysis. 

Dctailcd cvcnt driven siinulators wcre. built to study the algorithms. Each 
simulator has an update :ransaction generator that produces transactions as 
dcscribcd in the'rnodcl. (Sce section 1.1.) Thc ittms referenced by each trans- 
action arc selected a t  random from the M items available. The simulator then . 

mimics the operation of the system as it proccsscs the transactions. Of course, 
the simulator does not read or write the data corresponding to a transaction; i t  
only mimics this by requesting the necessary I0 and CPU time from the scrvcrs. 
Howc\-er, 'he simulator does kcep track of such things as  granted locks, the 
timestamps oi the item values, and the deferred transactions. During the simula- 
tion, statistics like thc avcragc response time of transactions and the numbcr of 
messages are collected. 
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In addition to  the simulators, the update algorithms were also analyzed 
using a technique which is dcscribcd in thc following sections. The objective of 
this analysis was (1) to doublc check the performance besults obtained from the 
simulators and (2) to obtain additional insight into the operation of thc system. 

For  the analysis of the algorithms we make one final assumption. We assume 
that  the .cPU update time (G,) and the CPU time slice (c.) are both 0. This 
assumption is madc to simplify tlic analysis; the extension to  the case where 
C' and C, arc greater than 0 should bc straightforward. Furthermore, the new 
assumption can be justified because in most of our cases of interest, C, and C, 
are both much smaller than the I0 scrvice timcs (I, and Id) and the network 
transmission time (T). As long as C,, and C, are small compared to  I,, Id and T, 
they do  not afiect the system performance. 

2. OVERVIEW. 

T he tcchnique for analyzing the pcrformancc of the algorithms is iterative. 
First we assurnc that update reqiicsts never conflict with cach other. Under this 
a.ssurnption, we derive some pcrformance measures Iike the average wait time 
at cach I 0  qucuc and the avcragc rcsponse time of cach update. Then using 
these measures, wc compute the probability of conflict bctwccn updates. This 
probability is used to cstimatc the extra I0 load nt each node and the delays 
incurred by thc conflicting requests. M7ith thcse valucs, we recornpule the average 
wait time and average response time. This process is repeated until the average 
response time value bctwccn iterations docs not change noticeably (or until the 
compu taiions diverge). 

TIlroughout thc computations, many simplifications are made and thus the 
results obtaincd arc only approximate, However, most of the simplifications made 
are reasonable. The fact that the approximate rcsults coincide fairly well with 
thc simulation results, gives credibility to this last statement. (See chapter 5.) 

In the next section, wz derive some results that are useful in t.he analysis 
of the algorithms. Then we procccd to study each algorithm separately and in 
detail. 
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3. USEFUL RESULTS. 

3.1 Independence of Nodes. 

The interconnection of all nodes forms a network of queues [KLEI75]. The 
analysis of such n network is very complcx for the general case. EIowever, we 
simplify the analysis here by assuming that each node can be analyzed independ- 
ently. This simplification can be justified as follows. 

Jackson [JACK571 studied an arbitrary network of queucs with each node 
having an exponential scrvicc time and receiving requests from outside the sys- 
tem in the form of a Yoisson process. Jackson showcd that each nodc in such a 
fiyslcm bchaves as if  it were a M/M/l system with a Poisson arrival rate equal 
to  the sum of of all the original arrival rates a t  that node. (M/M/1 is a system 
with Poisson arrivals and 1 exponcntial server.) 

In our casc, all of thc extc~nal arrivals are Poisson, but the scrvice times 
o.t each node are not exponential. Fortunately, scrvicc timcs are "roughly" ex- 
ponential because all I0 scrvict: times are proportional to the number of items 
rcferenccd in the update that is being serviced. Recall that the numbcr of itcms 
referenced in an update is a discrete approximation to the exponential distribu- 
tion. ( T l ~ c  actual servicc timc distributions at  each node will be derived later 
on.) Thus, wc hold that Jackson's result is still valid and we will analyze each 
node independently. The arrival ratc at  each nodc will be the sum of the ex- 
ternal arrival rate (i.c., new updatcs from uscrs) plus the arrival ratc due to 
service requests from other nodes. (For further justification of this assumption 
see [G/\RC78].) 

3.2 The M/G f 1 Queue. 

\.Ye onig use the exponcnt;ial scrvicc time assumption to decompose the net- 
work into a set of indcpendcnt queucing systcms. In the rest of the analysis, 
we use the actual scrvicc time distribution at cach nodc. Thus each system is a 
M/G/1 one (G means gcncral scrvicc timc distribution) and not a M/M/I one. 
The avesage wait time, W, in such systems is given by [KLEi75]: . 
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where X is the mean of the service time distribution, C: is the squared cocficient 
of variation of service timc and p 'is the utilization factor. The utilization factor 
is simply 

where h is thc Poisson arrival ratc at  the system. The coeacient of variation 
can bc computed as 

whcrc X2 js thc sccond moment of the scrvice timc. Notice that both tllc mean 
and the second momcnt of thc scrvicc time distribution are necdcd to  compute - 

the avcragc wait time. 
The avcragc numbcr of rcqucsts waiting in the queue (not including the one 

in service) is give by [I<LEI75]: 

3.3 The I 0  Server. 

The scrvicc ti~ile requcsted by each transaction depends on thc typc of re- 
quest. For example, a vote rcqucst at a nodc (in the distributed voting algorithm) 
will nccd I0 time proportional to the number of timestamps thaG it will read, 
while a perform-update requcsl will need I0 time proportional to the number 
of items in the write set. Wc mode1 this behavior by an n-stage parallcl scrvcr 
(figure 4.2), wherc each individual seiver services one typc of request only and 
the  probabilities a t  each branch arc thc fraction of the total requests tha t  are 
01 thc  given - type. Server i is described by its mean service time x, its second 
rncmcnt X$ , and the probability ai that on arrival goes lo that server. Only 
zero or one request can bc in the service facility at  each nodc at a time. 

\Ye now dcrivc thc mcan scrvicc time and thc second momcnt of the 
service time P for the complete facility a t  a node. From the operation of the  n 
servers, wc know that thc probability distribution function of the overall service 
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Figure 4.2 
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wl~ore / i (x )  is the probability distribution function (pdf) of service time i. From 
this equation we find the mean service time 

and similarly, 

3.4 The Base Set. . 

In order to use eguations (6) and (7), ive nccd and for each type of 
scrvice rcquest. And since these values dcpend on the number of items in the  
base and write sets, wc must study the probability function of the number of 
itcrns rcfcrcnced in an update. 

Let  Y (a discrete random vnriablc) be the number of items in the base set of 
nil u pdntc request and let fy(i) bc the probability function of Y. We assume that  
fu(i) is a discrete exponential distribution. (Scc section 1.1.) This distribution is 
rclated to  n continuous exponential distribution (with mcan B,) as follows. Lc t  
X~carandomvariable~vithacontinuousexponcntialdistribution~(x).  Then . 

the  probability that Y = i is the probability that X is between i - 1 and i. That  
is, 

r 

Since X is exponentially distributed, 

whcre f3, is the mean of the continuos exponential distribution. As we will sec, 
B, is close to the mcan E[1'] but is not the same. Thus, 
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Now we can obtain the mcan and the sccond moment of Y: 

= (1 + exp (-I/B~)] @[YO' (9) 

The  details of these derivations arc in [GARC78]. Notice that if Bs )) 1, then the 
mcan E[Y] is approximately B,, the mcan of thc original exponential distribution. 
( cxp (-1/B8) can be approximated by l - l/B,.) 

3.5 Thc Write Set. 

\Vc now dcrivc Ihc mcan and the second moment of the write set distribu- . 
' ' 

tion. Let discrctc random variable Z bc the number of items in the write set. 
This nunlbcr should be a randain fraction of the number of items in the base set. 
Howcvcr, 7J should be at  lcast 1 bccausc all transactions must modify at least 
one item. In other words, Z can be defincd by 

where Y is the number of items in the base set and R is a random number betwccn 
0 and 1. That is, Z is an integer that is uniformly distributed between 1 and Y. 

This mcans that discrctc random variable Z is a functioa of discrete random 
variable Y and continuos random variable R, where fy(i) is defined above.and 

Using iteratcd expectation [PAP075], 

EIZl = EPIZ I Yl1, 
E[z'] = E ~ [ z ~  I Y]],. 

so we obtain that 
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(See [GARC78] lor details). 
Using the above results, we can now proceed to analyze the update algo- 

rithms. 

4. THE MCLA ALGORITHM. 

In this section we describe the analysis of the MCLA algorithm (or the  
MCLA-h algorithm with h = infinity). During thc discussion that follows, one 
must kccp in mind that the hole lists uscd by this algorithm eliminate all un- 
necessary delays. (Scc chaptcr 3.) Ilcnce, the only clclays we.study in the analysis 
of the MCLA algorithm are the queueing delays a t  the I0 servers and the delays 
wrrifi~ig ior iocks kt tile centrai nodc. 

4.1. No Conflicts Case. 

The analysis of the MCLA algorithm under the no conflicts assumption is 
dividcd in two parts: thc central codc analysis and the other nodes' analysis. We 
first; describe the analysis of a non-central node because it is the simpler case. 

4.1.1 The Non-Central Nodes. 

Thcrc are two types of I0 service rcqucsts a t  a non-central node. The first 
typc is a request to read the items in the basc set of an update (RRBS). This 
occurs whcn a nodc rcceivcs a grant locks message from the ccntral node because 
at tliat point the node must compute thc update. One RRBS occurs for each 
updatc rcqucst that arrives from the uscrs at  that node, so RRBS arrive a t  a 
rstc'of h pci sccond. ( h  is the inversc of the interarrival time A,.) 

The second typc of rcqucst is n rcqucst to pcrform update (WU). These 
arrive at  thc nodc for cvcry update that is acccptcd in the system. Since there 
are N nodcs, RPUs arrive a t  a rate of N h  pcr second. 

Each RilBS requires (Id)(Numbcr of items in updatc) seconds of service, so 
that  the mean scrvicc time fo~ this rcqucst is IdEIY]. (Recall that Id is the  I0 
time needed to read or write one item.) Similarly, the second moment of this 
scrvicc time is I ~ E [ Y ~ ] .  On the other hand, RPUs have 'nave a mean service time 
of & E[Z] and a sccond moment of IdE[z2] .  The total arrival rate a t  the node is 



CH.. 4: YERFOFLMANCE ANALYSIS 

X(N + 1) and the probability of a RRBS is 1/(N + I), while the probability of 
a RPU is N / (N + 1). 

Using equations (6) and (7), wc obtain the mean and the second moment of 
the service time at a non-central node: 

and using equation (I), we obtain the average wait time at a non-central node 

since 

(Thc h in equation (1) is now replaced by (N + I)&, which is the total Poisson 
arrival rate at the node.) 

We now analyze the central node in the MCLA algorithm, All updatc re- 
quest,~ that arrive nt tile system ( Nh per second) must request locks from the 
central node (RL). The I0 time needed to do this at the central node is 2 1, 
(number of iicrns in update). Thc factor of 2 is includcd because the locks must 
first bc read and thcn they must be set. Thus, the rncan and the second moment 
of EL service requests are 21,E[Y] and 4 1 f ~ [ Y ~ ]  respcctivcly. A!tm the locks 
have bccn granted, the update transackions need to read the base set in order 
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t o  cornpute the update. This is done at  the node where the update originated 
PRBS). The central node will also have to perform this type of work since 
h updates per second originate a t  the central node. As stated in the prcvious 
scclion, the mean and the second moment oi RRBSs are Id EM and 12 E[Y 2]. 
Finally, all transactions must also relcasc their locks at the central nodc and 
pcrforrn the update @LPU). These request arrive a t  a rate of NA pcr second. 
IXRLPUs need 

I,(size ol base set) +&(size of write set) 

scconds of I0 time. Sincc the sizes of the base and write sets are not independent, 
the derivation of the mean and the second moment of FLRLPUs has to be dzne 
carefully. The details are given in [GARC78] and the result is 

mean service time of RRIPU's = IsEIY] + IdEIZ] (15) 
pecoild mornen t of I?,RLPU1s = I: E[Y~] f I&(E[Y] + E[Y~]) 

+ 1; ~[z~l (16) 

The total Poisson arrival rate at the central nodc is h(2N + 1) and the 
probabilities Tor RL, RRBS, and MLPU are Nl (2N + l), 1/(2N f 1) and 
N / ( 2 N  + 1) rcspcctivcly. Now we can use equations (6) and (7) to  find the mean 
and the second moment of ,the complctc service time at the node: 

Substituting into equation (I), we find the average wait time a t  the central node: 
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Figure 4.3 

FIGURE 4.3 

STEPS OF A TRAidSACTION 

MCLA CENTRALIZED LOCKING ALGORITHM 
'-- No Con f l i c t s  Case --- 

ORIGIN: Non-central  node x. 

j Average t ime 
S T E P  f o r  step. 

-----------------------------------------------l----------------------- 
Request a r r i v e s  a t  node x 1 8 
Transmission o f  l ock  request t o  cen t ra l  node I T 
Locks a re  granted I 6 + 2 Is E[YJ 
Transn iss ion  o f  "grant"  message t o  node x I T 
Read base s e t  i tems I %c + Id E[Y ] 
Send "per form update" t o  a l l  nodes, I 

messages immediately a r r i ves  a t  node x I 8 
Perform update a t  node x 1 K c  + Id E[Z) 

- - - - - - - - - - - - - I - - - - - - - - - - -  - 
Average response t i n e  j Rnc 

ORIGIN: Cent ra l  node. 

I Average t ime 
S T E P  1 f o r  s t e p  

-----------------------------------------------l----------------------- 
Request a r r i v e s  a t  cen t ra l  node 1 5 
Trcinsmission o f  l ock  request t o  centra l  node I 5 
Locks a re  granted I Wc + 2 Is E[Y] 
Trsnsn iss ion  o f  ttgrantlt message t o  node I 8 
Read base s e t  i tems I Wc + Id  ECY] 
Send " 2 s r f o r n  update" message t o  a l l  nodes, 1 

nessagc immediately a r r i ves  a t  cen t ra l  node 1 5 
2e r fo rn  update and re lease locks I + I s  E[Y] + Id E [ Z l  - - - - - - - - - - - - - I - - - - - - - - - - -  - 

Average response time I Rc 
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4.1.3 The Average Response Time. 

Once the average wait times a t  cach node are known, the average response , 

time of an update can be computed simply by studying the steps followed by 
an update. Since we are assuming that the network is an independent set of 
queueing systems, the average total response time is the sum of the overage 
response times a t  each node. Figure 4.3 shows the steps followxl by a transaction 
tha t  originates a t  the central and non-central nodes. The average total response 
time for transactions originating a t  the central node is 

while the value for transactions originating a t  non-central nodes is 

Since there are N - 1 non-central nodes and only one central node, the 
average response time for all requests is 

This completes the analysis of the central locking algorithm when no conflicts 
among the updates occur. 

4.2 The hICLA Algorithm - Conflicts. 

M'c havc obtained expressions for thc average wait time a t  cach node and 
tllc avcmgc response of updates ~vlicn no conflicts occur. Next, wc use these 
results to cati~nnte tile probability and the efict  of conflicts, and use thesevalues 
in. turn to recompute the wait and response times. 

The analysis that lolIows is only approximate. One reason for this is that  a . 

more detjiicd analysis is probably much harder. A second reason is that these 
results wjii havc a small cffect on the performance of most systcrns since the  
fraciion oi updatcs that conflict sliould be vcry smaI1. 

The main assumption we makc in analyzing the algorithm under conflicts is 
that  updates that conflict are "averagc" updates. By an averzge update we mean 
an update A such that A has exactlyE[1'] items in its base set, A has exactly E[Z] 
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itcms in itis write set and whenever A waits at a node, it waits exactly the average 
wait time at  that nodc. This simplifies thc conflict analysis grcatly. This would 
bc a valid assumption if the avcragc effects of update conflicts were equivalent to 
the erects of average updates conflicting. Unfortunately, this is not quite true. 
For  cxamplc, if wc know that an update has had a conflict, then chances are tha t  
its base set size is grcater than average. This particular point will be analyzed 
chapter 5, but for the time bcing we go ahead and use this assumption. 

4.2.1 Probability of Conflict. 

Our first step is to estimate the probability that two updates conflict, Pr(C). 
That is, assume that update A has bcen granted a t  the ccntral nodc the locks 
for al! nf its YA items. Then wc nccd the probability PrIC) that a second update 
R arriving a t  the central node will not bc able to get a lock for one of its YB 
itcms. The probability that the first item of B coincides with rm item of A is 
YA/M, where M is the total number of itcms in the database. The probability 
that the other itcms in B coincide with one of the itcms of A is also about Y A / M  
(assuming, of course, that Yn and YB < M and that the probability of two hits 
is very small). Sincc there arc Ya itcms, thc probability of any conflict is 

In t!lc rest of cur  analysis, wc use the average value of PC: 

(Yn and Y B  are independent.) 

4.2.2 Probability of Waiting at Central Node. 

Equation (23) only givcs us thc probability of a conflict between two updates. 
However, what we realIy need is the probability that update B will have to  wait 
for locks at the central nodc (Pr(W)). Let 3 be the average number oI updates 
that  are hoiding locks a t  the ccntral node, Then, 



CH. 4: PERFORMANCE ANALYSIS 

To estimate f we need to know how long a transaction holds its locks. If 
the transaction originated at n non-central node, the locks arc held while the 
originating node computes thc update and until the central node is notified: 

L,, = (transmission from central to originating node) 
+ (time to compute update values) 
+ (transmission from originating to central node) 
+ (time to release locks). 

On the average this becomes 

For a transaction originating at the central node, no transmissions are involved, 

The average lock time for any update is 

N - l -  Z = (N)Lc+ (;)i;, 

since thcrc are hi - 1 non-central nodes aad only one central one. 
Using Little's formula [KLE175], we can obtain the average number of trans- 

nctio~ts holding locks at a given instant: 

J = (arrival rate of lock requests)L, 

This value can be substituted into equation (24) to obtain Pr(W). 

4.2.3 Cost of Conflicts. 

To estirnate tlre cost of each conflict, we will assume that an update trans- 
actior! wil! at nost conflict with one othcr transaction during its cxccution. This . 

is rcasonablc to do sincc the probability of two or more conflicts is much smaller 
that the probability of one conflict. A dclaycd transaction must wait until the 
lock it needs is released. On thc avcrngc this time will be z/2 since we assume 
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that  thc conflicting lock rcqucst arrives a t  a random point in time with rcspect 
to  thc trar~saction that holds the iock. After waiting, the transaction must read 
and sct the remaining locks. \Ye assume that the conflict could have occurrcd 
with any lock, so that thc numbcr of rcrnaining locks is uniformly distributed 
bctween 0 and Y - 1 items (Y is the number of items in the base set). The mean 
and the second moment oi the numbcr of remaining locks are 

and 

respcctivcly. (Sce [GARC78] for dctdls.) Reading and setting each of these locks 
takes 21, seconds. Thcreforc, thc mean and the second moment of the I 0  service 
time are: 

~ 6 ~ ~ ~ 1 -  1) 

and 

We can now recornpute the average I0 wait time a t  the central node (see 
cquation 19). We now have a new type of request: the request to lock remaining 
ilcms PLR). The arrival rate 01 RLRs at  the central node is Pr(W)Nh which is . 

the  fraction of the lock rcquests that arc not granted the first time through. The 
total Poissoil arrival ratc a t  thc ccntral node is (2N+ 1 +Pr(W)N)h. Equations 
(17) and (18) are modificd accordingly to give 
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When these new values are substituted into equation (S), we obtain t he  
ncw average wait timc a t  the central node. In turn, the new value for is 
substituted into equations (20), (21) and (22) to give us a new average response 
timc a. However, to this vnluc we must add thc expected value of the delay due 
to conflicts. Since a request that conflicts is delayed z/2 seconds plus the t ime 
to set the remaining locks, the new response time is given by: 

Hcrc, R is the value obtained from cquation (23) with the new value of K. 
The procedure we have just described can be repeated (starting a t  equation . 

' 

23) until thc increase in is negligible. The procedure to do this is as  follows: 

- 
Initialize; Pr(W) := 0; := 0; oldR := 0; - -  - 
SolvcSystem; <<.Result is li, W, and \A/,, >> 
Do until "n is close to oidR" 

bcgin 
ConflictAnalysis; - << Result is Pr(W) and Z >> 
o idn  := n; - -  - 
SolveSystcm; << result is new R, W,, and !11/,:>> 
end; 

The complete program is given in appendix 3. 

4.2.4 Co~lvergencc and Saturation. 

A catural question to ask a t  this point is: Under what conditions does the 
i terath-e analysis we have just described converge? That is, in what cases will 
the diiyereiicc betwecn "oldR" and actually approach zcro and in what cases 
will this diKcrencc increase? We have not investigated this issue for the iollo~ving . 

reason. II the algorithm of appendix 3 does not converge within a few steps (e.g., 
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3 or 4) ,  then the number of confiicts in the system must be significant. This 
invalidates thc main assumption of the analysis, so thcre is no point in studying 
whcthcr the analysis algorithm will evcntually converge: in either case thc result 
is not valid. Thus, in the program ~f appcridix 3 we give up after 5 iterations. If 
the program gives up for this reason, the analysis cannot provide good results. 

In practice, this sccms to bc an adcquate rule. In all the test cascs where 
thc analysis program gave up, the system was fairly close to  saturation already 
(as verified with t l ~ c  simulator). Thus, tllc analysis can be used to estimate the  
point wl~cre the systcm bccomes saturated. 

Also notice that in somc equations (like equation (19) ) it is possiblc tha t  
tllc deilominator reach zero, or evca bccornc ncgativc. In such cases, the system 
is clearly saturated and our analysis assumptions are invalid. Thc program of 
appendix 3 will report this situation. 

With this section we concludc the analysis of the MCLA algorithm. 

5. TKE DISTRIDUTGD VOTING ALGORITHM @VA). 

5.1 No Conflicts Case. 

Wc now analyze the pcrlormance of the distributed voting ~Igorithrn (DVA) 
undcr thc assumption of no conf icts. Thc typc of analysis is very similar to the  
onc performed with the ccntralizcd locking algorithm. 

In thc distributed voting algorithm thcre is no central node, so the analysis 
is simplified. At any node in the systcrn there are three types of service requests. 
Tlic first typc is a request to rcad the items and timestamps in the base set 
@RIT). Thcsc rcquests arc generated by ncw updates as they arrive a t  their 
originating nodes. The time nccdcd to rcad one item and one timestamp is Id+I,, 
so that  the mean and second moment of RRITs are 

respectively. The arrival rate of RRITs is h per second because one R.R.IT occurs 
for each ncw update that arrives a t  o node (and assuming no rejected updates, 
of course). 
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Tl~e second typc of request for service is a request to vote on an update 
(RV). This type or request involvcs reading a11 of the timestamps for the items in 
the basc set,. Since reading onc timestamp takes I, seconds of I0 time, the mean 
and the second momcnt of RVs are 

I,E[Y] and I ~ E [ Y ~ ] .  

Assuming that all nodcs vote OK on all updates, a given node must vote on all 
the  updates that originate at that nodc. That node must also vote on all of t he  
updates originating a t  thc N,- 1 previous nodes in the daisy chain, whcre N, 
is the number of votes neccled for n majority. Thus the arrival rate of RVs at a 
nodc is N,,X. 

Finally, thcre are requests to pcrforrn an updde [RPU). These requests 
involve writing the itcms in the writc sct and updating the timestamps for these 
itcms. Since for each itcm in the write set we need Id + I, seconds of I0  time, 
the  mean and the second moment of RPUs arc 

(Id f l,) E [Z] and (Id + 1J2 E [z2]. 
The arrival rate of RPUs at  each node is NX because all updates must be per- 
formed at  all nodcs. 

The total arrival rate a t  a node is (I f N,,+N)A and the probabilities of 
RRIT, RV and RPU are l/(l+ N,,+N), N,,/(l+N,+N) and N/(l+N,,+N) 
respectively. We can now use equations (6) and (7) to obtain themcan and the 
second momcnt of the service time at node i: 

Using equation (I), we obtain thc average I0 wait time a t  nodc i: 
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Figure 4.4 

FIGURE 4 .4  

STEPS OF A TRANSACTION 

DISTRIGUTED VOTING ALGORITHM --- 140 Conflicts Case --- 

ORIGIN: Noda i. 

I Average time 
S T E P  I for step. 

-----------------------------------------------l----------------------- 
Request arrives at node i I 8 
Read items and tinestanps I + (Is + Id) E[Y] 
Vote at node i I W; +IsE[Y] 
Transmission to node i+l I T 
Vote at node i+l 1 + Is E[Y] 
Transmission to node i+2 I T 
Vote at node i+2 I ZZ + I s  E[Y] 

I 
I 

Transmission to node i + NR - 1 
I 
I - T 

Vote at node i + Nn - 1, update accepted I W i + ~ , - r  + Is E[Y] 
Transmission of accept m a s s a ~ ~  to node i I T 
Perform update at node i I + (Is + Id) E[Z]  - - - - - - - - - - - - - I - - - - - - - - - - -  - 

Average response tine I R i 

[Note: Arithmetic (e.y., i + x )  is modulo N. ] 
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(Notice that  if thcrc are no conflicts, &is independent of i. Howevcr, this is not 
true in tlic general case and we therefore include the i subscript here.) 

, The next stcp is to. use the result of equation (35) to  compute the average 
response tirnc. Figure 4.4 shows the steps followed by an update transaction. 
The average response time is simply the sum of the average times taken at each 
step (by our independence assumption): 

+K+(&+Id)E[z]r 
N-l- Cj=, Rj R =  
N 

This ends thc analysis of the distributed voting algorithm with no conflicts. 

5.2 The DVA Algorithm - Conflicts. 

The analysis of conflicts in the distributed voting algorithm is more complex 
than the equivalent analysis for the MCLA centralized locking algorithm. The 
technique uscd is the same; however, tllcre are many cases to consider in t he  
distribiltcd voting algorithm. When thcrc are no conflicts, all nodes in thc'dis- 
tributed algorithnl have tile same behavior. Unfortunately, when conflicts occur, 

' cach nodc pcrrornls dill'crcntly since decisions arc made according to the node's 
priority (i.e., its position in the daisy chain). 

In  thc following, we assumc that wc have an cstimatc for the average wait 
tirnc at nodc i (K). (See section 5.1.) Furthcrmorc, we assume that the nurn- 
bcr of updates that conflict is small compared to the ones that don't ~011flict. 
Wc also assumc that an updntc will conflict with at most one request bcfore i t  
is conplcted. (That is, a t  most, an update will bc retried once.)  ina all^, we 

. assume that all corlflicting updates are average updates (ju& as was done for the  
ccntrnlized algorithm). 

5.2.1 The Size of the Pending List. 

Thc first stcp is to  estimate thc following values: 
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pt[i, j] = the average timc that an update that arrives at node j with i 01< votm 
\\rill rcmain on j ' s  pcnding list, assuming that the update is completed 
\\rilliou t any conflicts. 

q[i, j ]  = the average size of the pcnding list at nodc j due to updabe requests 
tllat arrived at j with i OK votcs (only considering requests without any 
conflicts). 

For cxnrnplc, pt[O, I] is the avcragc timc that an update that originated at 
nodc I will s h y  on the pcnding list at node I, assuming that the updatc complete6: 
without any delays. . 

Sincc X rcqucsts pcr second arrive at node j with i votes (0 ( i ( N,- I), 
thcn by Little's rormula 

q[i, jl = pt[i, jl (38) 

To compute pt[i, j ] ,  :vc consider thc interval between the t izc  an update is placcd 
on the pcnding list end the time it is removed. When thc update is placcd on the 
pcnding list at j, it has i + 1 votcs. Thcrcfore it will remain on until it receives 
N, - (i + 1) more votes and it is ncccpted. Thus, if (i + 1) f N,, 

Thc last two terms represent the update time nccdcd to remove the update from 
the pending list. If (i + 1) = N,,,, thcn no more votes are needed and 

The next step is to study how a conflict between two updates can occur 
and to estimate the extra I0 Ioad and delay in each case. There are basically 
two types of conflicts: (I) an update, A, arriving at a nodc might find that i ts 
tirncstarn?~ are obsolete or (2) update A might conflict with anotlier request on 
the pending list. 

5.2.2 0Sso:ete Timestamps. 

Obsolete timestamps occur when a conflicting update B is accepted while 
update A is being proccsscd. Update B must have obtained its N, OK votes at 
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Figure 4.5 
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F i g w e  4.5. X c u  a d  =hen obsolete -cimestaxps occuz. 
(L'piate A originates a t  node 0.) 



CH. 4: PEWORMANCE ANALYSIS 

nodes where A has not been processed (otherwise A would have been deferred) 
and similarly A must have received its OI< voles (0 5 votes ( N - N,) at 
nodcs where B has not been proccsscd. 

For example, figure 4.5 shows how and when obsoIete timestamps can occur 
in a 6 nodc system. The top linc shows thc steps involvcd in processing an update 
rcqucst A that arrives a t  node 0. Bclow this linc, we show the time intervals 
wl~cre  the acceptance of a conflicting request B would cause A to  see obsolete 
tirncstamps. TIlcse intervals are dependent on thc node where 13 is accepted; 
thcrcforc wlc show t l ~ c  intcrvals for all six nodes. We illustrate the case where 
B is accepted at node 4: If B is accepted at  any time in interval a (see fig. 4.5), 
then thc acceptance rncssagc will arrive a t  node 0 just before A is voted on, This 
means that A will scc old tirncstamps. If B is acccpted in interval P , then the  
accept rncssage will arrive a t  node 1 before A is voted on and A will sce obsolete 
lirncs tamps in this case too. If B is acccptcd before a, then the update acceptarlce 
rncssa.ge will arrive at  nodc 0 before ti even reads the items, so when A reads 
the itcrns'it will obtain the new values. If B is acceptcd after p, then A will not 
scc oid tirncstamps at  node 2 bccausc it will be delayed (or deadlock rejected) at 
nodc 1. Notice that for R to bc accepted at  node 4, it must bc on the pending 
list a t  node 1 and it will therefore be impossible for A to proceed past node I. 
(Atthis  point we only consider updates that sce old timestamps; cases where A 
conflicts with an update in the pending list are treated later.) 

From this example, we czn write down what happens in the gcncral case. 
The probability that an update that originates a t  node i will obtain obsolete 
tirncstamps on its vote request @V) at  node i itself is: 

where Pr(C') is the probability of a conflict. In this case, a conflict occurs when 
one clcmcnt of the write sct of the acccpted update coincides with one item of 
the  base set of the other update. Thus, 

(Comptie equation (42) to equation (23)) The value in curly brackets in equation 
(41) is the average number of updatcs that arc accepted in the critical intervals 
(c.g., interval a of Pgurc 4.5). 

What is the cost of such an occurrence? The update that failed must be 
retried. Therefore, all I0 operations up to the point where the update was rejected 
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will bc overhead. This includcs onc RRIT and one RV at  node i. Thus, the arrival 
rate of these requests must bc modified: 

arrival rate of RRITIi] := arrival rate of RRIT[i] + Pold[i, i]h (43) 
arrival rate of RV[i] := arrival rate of RV[i) + Pold[i, i ]h  (44) 

(The initial values of arrival rate of RRIT[i] and arrival rate of RV[ij are the 
values in the previous section.) The rejcctcd request will be delayed. by 

pa e response (and Rl is the retry time). Therefore, when we recompute the avc. g 
timc (equation 37), we must add a term to account for this delay. We will do 
this by defining a variable "delay[iIn which will accumulate a11 of the delays for 
updates that originated at node i. Variable dclay[i] is initially set tozero and 
when w e  arc done recomputing X (equation 37), we will odd this term. Thus, 

( whcrc Fold is defined in equation 41.) 
Up to now, we havc only considcrcd updates that are rejectcd at thc originat- 

ing node i due to obsolctc timestamps. Ncxt wc considcr such rejections at other 
nodcs. TI1 is can happcn at nodcs i + j for 1 _< j _< (N - N,) only. (See figure 
4.5.) (Thc computation of nodc numbers (c.g., i + j) is always modulo N.) The 
probability that thc update that originated at nodc i is rejccted at i+ j because 
of old timcstarnps is: 

Tllc cflcct of such a conflict is that the updatc progress so far (through voting 
a t  nodc i + j) will be wasted and the update must be retried. This is takcn into 
a.ccount as follows: 

arrival ratc of RRIT[i] := arrival rate of RRIT[i] f Pold[i, i f jlh, 
arrival i a t ~  ~f XVtV[k] := arrival ratc of RV[k] +Pold[i, i + ~ l h  

147) 

f o r i < k < i + j ,  
f 

(48) 
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nccall that equations (46) though (49) must bc rcpcatcd lor 1 < j 5 (N-N,), 
wllilc equations (41) througl~ (49) must be iepeatcd lor each node 0 ( i 5 N- 1. 

5.2.2 Conflicts with Pending Rcqucsts. 

The other type of conflict occurs when an updatc A arrives at a nodc with 
current timestamps, but it conflicts with an update on. the pending list a t  t ha t  
nodc. \t7e divide this analysis into two parts: the conflict occurs at A's originating 
nodc i (on first vote) and ihc confiict occurs a t  the other nodes (i + 1, i + 2, 
ctc.). 

The firs; case is thc following one. Updatc A arrives at node i. It reads t h e  
items aild timestamps and then i votcs on A. During the voting, nodc i notices 
that  A coralicts with an update R. Assume that B originated at node i-h where 
0 5 h 5 h!, - 1. (As always, i - h is performed modulo N.) The probability 
that  this happens is thc probability that A and I3 conflict timcs the avcragc 
number of requests from i - h that are on the pending list at i. That is, 

whcrc q[ft, i] is defined in cquation (38) and Pr(C") is the probability of a conflict. 
There are ncCunlIy two ways in which A and B can conflict. An itcm in the write 
set of B can coincide with an itcrn in the base sct of A. The probability of this 

and if B is cvcr ncccpted, then A must bc rejected. The other way that a conflict 
can occur is for an itcrn in the write set of A to coincide with an item in the read 
set of B (i.e., the base minus thc write set). Thc probability for this is 

and in this case A may continue aftcr B is acccptcd. Therefore, 

Thus, with probability (Pr(1) + Pr(2)) q[h, i] update A (origin i). will confiict 
with B (oiigin i - h) a t  node i (0 5 h 5 N, - 1). There are two actions that 
the  distributed voting algorithm will take in this case: Either A is delayed at i 



CII. 4: PERFORMANCE ANALYSIS 

or A rcccivcs a DR (dcadlock rcjcct) vote. We study the eflects of the actions 
separately. 

II i - h is greater than i (i - h modulo N), then A will be delayed at i. 
In this case, with probability Pr(1) q[h, i], A will wait until B is accepted and 
then A will be rejcctcd. A's dcIay will bc (A's wasted time) + (average time for 
completion of B), or 

(Scc equation (39). We assume that B's remaining time is uniformly distributed 
bctwecn 0 and pt[h, i].) One RRIT and one RV will have to bc repeated for A, 

arrival rate of RRIT[i] := arrival rate of RRIT(4 + Pr(I) q[h, i j X  (55) 
arrival rate of RV[i] := arrival rote ofRV[i] + Pr(1) q[h, i]h (56) 

On the other hand, with probability Pr(2) q[h, i], A will only be delayed and 
not rcjcctcd. In this casc, wc will have to votc again on A, so 

arrival rate of RVM := ivrival rate of RVIi] + Pr(2) q[h, i)h (57) 

dclay[i] := del&;y[i] + Pr(P)q[h,i] Wi+I,EIY] + i- 2 

Ncxt wc considcr what happcns if A is deadlock rcjectcd at node i. This 
happcris whcn i - h is lcss than i, and in this casc somcthing curious occurs. 
Updatc 13 has rcccivcd h OK votes bcfore nodc i, one OK vote at nodc i and will 
go on to rcccivc OI< votcs at nodcs i + 1, i + 2,. . . i + (N, - h - 1). This is 
assuming, of course, that I3 docs not confiict with any other requests. Here we 
a.ssurnc that this is true becausc, as wc statcd carlicr, thc number of updatcs that 
havc conflicts is small and thcrcforc, chanccs arc that 13 will complctc with no 
delays. Also nolice that update I3 is "ahcad" of A in the daisy chain and whcn A 
arrive5 at nodc i j- 1 (aftcr its DR at nodc i), it will again see B on the pcnding 
list at that nodc. Thcrcforc A will gct anothcr DR vote at i + 1. This chase will 
con tin ue E il t il B is acccptcd and A arrivcs at a node where B has' been removed 
from thc pending list. M1hcn this occurs, with probability Pr(1) q[h, i], A will be 
rcjectcd (because its timestamps arc obsoleic) and with probability Pr(2) q[h, i], 
A will be able to continue. 
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To csli~natc thc effects of this chasc, we assume that thc time before B is 
acccptcd a t  a11 nodes is pt[h, i]/2, Then wc see how far A can go in this time. The 
following program segment computes the delays and the extra loads involved: 

<< A t  this point, A has just started execution. "Exec-timc" will 
bc the time that A ha.s bccn in exccu tion. "kg' is the node 
wl:erc A is currently at, >> - 

Exec-time := Wi+ (I, + Jd)E[Ir] + +++'E[\']; 
k := .i; << node i >> 
skip := 0; << skip will count the number of DR votcs. >> 
arrival ratc of RRIT[i] := arrival rate of RRIT[i] +Pr(l) qiiz, i Jh  ; 
arrival ratc of RV[i] := arrival rate of RV[i] f Pr(1) q[h, ijh ; 
<< Now A has bccn cleadlock rcjected for thc first tirnc. )> 
Remainiiig-tirnc := ptk,  i]/2; 
Whilc remaining-timc > 0 do 

bcgin 
<< A advances to ncxt node. >> 
k := k -k 1; << modulo 1\15 >> 
skip := skip + 1; 
exec-time := exec-time +T + + I,E[Y]; 
arrival ratc of RVW := arrival rate of RV[k] + Pr(1) q[h, i]h ; 
remaining-time := remainiog-time -(T + K+ I,E[Y]); 
end; 

<< Wilh prob. Pril) q[h, i], A was rejected at  last vote, so: >> 
delay[i] := dclay[ij +Pr(l) q[h, i](cxcc-time +T +Rr ); 
<< Wi tlh prob. Pr(2) q[h, i], A will continue. Update A wasted 

skip -i votcs, so A wiII liave t.o go past nodc i f N, - 1 in 
order to obtain its lV,, votcs. Tiicrcfore, >> - 

delay[i] := dclay[iJ +Pr(2) q[h, i] (exec-time -Wi - (I, +Id) EM); 
For  I:= (i + Nm - 1) + 1 until (i + h',- - l)+skip do 

arrival rate of RV[I] := arrival rntc of RVPJ +Pr(2) q[h, i]X ; 

Up .t.o now we havc onjy considered the case where A conflicts with B at 
A's origin-stiilg nodc i. Now we consider the casc where A conflicts with pending 
request B at nodes i f I, i + 2, ctc. In thc prcvious casc, A. could conflict at i 
with rcciucsts originating from several nodes. Ho~vevcr, in this casc A can only 
conflict with pending request B at  node i + g if B origirrated at nodc i + g 
(for 1 ( g ( N,-- 1). Td scc this, imagine that B did not originate a t  node 
i + g. Then, if it is in the pending list a t  i + g, it must also be on the pending 
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list at i + g - 1 and A would have conflicted with B at  that node and not a t  
i -f- g. This nrgumcnt is only valid under the normal operational conditions we 
are  considering, where no updates or rncssagcs are delayed in the communication 
lines. 

The analysis of this case is similar to the previous one. The details arc shown . 

in appendix 4 where we prcsent a complete program to compute the average 
response time. (See last part of procedure "Conflicts".) IIowever, thcre is one 
spccial casc we must consider. This occurs whcn the numbcr of nodes, N, is even 
and whcn A confl icls with a pcnding rcqucst on its last vote at node i+N,-- 1. 
This is a spccial casc bccausc if A is dclayed at that node, it holds N,- l votes 
and the request it conflicted with, B (origin at i + Nm- I), will not be able to  
obtain a majority of votes. (Majority in this case is Nm = N/2+ 1.) We analyze 
this spccial casc in a scparntc way. 

First, we estimate the probability that this special casc occurs. We do  this 
through an example. Figure 4.6 shows the execution of update A which started 
at nodc 0 of a four nodc system. Below this, is the cxccu tion of B, the conflicting 
rcq~icst that origirlatcd at  nodc 2. Thc rclativc position of the time axis of B 
shown in figurc 4.0 is not important; as a matter of fact, it helps if one views B's 
axis as being ablc to slide hack and forth with respect to A's axis. 

We wish to find thc t.ime intcrval whcrc B could arrive in order for the 
conflicl to occur. TI~ere are two conditions tliat must be met if A is to conflict 
with pending request B at  nodc 2. First, B must be on thc pending list. Tha t  is, 
R's firsf; vote a t  2 rilust havc occurrcd before A arrivcd at  2; othcrwise A could 
cornplcte. This first condition implies that point P' must prcccde point P4 in 
lirnc: 4 > ,fi. (See figure 4.6.) The second condition is that A originetcs at 
nodc 0 bclorc B arrives thcrc; otherwise B completes before A ever gets to nodc . 

2. This condition means that Pz > P3. Since P4 = P3 +DA and P2 =PI +& 
(scc figure 4.61, our t\vo conditions iinply that 

The probabilihy of tile special case occurring is the probnbiiity of a conflict be- , 

twccit ,4 a n d  B ( Pr(CN) ) times thc number of possible B "candidates". Since 
u p d a t a  likc B originate at nodc 2 at a rate of h per sccond, an  estimate for 
tiic n u m b s  ol candidates is h(Dn -)-&) and the probability of a spccial casc 
is Pi(Cf')X(& +on). From this example, wc can generalize nnd find that the  
probability of ihc spccial casc is 
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Figure 4.0 
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N-1 

Pr  (S) = Pr (CN) X (E + EIY] + T) . 
k=O 

Thc cffects of the conflict depend on whether A is delayed or deadlock rejected 
at nodc i + N,, - 1. If A has a higher priority than B ( i.e., i 5 i + N, - 1 ), 
then A will be clclaycd at nodc i+ Nm- 1 until B gets its N,- 1 OK votcs and 
its N, - 1 DR votes and B is rejected. Aftcr voting again at node i + N, - 1, 
A will be able to  continue. We assume that B's rcrnaining time to rejection is 
unifor~nly distributed between 0 and the time for N votes ( N,- I +  N,-- 1 
), so that  

The  extra I0 load is 

arrival rate of RV[i+N,,,-11 := arrival rate of RV[i+ N,n-l]+Pr(S)h. (61) 

On the other hand, if A has lower priority than B ( i > i+N,- 1), update 
A will bc deadlock rcjcctcd a t  node i + N,- 1 and at  the following nodes until 
A is rejected. In this case, 

arrival rnte of RRIT[i] := arrival rnte of RRITIiJ +Pr(S)A 
a.rrival rate of RV[k] := arrival rate of RV[k] f Pr(S)X, 

(63) . 

fo:k:=0,1,2 ,... N-1. (64) 

This com;lctcs thc analysis of the special case. . 
\ITc have now corr~pu ted the egects of the most irnporta~t types of conflicts. 

The cgects are of two types. First, the arrival rates of RBIT and RVs at each 
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nodc have increased. This mcans that thc average wait timc at  cach nodc must 
bc rccomputcd (cq. 35). Secondly, wc have cornp~icd the expectcd value of 
the dclny of a singlc request (dclay[i]). Therefore, this value must bc added to 
the average responsc timc of rcqucsts that originate at node i (cq. 36). Aftcr 
pcrforining these two steps, we have ncw cstimatcs for the average wait timcs 
nrld the nvera.gc responsc tirnc. This proccdure can be repented until the values 
convcrgc. Thc dctails of this proccdurc arc shown in the program of appendix 4. 
TIlc rcsult of cxccuting this proccdurc is the avcrage response timc for updates in 
the dislribu tcd voting algorithm. (The comments oil convergence and saturation 
of scction 4.2.4 also apply to thc DVA algorithm.) 

In the ncxt chap{-cr we will make sornc improvcrnents on the  analyses we 
have prcscntcd hcrc. Then, in chaptcr 6, we prcscnt the performance results for 
thc updatc rrlgoritl~ms. 



CHAPTER 5 

COMPARISON OF TlE ANALYSIS AND SIMiULATION TECEINIQUES 
E 

In this chapter we compare the simulation and analysis techniques that were 
prcsentcd in chap tc~  4. In scction 1 we ccrnparc the performance results that 
were obtained for the MCLA and DirA algorithms. In section 2 we describe some 
rcfincrnents to the MCLA analysis that arc intended to improve thc accuracy of 
thc rcsults. Then in scction 3 we present the rcsults obtained with the refined 
analysis and we compare lhcse rcsuIts to the MCLA simulation results. The 
reasons why even the refined analysis rcsults differ from the simulation results 
in certain parameter rangcs arc given in section 4. In section 5 we show how the  
analysis of the DVA algorithm can also be improved. Finally, in section 6, we 
briefly men tion the advantages and disadvantages of each technique. 

I. COMPARISON OF THE MCLA RESULTS. 

The analytic technique for studying the performance of the MCLA and the  
DVA algorithms is divided in two parts. (See chapter 4). Initially, the algorithms 
are analyzed assuming that no conflicts among the updates occur and then the 
conflicts are taken into consideration. In order to check both parts of the analysis, 
wc initially compare the. results of the' first part of the analysis with special 
modified sirnxlators that produce no conflicts among the update transactions. 
Then, in section 1.2, we study the 'results of the second part of the analysis in 
relation to the results produced by the original simulators. 

I.!. Sol?;?arison of the Results When No ConAicts Occur. 

The siinuIators of the MCLA and the DVA algorithms were modified so tha t  
no coilaicts occurred among the updates. This was simply done by making the 
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outcomc of the test for conflicts be always false. No other parts of the simulators 
were changed. 

The results obtained from the modified simulators fur the case of 6 nodes 
arc shown in table 5.1. In this table, is the average response time for updates, 
s2 is the sample variance of the observed rcsponse times and n is the number of 
observations. For the MCLA algorithm, the I0 utilization a t  the central node 
is given, while for the DVA algorithm, the average I0  utilization a t  the nodes 
is given. The results obtained !ram the first part of the analysis are also shown 
in this table ( ). The column labeled "%DIFF." gives the difference between 
the  simulation averagc response time and the analytic average response time a s  
n percentage of the simulation average response time. 

To give an idea of the accuracy of the simulation results, we compute t h e  90 
percent confidence interval b r  the results shown in table 5.1. (See pJ3XU71].) 
First we assume that the n samples taken from the simulation are n independent 
samples from a distribution with mean p and standard deviation a. (The samplcs 
are not quite independent because the value of a sample may affect some of t he  
other values. That is, the samplcs may be autocorrelated. However, when the  
numbcr of samples is large, we can assume that thc samples are independent and 
obtain satisfactory results; see [GORD78].) Statistic is the average of these 
n samples and we are interested in knowing how close to the true mean, p, our  
c s t i m a t c F  is. From the central limit theorem FREU711, we know that the dis- 
tribution or the sample mean (0: which is a sample) can be considered normal 
for o large number of samples regardless of the original distribution. Therefore, 
we can obtain the 90 percent confidence interval for % as: 

where constant Zo5 is 1.65, Since we do not know the standard deviation, o, 
wc must approximate this as the square root of the sample variance s2 obtained 
from thc sirnulation. Thus, the 90 percent confi dence interval is approximately 

~ 3 i ~  : -&*-  ,:,,,,val can be intcrprcted as follows: If we run the simulation for a 

given czsc 130 diRerent times (each timcstarting frorndifferent initial conditions), 
then 93 out of the 100 times, the interval given above will include the true mean 
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TcbIe 5.1 

COtIPARISON OF ANALYTIC AND SIbIULATION RESULTS. - - - NO CO:4FLICTS CASE --- 

MCLA Centralizod Locking Algorithn. 

Distributed Voting Algorithm. 

1 I 0  utilization at central node (from simulation). 
Average I0 utilization at a11 nodes (fron simulation). 

f % Difference = 100x( - k )/E. 

.X; + 93 % confidence interval is 1.65nsqrt(s*s/n)*100/~s.  
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of the  response time distribution, p. The 90 percent confidence intervals for the 
cases in table 5.1 are given in the last column of that tablc. The interval is given 
as a percentage of K in order to make comparisons with the "%DIFF!' column 
easier. 

The cams shown in table 5.1 seem to be typical cases and the ditfercnces be- 
tween the simulation and the analytic results are relatively small. However, notice 
tha t  in many of the cases, the analytic result is not in the confidence interval. a 

Also notice that when the'utilization is greater than 0.60, the difference between 
f he analytic and the simulation results is considerably larger. The significance of 
these observations will be discussed later; first we compare the techniques when 
update conflicts are taken into account. 

1.2 Comparison of Results When Conflicts Occur. 

Tnble 5.2 compares the simulation rcsults to the analytic results when 
corlflicts among updates are considered. The simulators used did not have the  
modification described in the previous section and the analytic results were ob- 
tained using the complete technique described in chapptei. 4. (See appendices 3 
and 4.) The cases given in table 5.2 are for various combinations of the number of 
nodes N and the interarrival time Ar for both the centralized and the distributed 
algorithms. The column heading are the same as before. 

Notice that the diiTerence between the analytic and the simulation results is 
now lnrgcr. The diffcrcnce increases as the utilization increases. However, i t  still 
sccms that  in most of the cases tested ( in addition to  the cascs shown in table 
5.2), the difference was relatively small as long as the utilization a t  all nodes 
was lcss than 0.50. The one exception to this rule were the cascs where the ratio 
Bs/M was larger than 0.01, ns is illustrated in table 5.3. This table gives the  
dinerence between the analytic and the sin~ilation results as M was varied while 
13, was Eeid constant. Notice that some of the differences are larger than what 
we would ex?ect from tablc 5.2 since the utilization is less than 0.50. 

The lect that the zlnaIytic results differ from the simulation results as more 
coilfiicts --,car (i.e., as B,/M increases), suggests that the analysis for confiicts . 

is unZercsiixating the cost of conflicts occurring. In the next section, we refine 
some z q t c t a  of the conflict analysis of chapter 4 in order to try t o  reduce the 
difference with the simulation results. 
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TABLE 5.2 

COMPARISON OF ANALYTIC AND SIKULATION RESULTS. --- CONFLICTS CONSIDERED --- 

MCLA Centralized Locking Algorithm. 

Distributed Voting Algorithm. 

1 I 0  utilization at central node (fron simulation). 
t Average I0 utilization at all nodes (fron sinulation). 

+ % Difference = 100*( - & )/k. 

r; + 93 % confidence interval is 1 .65*sqrt(sxs/n).rcl8$/fi. 
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Tcblc 5.3 

TABLE 5.3 

COMPARISON OF SIilULATION AND ANALYTIC RESULTS. --- EFFECT OF HIGH LOCK ACTIVITY --- 
Conflicts considered, 

N = 6, Bs = 5, Ar = 18, T = .1, Rt = 1, Is = Id = 8.825. 

MCLA Centralized Locking Algorithm. 

Distributcd Voting Algorithm. 

% I 0  utilization at central node (from simulation). 

Average I 0  utilization at all nodes (from simulation). 

3 % Difference = 100*( - )/E. 
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2. Conflict Analysis Revisited - The MCLA Aigoriiihm. 

In this section, we consider some "second order" effects of conflicts in the 
MCLA algorithm. Some of the results obtained here will also be applicable to  
the DVA algorithm, but in ordcr to simply the presentation, we will consider the 
distributed algorithm later, 

2.1 Probability of Conflict. 

In chapter 4, we found that the probability that two updates conflicted (e.g., 
their base sets intersected) was given by 

(sec equation (23) in chapter 4). The derivation of this equation did not state 
clearly for what values of Bj (the base set parameter) and M (the number of 
items) the equation was valid. We will now derive a better approximation of 
Pr(C) and we will investigate the ranges of B, and M where it is valid. 

Suppose that we have two upclates, A and B. Let discrete random variable 
Y bc the number of items in thc basc sct of A and let discrete random variable 
X bc the numbcr of items in B's base set. Let us represent the event "A and B 
conflictV'by C and theevent "A and B do not conflict" by NC. The probabilities 

'of tlicsc events occurring are Pz[C) and Pr(NC) respectively, and Pr(C) equals 
1 LPr(NC). Update B coilfiicts with A if at lcast one item in B coincides with 
an item in A's base set. 

First we will obtain an cxpressi~ii for Pr(NC) given that we know that the 
value of Y is i and thc value of X is j. We write this expression as Pr(NC I Y = 
i and X = j). The process of two updates conflicting can be viewed as sampling 
without replacement FREU'II]. We have a set (update A) with A4 elements of . 

which i e:erncnt;s are labeled "success" and M - i are labeled "failure". We wiii 
samp'lc from this set j timcs. Each of the j timcs, we select an clement of thc ~ e t i  
at  random and if we have a success then wc have a conflict. A particular element 
of the set ji.e., an item) cannot be selected more than once (i.e., no replacementj. 
That is, -ve aye selecting a subset of j elements and we are interested in the 
prob3-y::i-r i.lltby. -L lllOt - all elements selected are failures (?r[NC) ). 

There are (7) ways in which a subset of j elements can be chosen from a 

set 01 M dements and cach choice has a probability of l/(r). Recall that (7) 
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is the number of combinations of j objects sclcctcd from a set of M objects and 
is given by 

M! 
( " ;3=j ! (M- j ) !  ' 

Tlie number of subsets (of j elemcnts) that have no successes is the number of 
ways in which we can choosc the j elements from the M - i failures, or ( M ~ i ) .  
Therefore the probability of not getting o. conflict is given by 

r 

To computc the probability of no conflict Pr(NC) from Pr(NC I Y = iand X = 
j ) ,  we use the so called "rule of elimination" FREU'II]: 

Since X and Y ore independent, Pr(X = j I Y = i) is Pr(X = j). Taking into 
account the limits for i and j, and equation (5), we obtain: 

In chapter 4 we showed that 

where c = nxp(-1 fa). Using this fact and equation (4), we get: 
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TABLE 5.4 

COMPARISON OF P(C) WITH ITS ESTIMATE.. 

{ Computed using equations (9) and ( 1 0 )  o f  chapter 5. 
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Oncc we evaluate equation (9), we can find P(C) simply as 

Pr (C) = 1 - Pr (NC) (10) 

It seems hard to find a closed form expression for equation (9), so we evaluate 
it and equation (10) using a numerical method. A program to evaluate with high 
accuracy equations (9) and (10) was witten [GARC78]. Table 5.4 compares the  
values of Pr(C) obtained by means of the program with the estirnatcd values , 
giyen by equation (3). From these results it scerns that equation (3) is a good 
approximation to  Prm only when 4 M ) 2 / h l  is less than 0.05. 

Notice that the values of Pr(C) given in table 5.4 are in all cases less than 
the  estimated valucs of equation (3). This is unfortunate since this will increase 
the  difference between the analytic and the simulation results in table 5.3. For 
cases with @M)'/M < 0.05, the decrease in Pr(C) is very small, 60 that  the  
diffcrcnces in tablc 5.3 will hardly increase. However, when (13[Y])2 /~  > 0.05, 
the increased deviation of the simulation and analytic results will be soticeable. 
We will discuss the implicntions of this later. 

2.2 Size of the Base Set Given Confrict. 

In chapter 4, we assumed that an irpdate that conflicted had average charac- 
teristics. In particular, we assumed that the size of its base set was given by 

(where a = exp(-I/&)) and this value was used in the rest of the analysis. 
~Iowcvcr, since we know that the update has conflictcd, we expect the base set t o  
be ?nrger than average. In this section, we derive an expression for the average 
base set of an update given that it has conflicted. To do this, wc ass\;mc that 
(EM)~/M is less than 0.05. 

Suppose that update A has arrived a t  the central node to request locks and 
it has cor,Eicted wjth update B. As in t l ~ c  previous scction, we let di:;l:rcte random 
variable Y be tlr c n~~rnber  of items in A's base set and discrete randoin variable X 
be the nsrr,ber in 13's base set, Also Ict C be the event "update A conflicted wjth 
B". \Vc e x  interested in thc cxpccted value of Y given event C, i.c., E[Y 1 C]. 
W e  ccizaute this from the folIowing equation: 
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The expression Pr(Y = i I C) is the probability that A has i items in its base 
set givcn that it  has conflicted. To compute Pr(Y = i [ C), we use Bayes' rule 
IFREU7 I] : 

The denominator in cquation (13) is the probability of a conflict Pr(C). The  . 

value of Pr(Y = i) is (1 - a)ai/a. (See cquation (8).) 
P 

To compute P,-(C I Y i- i) for cquation (13), we must know how many items 
arc in update I3 (thht is the update A has conflicted with). In other woreds, wc 
know Pr (C I Y = i) given that X, the number of items in B, is j. This last 
expression is Pr(C 1 Y = i and X = j). Since ( E M ) 2 / ~  is less than 0.05, we 
approximate this by: 

This cquation was used in chapter 4 to derive the approximation to  Pr(C) 
(equation (3)). Since that approximation was good wheil (E[Y])~/M was less than 
0.05, we cxpcct equation (14) to bc a good approximation for this case too. (In 
othcr words, if (E[Y])~/M < 0.05, thcn for the most probable values of i and j, 
cquation (14) twill be a good approximation.) 

From equation (141, we compute Pr(Y = i I C) as follows: 

where EiXj is of course given by 

E[X] = E[Y] = jPr(X = j). 

Now we siibstitute equation (16) into equation (13) and obtain 
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Substituting into equation (12), we obtain the desired result: 

Using the value of E[Y] given in equation (11) and the value of E[Y2J given by 
equation (9) in chapter 4, we can also write this as 

In a similar fashion we can obtain the second moment of Y, 

(Scc [GARC78] for details.) 
Incidentally, notice that the denominator of equation (18) is the probability 

of a conflict P(C). From equation (17), we find that 

which is exactly the apprfx:;irnation of equation (3) for the case @[Y])~/M < 0.05. 
It is also possible to show that E[X I C] = E[Y 1 Gj.  That is, equations (21) 
and (22) not only apply to the update that conflicted, but also to the update it 
conflicted with. 

n 
' 1 o give an idea of the dilTcrence between equations (21) and (If), we give 

an exampie. A reasonable value for the basc set parameter, B,, is 5 items. Then 
E[Y] is 5.52 while E[Y I C] is 10.G3. That is, the average base set of the updates 

-. . that tsz:;!cs is almost twice the size of the averagc base set of all updates. 
iiciire i5zt in equations (21) and (22), M, the total number of items, docs 

not 22723~. This is to bs expected, since these equations are only vdid :ar the 
case where M is very large comparcd to E[\lj (i.e., (E[Y])2/~  < 0.05). As the' 
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value of M decreases and B, is held constant, we expect the real value of E[Y 1. C] 
to decrcase and approach E[Y] because more and more updates with smaller base 
sets will confiict as M decreases. 

If discrete random variable Z is the number of items in an update's write 
set, then the mean and the second momcnt of Z given that a conflict occurred 
are given by 

EIY I GI + 1 EiZ I C] = 
2 

and 

E[Z~  1 C] = E [ Y ~ I C ] + E [ Y ~ C ]  3 2 f g- 1 

Tile details are  give^ in [GARC78]. 
The vducs of E[Y], E [ Y ~ ] ,  E[Z] and E[z~) were used in chapter 4 for two pur- 

poses: to compute the probability of conflict and to estimate the cost of conflicts 
(dclays and extra I0 time). Now that we have the values of E[Y I C], E [ Y ~  I C], 
E[Z I C] ard E[%~. I C], we use thcse new values instcad of the original ones to 
compu te the cost of conflicts bccause thcsc computations refer only to updates 
that  have conflicted. However, when computing the probability of conff ict or 
when dealing with updates which we do not'know have conflicted, we still use 
the original values. 

' 2.3 Other hprovemcnts t o  the Conflict Analysis. 

In order to  try to  reduce the gap between the simulation and the analytic 
results, we naw considcr some other "second order" effects. We expect the im- 
provements ( or dcterioration) to be small, but in any case it  is important t o  
mnkc sure that  thcsc changes arc as small as we suspect. We still assume that  
( E [ Y ] ) ~ / M  is lcss than 0.05. 

For cxtmple, in chaptcr 4 we approximated the average time that an update 
A had to w i t  ior a locked item by E[L]/2 (or 2/2), where E[L] was the time that  
on a>-e.e;ege -s?date held its locks. (See equations (27) and (32) in chaptcr 4.) If 
update A is waiting for a lock, the lock is held by an update, B, that A conflicted 
with, sa instead of EM12 we should now use E[L [ C]/2, where E[L Cj is the  
average 'leek tine given that a conflict has occurred. The valce of E[L I C] is 
compote6 by using E[Y I C] and E[Z 1 Cj instead of E[Y] and E[Z] in equations 
(25), (25) and (27) in chapter 4: 
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This estimate 01 E[L I C] assumes that no other update is waiting for t h e  
item, i.e., that A will be able to continue once the item "in is irce. I.Iowevcr, 
there might be a third update A' waiting for item i with a higher priority than A. 
Therefore, the lock wait time for A will be larger than E[L I on the average. 

The expected value of this extra delay is the probability that A' is waiting 
with a higher priority times the cxtra time that A' 1viI1 keep item i locked. The 
last term can be approximated by E[L 1 q. The probability that A' is waiting 
is the probabi!ity that an update A' arrived bctwccn the time B arrived and the 
time A arrived and that update A' referenced item i. The probability that i is in 
the base set of A' is approximately E[Y]/M, and the time interval betwecn the 
arrival of B and A is on thc average E b  1 C]/2. Since updates like A' arrive a t  
n rate of Nh, the probability that the extra delay occurs is 

Thus, the expected value of the delay is 

and a better approximation to the average time that an item remains locked is 

This new valse can now bc used to compute the delays caused by a conflict. 
A second irnproverncn t on the conflict analysis involves the probability tha t  

an update waits. In chapter 4, we stated that the probability that an arriving 
update had t.o wait for locks st the central node was 

- 
where J = NhEIL]. Recall that 7 is the average number of updates, that are 
holdiag iocics and that are not waiting themselves. This equation does not take 
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into account all the locks that m e  bcing held by waiting updatcs. Somc updates 
may bc waiting for one lock while holding other locks. On the average, these 
updates have locked 

E[1' I C] -1  
2 

items. (The dctails 01 this derivation can be found in [GARC78].) The probability 
thnt an arriving update conflicts with one of these waiting updates is # 

(The derivation is similar to the one for equation (23). Assume thnt E[YJ(E[Y I 
C] - 1)/(2M) is also less than 0.05.) Thc probability that an arriving update 
has lo wait due to othcr waiting updatcs is 

where 7 is tlie average number of updatcs Ohat are waiting a t  the central node. 
Using Little's formula, P is the product of thc arrival rate 01 updates thal wait 
timcs the avcragc time thcfic updatcs wait. Thc arrival rate is approximately 

~n we are  NXPr(Wl). The average wait time is the avcrage time that the ite- 
waiting on remains locked p l ~ s  the time needed to lock it and the remaining 
items, i.c., 

I C l n e ~  + 
+.~iziy I q- I j 2 (35) 

seconds, where E[L I C],,, is defincd in equation (31). Therefore, 

This vahe ran bc substituted into cqoation (34) to obtain the probability that  an 
arriviag u ~ 3 s t e  has to wait at  the central node due to a conflict with a waihing 
update. The total probability of an update waiting is then 

The delay due to  conflicts is greater now since with probability Pr(W2) an 
update has to wait for two other updates to finish. The expected value of the 
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delays (considering both types of conflicts) is 

(Compare to equation (32) in chapter 4.) There is no extra I0 service time 
involved in this additional delay. 

The last refinement we consider is the case where an update A waits for one 
item aid then, after getting that lock, conflicts again with a third update B'. 
Thc avcragc and thc sccond morncnt of the number of items remaining to  be 
locked after a conflict are 

(Sce [GARC78].) FolIowing the derivation of Pr(W'), we estimate thc probability 
of a second wait at  the central node given that a first update has taken place by 

Pr(2ncl wait) = 
(W I GI- 1)EM 

2M 
N)\E[L]. 

The expected increase in delay duc to this sccond conflict is 

Pr(W)Pr(2nd wait) + + 1 8 ( ~ ~ ~ ;  q-1)) 

The first tcrm is the probability of the first conflict. The average number of 
items that remain to  be locked after thc second wait is @IR;EM I C] - 1)/2. The 
cxprcssion above should be added to equation (37) to obtain the total cxpected 
d clay. 

Since after the second wait, (EWM I GI-1)/2 items will have to  be locked, 
the  mean and the second moment of thc extra I0 service time are 

and 

(See jG.-?RCSSJ.) These extra leads must be taken into account when computing 
the ave;sge wait time at  the central node. 
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3. COMPARISON OF NEVI RESULTS FOR CENTRALIZED ALGORITEEM. 

The program to  compute the avcrage response time of an update in t he  
MCLA algorithm ( appendix 3) is now modificd to include the results obtaincd 
in section 2. The c0rnplet.e listing of the modified program is given in appendix 
5. Thc resuits of this program arc cornparcd to the simulation results in table 
5.5. As can be seen by comparing this table to tables 5.2 and 5.3, the direrence 
bctwecn the simulation and the analytic rcsults has bcen reduced somewhat by 
thc refined analysis of the previous scctions, (The reduction ranges from 0.5 to  8 
percent ot the original direrencc.) The improvement is noticeable but not really 
significant. 

The program of appcndix 5 assumcs that (E[Y])'/M is less than 0.05. 
I3owever, notice that this is not true for the cascs of table 5.5 where M is less 
than 500. As was mentioned carlier, when ( E [ Y ] ) ~ / M  is greater than 0.05, the  
valucs for the probability of conflict Pr(Cj jcquation (3)) and thc cxpcctcd sizc 
of the base set given a conflict E[Y I C] (equation (21)) are actually larger than 
the true valucs. Thercfore, the ~al i lcs  o f x  in table 5.5 when @ [ Y ] ) ~ / M  > 0.05 
arc largcr than the valucs that would be produccd by a more accurate analysis. 
Tilis means that the diKerences between the analytic and the simulation rcsults 
shown in table 5.5 for thcsc cascs arc actually smaller than the diffcrencc we 
would obtain by using the correct values of Pr(C) and E[Y I C]. In other words, 
the  results of tabIe 5.5 are deceiving because they make the analysis results look 
close to the simulation results even in the case where (EM)2/M is greater than 
0.05. 

The improvement (i.e., the reduction in the difference between the analytic 
and the simulation results) we havc obtaincd by considering some of the "second , 

ordcr" cZects has bccn small. I t  sccms that we will be unable to  obtain any 
. significzzt ixprovements by considering any other similar "second order" effects. 

Thus, the ziia!ytic rcsults of tablc 5.5 arc as accurate as is possible to  obtain 
from a sin$e analysis. Considering the confidence intcrvals shown in table 5.2, 
the 6iiiiu:a:icn results seem to be very stable. Both results agree if ( E [ Y ] ) ~ / M  

.. CI'C1'  

is less ssaz :,.~13 and if the maxirnum utilization is less than about 0.60. B u t  
they do ~ c t  zsiee in the other cases. What results are the ones that are incorrect 
lor (E[Y~;'~M > 0.05 or for the maximum atilization > 0.601 We address this 
question in the following section. 



COWARISON OF S1IS:ULATION RESULTS TO RESULTS OF KODIF IED ANALYSIS. --- CENTRALIZED LOCKING ALGORITHM --- 

I I 1 -  1 I Utiliz- 
I N I Ar I Ra 1 ?iS f a t i o n +  

I I ( E [ Y I ) ~ I  - I I Utiliz- 1 x 1 
I I? I M I Ra I . I  ation % I Diff. 3 l 

-f Utilization at central node (from simulation). 

* X difference computed as 100x (E  - fi)/fi. 
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4. SIMULATION RESULTS VS ANALYTIC RESULTS. 

There is a possibility that either the analytic or the simulation results are off 
when (E [YJ)2 /~  is greater than 0.05 or when the maximum utilization is greatcr 
than 0.60. 

The analytic results could be wrong simply because the analysis we have. 
performed is just too simple to take into account the cases of high 10 load or 
high lock activity. Far  example, whcn thc I0 load is high, ouF assumption tha t  
the  arrival of all 10 requests to a node is a Poisson process is not true and this 
may afiect the results. (See chapter 4.) This assumption is a critical one since 
i t  permits the decomposition of the nodes into independent queueing systems. 
Similarly, when the mean basc sct oi updates is large compared to  the total 
number of items, the conflict analysis might not be accurate because it is based 
on average values instead of on the.dynamic values of system variables. In par- 
ticular, as (E[Y])~/M grows, the probability that at  a given time a few updatcs 
will monopolize most of the locks incrcases. In thesc congestion pcriods, ttlc 
queues of waiting updatcs will grow and the response time of updates will. be 
considerably greater. The simplifrcd conflict analysis we used did not toke into 
account these types of congestions. 

On the other hand, it is also possible that thc simulation results are off 
cvcn though the conficlencc intervals are small. The cause of this could be an 
initial transient that dies out very slowly and produces a bias in the results. 
EIowcvcr, the fact that the simulation results arc fairly stable with respect to  run 
time (aftcr a clcar initial transicat) indicates that any such bias must be small. 
Furthermore, all the simulation runs show consistent differences with the analytic 
results.  hat is, in a11 casc6, as ( E [ s ] ) ~ / M  increases past 0.05 or the utilization 
incrcases past 0.60, the simulation average response time is increasingly grcatcr 
than the analytic average rcsponsc time. This rules out statistical variations as 
the probablc cause of the difCcrcnce. 

In view of the above discussion, we decide that it is the analytic results' that  
deviate :ioin the true results when (E[Y] )~ /A~  > 0.05 or when the maximum 
utilizetion is grcatcr than 0.60. EIowcver, in most cases of interest, wc expect 
(E[Y]~~/E..I io 3 e  considerably less than 0.05 because most updates only reference . . 
a minrxz! ifaction of the database. The fact that the analytic results are not 

a"e--'- ,,uL;,, - a  .,,--- - the utiiizztion is grcatcr than 0.60 is more serious. But on t he  
other 52;:: cktaining simulation rcsults when the utilization is greater than 0.60 
is c x ~ c ~ s i v z  i;, terms of conlputer time, so that in most heavy load cases we will 
have to 52 satisfied with the analytic results. 
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5. COMPARISON OF NEW RESULTS FOR TEE DVA ALGORITEXM. 

Thc results obtained for the probability of conflict, Pr(C), and for thc cx- 
pcctcd size of the basc set givcn that a conflict has occurred can also be applied 
to  the distributed voting algorithm. Since the improvements obtained lor the  
MCLA algorithm were not very impressive, wc do not consider any .additional 
"sccond order" cffects for the distributed algorithm. @ 

The program to compute the average rcsponsc time in the distributed voting 
algorithm (cppcndix 4) has bccn modified to take into account the larger base 
BCES of updates that have conflicted. Since we assume that @[I'~)~/M < 0.05, 
we still use equation (3) as nn estimate of Pr(C). Thc modified program is shown 
in appcndis 6 and its rcsults arc compared to thc simulation rcsults in table 5.6. 
Just  as  expected, the reduction of the dircrence between the analytic and the  
simulation rcsults is small. As in the casc of the AlICLA centralized algorithm, tilc 
diiTcrencc for the cases where @ [ Y ] ) ~ / M  > 0.05 is actually greater than shown 
in table 5.6. 

0. ADVANTAGES OF EACH TECRNIQUE, 

To  summarize the findings of this chapter, we list some of Mlc advant;agcs 
and disadvant;agcs of the simulation and analytic techniques. No technique is 
the  bctter of the two. They actually complement each other and it is best to  
have both techniques available for studying thc update algorithms. 
The  Analytic Technique - Advantagcs. 
. e Little computation tiine is required to obtain results. This is true even for 

thc cascs of high I0 utilization or high lock activity. With more results 
available, results are easier to plot. 

Q Provides a good undeistanding of thc operation of the system. 
The Analytic Technique - Disadvantages. 

o Rcsalts are not vcry accurate if ( E [ Y ] ) ~ / M  is greater than 0.05 or if thc  
mzxiniin utilization is greater than 0.60. 

e AE&-sis becomes very complex if we wish to change some assumptions 
(e.g., c>znge distribution of number of items in base set). 

r+ I he SI;r;a;ai.ion Technique - Advantages. 
e Frsd sczs fairly accurate results for all cases. -- . . 
o ,+rci?i:~I iil understanding the operation of the algorithms. 

Siaa:ations are flexible. Once a simulation is written, it  is easy t o  vary 
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.COHPARISON OF SIMULATION RESULTS TO RESULTS OF MODIFIED ANALYSIS. --- DISTRIBUTED VOTING ALGORITHM --- 

I 1 1 ~ [ ~ 3 ) "  I - I . I U t i l i z -  I x I 
I M I 1 I Ra I I a t i o n  f I  iff.) I 
l---------i---------I---------I---------/---------l--------- I 
1 1000 1 0.03 1 1.659 1 1.675 1 0.180 1 +0.9G 1 
1 400 1 0.08 I 1.733 1 1.839 I 0.135 1 +5.71 1 
1 306 I 0.10 I 1.776 1 1.898 1 0.187 1 +6.43 1 
1 200 1 0.15 1 1.861 1 2.043 1 0.193 1 +8.91 1 

f Average I 0  u t i l i z a t i o n  a t  a l l  nodes I f r o n  s i rnu la t i oa ) .  

9 X d i f f e r e n c e  computed as ~ c c * ( E  - fi)/E. 
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scmc assumptions (e.g., try a new update arrival distiibution). 
Thc Simulation Technique - Disadvantages. 

e It is expensive to get results for high I0 utliization cases. 
o It is hard to find "bugs" in the simulators. 

This concludes the comparison of the analysis and the simulation techniques. 
We havc oniy looked at two algorithms in this thesis, but the analygis for the 

, 

othcr algorithms is very similar. (Sce (GARC781.) 



CHAPTER 6 

THE PERFORMANCE RESULTS , . 

In this chapter we present some of the performance results for the update 
algorithms. In section 1 we describe the way we use both the analysis and the  
simulation results to plot the curves for this chapter. In section 2 we then compare 
the  rcsults of the centralized locking algorithm with hole lists (MCLA) with the  
results of the distributed voting algorithm (DVA). The performance results for 
the  Ellis type algorithms arc given in section 3. The results for the complete 
centralization algorithm (CCA) and the centralized locking algorithm with wait- 
foi. lists (WCLA) are given in section 4. In that section we also compare these 
algorithms to some of the other algorithms. In section 5 we study the centralized . 

locking algorithm with limited hole list copies (MCLA-h), while in section.6 we . . 
compare two of the strategies for handling limited hole list copies. Finally, in 
section 7, we briefly look at  the centralized locking algorithm with total-wait-for 
lists (TWCLA). 

I. BOW THE RESUL'TS ARE PLOTTED. 

When plotting the performance results for the update algorithms we take 
advantage of the fact that we have two independent techniques for studying the  
algorithms. We use the simulation results where we know or suspect that  the  . 

analysis docs not provide accurate results. (See chapter 5,) Since the anaIysis 
results are inexpensive to obtain (in terms of computing resources), we use them 
incall other situations. This "hybrid" method is illustrated in figure 6.1 where 
we show how the graph for figure 6.14 is produced. (We chose to  illustrate the  
hybrid method with figure 0.14 because in this figure the differences between the  
analysis and the simulation rcsults are some of the largest encountered. In the 
other figures of this chapter, the diflerences are usually smaller.) 



CIS. 0: TIIT3 Pl37.FOl7.b$AXCB 213SULTS . 

F'igurc 0.1 

average 
rcspor~se 
t ine (sec) g - results  of  analysis  

X points from simulation 

- - - - curve oE figure 6.14 

H, tllc t o t a l  number 
of items 

Figurc 6.1. The Hybrid Method for Constructing Figures. 
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the PEAS algorithm. 
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2. PERFORMANCE RESULTS FOR THE MCLA AN11 DVA ALGORITHMS. 

In order to study the performance of the algorithms, we selected a set 
of "typical" parameter values which we consider reasonable for a distributed 
database implemented with current technology. Each one of these parameter 
values was then varied in ordcr to discover the effect of the parameter on the  
system performance. The typical values used wcre 10 for the interarrival time, 
A,; 5 for the base set parameter, B,; 1000 for the number of items in the database, 
M; 6 for the number of nodes N; 0.1 seconds for the transmission time, 2'; 0.01 
milli-sccond for the CPU time slice, C'; I milli-second for the CPU compute time 
C,; 0.025 seconds for the I 0  time slice, T,; 0,025 seconds for the I0 item update , 

A -  bime, &; and 1 second for the retry time, Rt. 

Figures 6.2 through 6.11 present some selected results for the MCLA and 
the  D M  algorithms. The parameter va!ues nsed to obtain each figure are given 
in the figures. If the value of a parameter is no6 given in the figure, then its 
typical value (defined in the previous paragraph) was used. 

Figure 6.2 shows the relationship between the interarrival time A,, the num- 
ber of nodes N and the mean response timeR for the initial set of parameters. In  
most cases, the MCLA centralized algorithm performs considerably better than 
the  distributed voting algorithm. For small number of nodes, the difference is 
not as  dramatic, but as the number of nodes increases the difference in perfor- 
mance increases. The so called "bottleneck" eEect does appear in the centraIized 
algorithm: there is a relatively sharp knee in the curve when the requests for ' 

locks swamp the central node (e.g., N = 6, A, = 5.) Since there is no bottleneck 
in the distributed algorithm, one might expect this algorithm to do better under. 
hcavy loads. Indeed the distributed algorithm does not have the sharp knee, 
bu t  it  turns out that the distributed algorithm does better only in a iimited 
range and this range covers cases where both algorithms perform poorly. The  
explanation for this is that in the distributed voting algorithm all nodes get 
swamped when the update arrival rate increases too much. This can be seen in 
figure 6.3, which shows the I0 utilization as a function of the load (for 6 nodes). 
The  CPU utilization shows similar behavior, but the utilization is much less than 
the  I0 one, i.e., the I0 server is the critical resource here. Notice that the central 
node is the one that gets the heavy load in the centralized algorithm, but  the  
tots! zmount c! I0 time used in the distributed algorithm (sum of all nodes) is 
considerably greater than the total I8 time needed in the MCLA algorithm, 

Figure 6.4 shows the number of messages transmitted per update trensoctbn 
for the case of 6 nodes, In the central algorithm, this number is independent of 
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the load. Updates that originate at  the central node only need 5 messages, while 
updates originating at other nodes require 5 + 2 messages. The average ovcr all 
updates is 8.66 messages per update. In the distributed algorithm, the number 
of messages increases slightly as some updates are rejected and retried. With no 
rejections, an update requires 3 messages to obtain a majority of votes, plus 5 
messages for performing the update. 

For 6 nodes, the difference in the number of messages transmitted is small. 
The difference accounts for about 0.23 seconds of the difference of response times 
(since T = .1 and since 5 of the messages in the centralized algorithm and 4 
in the distributed algorithm do not add to the response time). This means that 
the big difference in response times comes primarily from the higher total I 0  
utilization of the distributed voting algorithm. For a larger number of nodes, the 
difference in the number of mzssages transmitted is substantial and the difference 
in response times is even greater. 

The fact that the MCLA algorithm performs better than the DVA algorithm 
as the number oi nodes incresses is illustrated in figure 6.5. The jumps in the. 
curve for the distributed algorithm reflect the aumber of nodes needed for a 
majority consensus. 

Figure 6.6 shows the effect of M (the number of items) on the system perfor- 
mance. As long as M is large (as compared toll,), the response time is independent . 

of Ma This is convenient since it is possible to extrapolate our results to very 
large databases. As the size of the database is reduced (with B8 held constant), 
the number of conflicts among transactions must increase, and therefore the 
response times grow as M decreases. Notice how the centralized algorithm handles 
the increased number of conflicts much better than the distributed algorithm. 
Centralized control is a more efficient way of arbitrating many conflicts. 

Figure 6.7 presents the effect of B, (the mean base set) on the average response 
time X for constant M (number of items). For a small number of wnfiicts (in 
this case, B, < 5), the curves are linear since the response time is proportional t o  
the number of items in an update. As the number of conflicts increases (a > 4), 
the response time displays a nonlinear component due to the extra delays. In 
any case, the MCLA algorithm is less sensitive to changes in B8 and even with . 
a mean base set of 1, the central algorithm performs better than the distributed 
algorithm. 

Figure 6.8 shows the effect of varying the IG tiiiie dice I,. An I0 time slice 
of 0 represents a system where all the locks or timestamps are kept in main 
mcmory. Once again, the distributed voting algorithm outperforms the MCLA 
algorithm only in extreme circumstances. 
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Figures 3.7 and e.8 
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Thc I0 timc slice is a very critical parameter because response times grow 
rapidly as this parameter is increased. Therefore, a good distributed database 
implementation should try to reduce this value as much as possible. One obvious 
way to do this is by keeping the most commonly used locks or timestamps in 
main rncmory. But it turns out that this is simpler to do for locks than for 
timestamps. If the number of locked items is usually small, it is easy to kkep 
a complctc list of their names in memory. The absence of an item name in the 
list indicates that the item is free while the appearance of an item's name in .  
the list means that the item is locked. Thus, the 10 time slice can be reduced 
practically to 0 (as long as the number of locked items is small enough so that 
their names fit in main rncmory). On the other hand, it is harder to apply the 
same idea to timestamps, Since it is usually not feasible to keep a11 timestamps in 
mcmory, only the most recently used timestamps are kept. If a timestamp is not . 
found in memory, then it must be paged in from the I0 device. If a timestamp . 

is modified, the new value must be written out to the I0 device. The savings 
in i0 time will depend on the reference pattern of the updates. The average I 0  
time per timestamp read can be reduced but it will probably be greater than 0. 
Thus, for a fair comparison of the algorithms, the parameter I0 time slice fcr 
the distributed voting algorithm should have a greater than 0 value, while the 
same parameter should be 0 for the MCLA algorithm. It is clear from 'figure 6.8 
that this consideration onl>- inakes the distributed algorithm look even wor6e. 

The effect of the network transmission time T on the average response time 
is shown in figure 6.9. One end of the range represents the slower networks like 
the ARPANET ['XLEI75], while at the other end are the much faster ones like 
the ETHERNET [METC76]. Here again the MCLA algorithm performs better 
and is less sensitive to the parameter. For the centralized algorithm, the curve is 
a straight line with a slopc of 1.67 sec/sec. This is the expected value since the 
average number of messages sent before a node finishes a transaction is 1.67. (For . 

N = 6, the central node does not send any, the other nodes send 2 messages.) 
Since with a !argcr transmission time, updates take longer to complete and items 
remain locked a longer time, one would also expect a small nonlinear iccrease in 
response timc due to the higher probability of conflicts. However, this effect is 
not noticeable for the centralized algorithm. 

With the distributed algorithm, the curve is close to a straight line with a 
slope slightly greater than 4. (F'or N = 6, the number of messages needed before 
an update is completed is 3 for voting plus 1 for informing the originating node 
plus any messages due to rejections.) In this csse the secondary effect due to 
increased probability 0.1 conflicts (as T increases) is barely noticeable. 
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Figuze 6.9. The X C i 4  ~ = . d  DVA a lgor i ths:  Effect of T on L5e average 
response time. N=6, 2-7, X=1000, Bs=S, Is=Id=0.025 sec., R t = l  sec. 
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Figure 8.10 shows a case where the distributed voting algorithm performs 
almost as well as the MCLA algorithm. The parameters were chosen so as to  
favor the distributed algorithm, but as we can see the MCLA algorithm still 
performs slightly better. The I0 utilization is the same for both algorithms (since 
I, is 0). The distributed algorithm does slightly better with respect to the number 
of messages transmitted. This can only happen in the special case of a 3 node 
network. (The distributed algorithm needs only 1 message to gain a majority of 
votes plus 2 more to broadcast the update giving 3 messages per update. In the 
centralized algorithm, the central node only needs 2 messages while the other two 
nodes need 4 messages, giving an average of 3.33 messages per update.)'~herefore 
we can say that the performance of the distributed algorithm is similar to the 
performance of the centralized one only under special circumstances. 

Figure 6.11 shows the effect of the parameter retry time (Rd on the mean 
response time of the distributed voting algorithm. If the retry time is made too 
small, the rejected request might be retried before the request it conflicted with 
had a chance to finish. On the other hand, making Rt too large eliminates the ' 

. 

possibility of a repeated conflict, but adds cnnecessary wait time to the trans- 
action. As is seen in the graph, there is an optimal value of Rt. Unfortunately, 
the savings obtained by choosing the optimum value do not seem to be very 
significant. And notice that this graph represents a high rate of conflicts case 
(M = 100, B, = 5); for a more reasonable case (M = 1000, B, = 5) the savings 
are hardly noticeable. (This graph not shown.) This is expected since Rt only . 

affects the small number of rejected requests. 

2.1 Some Conclusions. 

Based on our comparison of the MCLA and DVA algorithms, we can conclude 
the following: 

1) The MCLA algorithm performs considerably better than the distributed ' . 

voting algorithm except in the cases of extreme I0 utilization. In these high load 
cases, the average response time for updates in the distributed voting algorithm 
is smaller than the one for the centralized algorithm, although both responses 
are poor. In most cases, the redundant update problem seems to be solved more 
efficiently and naturally using centralized control strategies. 

Of course, other factors must be considered in choosing an elgorithm, but 
even if the distributed algorithm is chosen for other considerations, it is important 
to realize that it is going to be a more expensive algorithm, both in terms of 
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resources and response time. 
2) The distributed voting algorithm is more cornplcx than the MCLA al- 

gorithm. The amount of code needed to simulate each algorithm should be a 
good indication of the complexity of the algorithm. This is true because the 

. 

length of the simulator code is not proportional to the length of the code in an 
implementation of the algorithm, but it is rather proportional to the number of 
states and special cases the implementation wili have. 

Not considering code common to both simulators (e.g. random number gen- 
erator, event queue handler, ctc.), the MCLA simulator was written in 110 lines 
of Algol W, while the distributed voting simulator was written in 230 lines, more 
than twice the number. This is a good indication that the distributed algorithm . 

will be much harder to implement and it will probably be more prone to software 
bugs, . . 

3) The critical parameters in our system, i.e. those that the system is most 
, . 

sensitive to, are N, the number of nodes, A,, the interarrival time, B,, the mean 
base set size, I,, the I0 time slice and T, the network transmission time. Under . ' 

normal sircumstances, these 5 parameters define the response time of an algo- 
rithm. The number of messages is mainly sensitive to the number of nodes N. . : 

4) The simulator can also be useful in tuning an algorithm. The simulator 
aided us in choosing a good value of Ri. Similarly, it can be used to optimize other 
aspects of each algorithm: lock granule size, I0 or GPU scheduling algorithms, 
th'e strategy for ejiminating deadlocks, etc. 

3. PERFORMANCE RESULTS FOR THE ELLIS TYPE ALGORITHMS. ' ' 

In this section we present some of the performance results obtained lor 
the three Ellis type algorithms of chapter 3: the original Ellis ring algorithm 
(OEA), the modified Ellis ring algorithm with sequential updates (MEAS) and 
the modified Ellis ring algorithm with parallel updates (mAP)). The results were - 
obtained using the analytic techniques of chapter 4, as well as by simulating the 
algorithms [GARC78]. 

Figure 6.12 shows the average response time of updates in the MIGAS algo- 
rithm as a function of the interarrival time A, for several values of N (the number 
of nodes) and for the "typical values" of the other parameters. (See section 2.) 
Recall that small interarrival times imply high arrival rates and high loads. The 
shape of these curves .is very similar to the curves for the distributed voting 
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algorithm. (See figure 6.2.) However, the response times are considerably larger 
than the ones for the distributed voting algorithm under the same circumstances. 
For example, if the interarrival time A, is 10 seconds and there are 6 nodes,. 
updates are on the average completed in 1.65 seconds with the distributed.voting 
e!gorithm, but thcy take 4.66 seconds on the average with the MEAS algorithm, 
This is about a 200 percent difference. Furthermore, the MEAS algorithm be- . 

comes unstable a t  lighter loads. For example, the MEAS algorithm is unstable for 
A, = 6 seconds while the distributed voting algorithm can still operate a t  that 
load with an average response time of 1.9 seconds. The difference in performance 
with the MCLA algorithm is also very dramatic. (See figure 6.2.) 

One of the reasons for the pooi performance d the MEAS algorithm is ' .  

the extra transmissions required. However, this only accounts for a part of the 
difference. For the case of 6 nodes, an update in the MEAS algorithm is delayed 
by 12 transmission times T before finishing (i.e., two trips around the ring). For  
the same number of nodes;updates are delayed by 2 and by 4 transmission times 
in the MCLA and the DVA algorithms respectively. Thus the increase in response' 
time due to transmission delays is only I.(! and 0.8 seconds over the previous . 

algorithms (because T is 0.1 seconds). 
The rest of the difference iil response times between the MEAS algorithm . 

and the previous algorithms is due to the increased I0 utilization at all nodes. 
Figure 6.13 shows the I0 utilization as a function of the interarrival time A, for 
t h e  cesc of a 6 node network. The I0 utilization is greater at all nodes in the , 

MEAS algorithm than it is even in the central node in the MCLA algorithm. 
This is bccausc every node in the MEAS algorithm must perform locking for all 
updates. Furthermore, when locks are released with an update, they must. be. . 

read before they are written. (See procedure Perform-update in Appendix 2.) 
This is not the case in the MCLA algorithm and this is why the central node . 

has less I 0  utilization. 
For light loads, the number of messages transmitted per update is two times . 

the number of nodes (i.e., two trips around the ring). As the load increases, the 
average number of messages transmitted increases slightly because the number of 
conflicts increases and some updates must release their forward locks. (Releasing 
one forward lock involves, on the average, a message to a fourth of the nodes.) For . 

example, for a six node network and an interarrival time of 7 seconds, the number 
of mcssages transmitted per update is 12.018, (The rest of the parameters are 
the same as in figure 6.12.) This is only slightly above the 12 messages required 
when no conflicts occur. 

Figure 6.14 presents the erect of M, the number of items, on the average 
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response time cf updates in the MEAS algorithm. This curve is also very similar 
t o  the one for the distributed voting algorithm. (As we will sec, all curves for 
the  MEAS algorithm are similar in shape to the curves for the distributed voting 
algorithm. Untartunntely, the diff ercnt scales makes it hard to plot the curves 
for both algorithms together,) Again, the response times are larger and a s  M 
decreases, their vnluc increases more rapidly than in the distributed voting al- 
gorithm. As is to be expected, for large M, the overage response time is almost 
independent of M, 

Figurcs 6.15 through 6.18 show the effect of other parameters on the average 
response time of updates in the MEAS algorithm. (Figures 6.16, 6.17 and 6.18 
also contain results for the MEAP algorithm which will be discussed later.) Notice 
how thc MEAS is especially sensitive to the base set parameter, B,, to the I0 time 
slice, I,, to  the transmission time, T, and to the number of nodes, N. The curve 
for the average response time versus the transmission time, T, has an interesting 
but  slight non-linearity as T approaches 0. This is due to the fact that, as  T ' 

approaches 0, the processing of an update a t  its originating node after the first 
loop around the ring delays the processing of the same update after its second 
loop. As T increases beyond a certain threshold, the processing after the first . . 
loop can be completed before the update arrives after its second loop. 

The  performance of the modified Ellis ring algorithm with parallel updates - '  

(MEAP) is similar to the performance of the MEAS algorithm except for a reduc- 
tion in response time proportional to T (the transmission time) and to N (the ,. . . , 

number of nodes). This is because under normal circumstances no messages have . 

to  be delayed before processing and because we are not taking into account: the 
increased overhead due to the longer messages and the handling of the "status" . 

information. (See chapter 3.) If the last two sources of overhead were taken into 
account, the savings in response time might be less. . . 

When few conflicts occur, the savings in time are roughly NT seconds because 
updates do not wait for the second trip around the ring before completing. As , 

the  load increases, the savings should increase because locks are held for shorter . 

periods of time and thus less conflicts occur. However, this effect is very small 
and is not observed in the results. For example, figure 6.19 shows the average 
response time of the MEAP and the MEAS algorithms versus the interarrival time 
A, for N = 6. In this figure, the difference between the algorithms is roughly t he  
same at all points and equal to 0.6 seconds (since T = 0.1 seconds and NT = 0.0 
seconds). 

Figures 6.17 and 6.18 show the effect of T and N on the average response time 
for the  MEAP and the MEAS algorithms. These figures confirm our hypothesis 
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that  the savings are NT seconds. Figure 6.16 graphs the average responsc time 
versus the 10 timc slice I,. As can be seen in this fi~iirc, the savings arc inde- 
pendent of I,. The erect of B; (the base set parameter) and M (the number of 
itcms) is not shown bccausc the savings.are.also indcpcndent of these parameters. 
The  I 0  utilization a t  each node for the MEAP algorithm is the same as  in the 
M E A S  algorithm because the I0 requests of each update are the same, Figure 
0.13 shows this I 0  utilization as n function of the interarrival time Are 

Figure 6.20 shows the average response time of the original Ellis algorithm 
(OEA) vcrsus the interarrival timc A, for a six node network. Notice that for 
the  OEA algorithm we assume that the I0 timc slice, I,, is 0 because all state 
information can be kept in each node's main memory, When we compare the OEA 
algorithm with the M E A S  algorithm where locks are kept in an I0 device, we 

- find that the OEA algorithm performs better as long as the load is not too heavy. 
But  when a large enough  umber of updates per second has to be processed, the 
I0 timc invested by the MEAS algorithm to lock individual items pays off and 
i t  pcrforms better than the OEA algorithm. As can be seen in figure 6.21, for the 
casc whcrc I, = 0.025 seconds, the MEAS algorithm performs better in s very 
small. interval. However, as I, is reduced for the ;MEAS algorithm (I, is always 0 
for the OEA algorithm), the interval becomes larger and when I, =. 0, the MEAS 
a!gorithrn performs better for all values of A,. (See figure 6.20.) 

. . Notice that response times in the OEA algorithm are independent of the 
number of items in each database (M). The performance of the OEA algorithm 
can be vicwed as thc limiting performance of the MEAS algorithm with I, = 0 
as the number of items in each database approaches 1. As M decreases, the 
curve of the average rcsponse time vcrsus A, for the LWAS algorithm approaches 
thc  curve for the OEA algorithm. For example, the curve for M = 300 is also 
shown in figure 6.20, The response times for that case are in between the ones 
for the the OEA algorithm and the MEAS algorithm with M = 1000. EIowever, 

. ihc  performance of the MEAS algorithm is close to the performance of the OEA 
algorithm only for very small values of M (i.e. close to 1). 

Finally, figure 6.22 shows a case where the OEA algorithm performs better 
than the distributed voting algorithm for some values of the interarrival time, 
A,. Here again, the OEA algorithin can perform Ectter fhan the EVA algwithin 

. because it docs not need to read and write timestamps to an I0 device. Thc case 
shown in figurc 6.22 is a special case'and in most other cases, the distributed voting 
algorithm performs better. (Notice that in figure 6.22, the b a ~ e  set parameter B, 
is 7 end not 5 as usual;) 
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3.1 Soma More Conclusions, 

The results presented in section 3 show that the Ellis ring algorithm and 
its variants perform worse than the DVA and the MCLA algorithms under most . 

circumstances. Furthermore, the Ellis typc algorithms are more sensitive t o  the 
critical system parameters: the number of nodes, N, the transmission time, T, 
thc I 0  timc slice, I,, the base set parameter, B,, and the interarrival time A,. 

Among the algorithms studied in section 3, the modified Ellis ring aigorithm 
with parallel updates (MEAP) performed better than both the modified Ellis ring 
algorithm with sequential updatcs (MEAS) and the original Ellis ring algorithm 
(OEA) when tested with the same set of parameters. However, the complexity ' 

of the MEAP algorithm is greater than the complexity of the MEAS algorithm, 
which in turn is greater than the complexity of the OEA algorithm. 

4. PERFORMANCE RESULTS FOR THE CCA AND WCLA ALGORITHMS. . 
- 

Curve "CCA" of figure 6.23 shows the average response time of update 
transactions with the CCA algorithm, as a function of the transaction interar- 
rival time A,, for the set of representative parameter values. Notice that i s  A, 
decreases, the arrival rate of transactions and the load increases. In this curve we 
observe a sharp knee which occurs when the central node is swamped by requests - 
to process transactions, 

In order to  provide a point of comparison, in figure 6.23 we also show the  . 
performance oi the DYA algorithm. The average response time of update trans- * 

actions with this algorithm is given by curve "DVA" in figure 6.23. This algorithm . 

does not have a central node which acts as a bottleneck, but surprisingly, its 
performance is not as good as that of the CCA algorithm. The main reasons for 
this relatively poor performance of thc distributed voting algorithm are that  (a) 
transactions must visit a majority of nodes (instead of one) before being executed, 
and (b) the CPU and I0 loads produced by a voting operation a t  a node a re  
considerable, while in the CCA algorithm there is no I0 and very little CPU 
ioad caused by the serialization of updates. 

Although it is not shown in figure 6.23, both algorithms saturate a t  about 
the  same interarrival time. When the loads become very high, the analysis is 
not very accurate and the simulations are very expensive to run. Fortunately, 
we are not very interested in this region because both algorithms perform so 
poorly there. For all cases which are not close to the saturation point, the CCA 
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algorithm performs better than the distributed voting algorithm. 
The results of figure 6.23 arc for the particular set of parameter values shown 

in the figure. Extensive tests have been run to study the effect of the parameters , 

on the  average response time. We have found, that the CCA algorithm, just like 
the MCLA algorithm, performs better than the DVA algorithm in most cases 
of interesi. Thc actual difference in average response time between the two al- 
gorithms can be reduced or increased by varying some parameters, but the basic 
relationship remains unchanged. For a two or three node system and for a small 
value of the I, parameter (i.e., the I0 time to read or write a timestamp), the 
performance of the CCA and DVA algorithms is very similar. As the number 
of nodes N, the transmission time T, or I, increases, the difference in average 
response time'increases and the CCA algorithm becomes more attractive. Notice 
tha t  the results of figure 6.23 are for an I0 bound situation. However, the results 
are similar for a CPU bound case. 

Under our constant transmission time assumption, the performance of the 
WCLA algorithm is the same as the performance of the MCLA algorithm because 
both algorithms eliminate all unnecessary delays. In figure 6.23 we have also 
shown the average response time oi these two centralized locking algorithms, for 
three values of the I, parameter. Recall that the I, parameter is the I0 time 
needed to  set or check a lock. In the WCLA algorithrr. the value of this parameter 
should include the I0 time needed to maintain the table of last transactions that  
modified the items ( called LAST(i) in chapter 3 ). Since this table will usually 
be in an I0 device, the value of I, wiil probably be greater than zero for the 
'V'JCLA algorithm. On the other hand, the I, parameter will usually be very close 
to zero in the MCLA algorithm. 

Hence, the lower curve ( I, = 0 ) should only be considered as a lower 
baund for the WCLA. algorithm, while this same curve is the most likely average 
response time for updates in the MCLA algorithm. As can be seen in figure 6.23, 
it is possible for the WCLA algorithm to perform worse than the simple CCA 
algorithm. This occurs when the locking overhead becomes larger than the data  
reading load which was moved out of the central node by the WCLA algorithm. 
By using caches, the value of I,  for the WCLA algorithm may be reduced, thus 
making this algorithm more attractive. 

(In a system where communication delays have a large variability, the per- 
formance of the WCLA algorithm might be better than the performance of the 
MCLA algorithm. (See chapter 3.) However, in such cases, the respocm time 
of transactions in a11 algorithms will be affected, and which algorithm performs 
better will depend on the type of the communication delays.) . . 
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5. PERFORMANCE RESULTS FOR THE MCLA-h ALGORITHM. 

5.1 Size of tho Hole Lid, 

Bcfore we study the performance of the MCLA-h algorithm, it is a good 
idea to estimate the size of the hole list at  the central node. We assume that 
there arc no unnecessary delays for non-conflicting updates. (That is, assume , . 

that h = eo.) Let be the average time that a hole remains on the hole list a t  
the central node. Using Little's equation, we can obtain the average size of the 
hole list, IT, as 

a = s ( N ~ )  

where Nh is the rate of update lock grants at the central node. ( N is the number 
of nodes in the system, X is the arrival rate of updates at  each node, and we 
assume that the system is stable. NX can also be interpreted as the arrival rate . 

of holes to the hole list.) Since we are only interested in an estimate, we use fi, 
the average response time of updates, instead of 3. ( R  is computed assuming 
that there ore no unnecessary delays.) Since will always be larger than S, . 

Using the values for R obtained in chapter 5, we can compute estimates for 
R for some typical cases. These cases are shown in table 6.1. A s  can be seen 
in table 6.1, the average size of the hole list for the typical cases is quite small. . 

This suggests that a MCLA-h algorithm with a small value of h might perform 
just as  well as the MCLA-infinity algorithm which has no unnecessary delays. 
For example, in a 6 node network with an update arrival rate of 0.2 updates per 
second per node ( R  = 1.69), an h of 2 or less would not give us good results, but 
an h of 5 should be enough to allow most updates to proceed without unnecessary 
delays. 

As the number of nodes, N, increases, we expect the average hole list size 
to increase. (See equation (I).) However, as N increases, the maximum possible 
value of h decreases because the system can handle less updates per node. This 
is why the increase in R in table 6.1 as N goes from 8 to 9 is small. We therefore 
expcct that a relatively small value of h will still be sdequate in larger networks. 

If the total number of update arrivals Nh is held constant, then the value of 
does not increase as 'N is increased, This is true because in the MCLA nlgo- . 
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CiAlc 0.1 

TABLE 6.1 

ESTIKkTES FOR TNE AVERAGE HOLE LIST SIZE ( ). 

F o r  Bs = 5,  K = 1080, I s  = Id = 8.025 sec. ,  T = 0.1 sec. 
(Assuming t h a t  no unnecessary delays occur.) 

N i s  t h e  number o f  nodes. 

X i s  t h e  a r r i v a l  r a t e  o f  updates a t  each node ( = 1/Ar ). 
- 
R i s  t h o  average response t i n e  o f  updates (from chapte r  5 ) .  
- 
H i s  t h e  es t imated  upper bound f o r  the  s i z e  o f  t h e  h o l e  l i s t .  
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rithrn, thc averagc response time of updates do= not increase if IVh is constant. 
(See eya t ion  (I).) 

5.2 The Simulator for the MCLA-h Algorithm. 

The MCLA-h algorithm was not analyzed with the technique of chapter 4 
because the analysis seemed to be too compIcx. Instead, a simulator, similar to 
the  ones used for the other algorithms, was written. As in the previous sirnulatdrs, 
we assume that  thc database is completely duplicated a t  every node, we assume 
tha t  there are no read-only transactions and wc assume that there are no failures. 
We also assume that the message transmission delays are constant and equal to 
T seconds. This automatically implies that there are no excessive transmission 
delays in the system. Therefore, when a "grant" message arrives a t  the update's 
originating nodc, we are guaranteed that all necessary previocs updates have 
been seen a t  that node. Thus, with the h4CLA-infinity algorithm there are  no 
delays caused by sequence numbers. In a MCLA-h aIgorithm with finite h, there 
might bcdelays in the central node when a hole list size exceeds the limit h, 
but once the grant message is sent, the update will not be delayed further due 
to  sequence numbers. These observations simplify the design of the simulator 
because with constant transmission time, some sections of code in the MCLA- 
h algorithiil are not needed. (In particular, Procedure Perform-update(A,n) in 
appendix I can be simplified to 
Procedure Perform-update( update A; node n ); 

if n = c then central-update(A,c) 
else update local database as indicated by update-values(A); ) 
Finally, we assume that there is no I0 or CPU overhead due to  the handling 

of the  hole lists. Our predictions indicate that the hole list will be small and will 
therefore fit in main memory. The additional CPU time needed to  handle these 
small Iists should be very small. (If this last statement is not true, the value 
of C,, the CPU time slice, can be increased to compensate. However, with our 
parameter values, any small increase in C, will not alter thc results significantly.) 

. . 5.3 The Resulte, 

We now present some selected results obtained from the simulator. Figure 
6.24 is a graph of the average response time of updates, R, as a iuncbion of the 
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update interarrival time at  each node, A, (A, = 1/X ), for several values of the 
holc list copy size limit h, in a six node network. The other simulation parameters 
arc set to  thei: "typical" values. (See section 2.) High update loads ore to  the 
right of the figure while light loads (low update arrival rates) are to the left. 

The curve for h = oo is the same as the one given in figure 6.2 for the MCLA 
algorithm. Notice that for an h larger than 3, the curves for the average response 
time are almost indistinguishable from the curve for h = oo. This means that  in 
this case, a value of h of 4 is sufficient to obtain the best performance possible. 
A hole list limit of 4 is reasonable and should not produce much overhead when 
appended to  "grant" and "perform update1' messages. (The value of 4 for h 
confirms our guess for a good and small h. See section 5.1.) 

Figure 6.25 shows these same results in a different way. In this figure, we 
plot the average response time as a function of h for different values of A,, the 
update interarrival time. Notice that for some high load cases (e.g., small A,), 
the value of is not shown when h is small. In these cascs the system is saturated 
and the value of R is not defined. Figure 6.25 shows that the value of h becomes a 
critical system parameter as the sys tern becorncs heavily loaded. However, even 
in these cases, an h of 4 or 5 is sufficient to bring the response time down dose 
to i ts  minimum value. ' 

Figure 6.26 gives the average size of the hole list, g, (obtained from the ' . . 
simulations) as a function of the hole list size limit h for several values of A,, , 

the  update interarrival time. (Again, in some cases where h end Ar are small, 
the  system is saturated and R is undefined.) The values of R for the case of no 
unnecessary dclays (e.g., large h) agree well with the bounds predicted above. 
(See table 6.1.) For example, for A, = 5 seconds, we predicted that H would 
bc less than 1.69. From figure 6.26, the true value (for large h) is about 1.25. 
As the size of h is decreased, the number of unnecessary delays increases. This 
increases the average response time and thus the average size of the hole list 
grows proportionately. (See equation (I).) (Notice that can be larger than h 
because is the average hole list size at  the central node. The size of this list is 
not bounded; only the size of a copy of this list placed in a message is restricted 
to size h.) 

The fraction of the updates that a:e delayed at  the central node due to large 
holc lists is shown in figure 6.27 as a function of h for different valucs of A,. 
(When the r d i i d  la ilot shown, the system is saturated.) Notice that for h larger 
than 5, the number of delayed updates is negligible for all values of A, shown. 
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Figure C.24  
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Figure 6.24. The :4EA-h algoritb: Effcct of Z? L-12 h on 
the average zespocse tine. The Eelay at central node stzateqy 
is used. These are shulntion zesults. N=6. X=1000, 
Ss=j, Is=Id=0.025 sec.. -0.1 sec. 
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Figure 6.26. The MU-h algorithm: Average size of  t h e  
hole  list. N 4 ,  H=1000, Bs=5, Is=Id-0.025 sec., T=0.1 sec. 



CH. 0: THE PERFORMANCE RESULTS, 
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Figure 6.27. The hCLh-11 algorithm: Praction o f  delayed 
u*tes. tI=G,  M=1000, Bs=S, Is=Id-4.025 s e c . ,  T-0.1 s e c .  
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5.4 Results for a Hyperexponentid Base Set Distribution. 

The results of thc previous section were obtained with a discrete exponential 
distribution for the number of items referenced by an update. (See chapter 4). 
With this distribution, updates with large base sets (e.g., updates that reference 
many itcrns) do not occtii V C : ~  cfter.. 

The MmA-h algorithm with a small value of h is very sensitive to updates 
with large base sets because each such update produces a hole that remains on 
the hole list at  the central node for rr long time. Thus, a small number of updates 
with large base sets can easily cause the hole list to exceed its limit h and can' 
cause delays to occur with the rest of the shorter updates. To study the effect 
of updates with large base sets, we consider a different base set distribution: a 
discrete hyperexponential distribution. 

With a discrete hypcrexponential distribution, a certain fraction, p, of the 
base sets are generated from a discrete exponential distribution with mean Xl 
while the rest of the base sets (1 - p) are generated from a discrete exponential 
distribution with mean X2. (0 5 p 5 1.) For our study, we make a small fraction 
of the updates (p)  have a large base set (with mean Xi), while the majority of 
the updates have smaller base sets (with mean X2), In order to present the same 
overage load to the system, we will require that the average size of the base sets 
of all updates (i.e., pXl f (I -p)X2 ) be the same as the average size of the base 
sets with the original discrete exponential distribution. As was shown in chapter 
4, this mean was 

original mean = [I - exp (-I/B,)J-' (2) 

(where B, is the base set parameter in the performance model), 60 we need 

To find the required value of Xl we need a second equation. We therefore 
define the parameter q to be the factor by which Xl is larger than Xz. That is, . 

This gives the value of Xi: 
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Having computed Xi, we con find X2 from equation (4). 
The values of Xi and X2 we have found are the means of the two discrete 

exponential distributions. The mean values for the continuos exponential dis- 
tributions that are used for generating the discrete distributions, and Bs2, 
arc different and can be computed by inverting equation (2): 

The MCLA-h algorithms were simulated using the new hyperexponential 
distribution for the base sets. There were four cases studied: 

1) p = 0.1, q = 10. That is, 10 percent of the updates have larger base sets. 
The  mean size of the base sets of these updates was 10 times larger than the  
mean size of the base sets of the rest of the updates. For the case of B, = 5, 
p = 0.1 and q = 10 implies that XI = 29.03 and X2 = 2.903. 

2) p = 0.05, q = 10. Ir, this case, only 5 percent oi  the updates have the  . 
larger base set. The average size af the large base sets is XI = 38.04 while t he  
average size of the smaller base sets is X2 = 3.804. 

3) p = 0.1, q = 5. Ten percent of the updates have larger base sets, but the  
mean size of these larger base sets is only 5 times larger than the mean size of 
the  smaller base sets. In this case, Xl = 19.70 and X2 = 3.940. 

4) p = 0.0. In this last case, there are no updates with larger base sets. 
In other words, all base sets are generated from a single discrete exponential 
distribution with mean Xi = 5.516. This is the original distribution that  was 
used to  obtain all previofis results, 

Notice that in all cases above, pXl + (1 - p)X2 = 5.516, the mean of the  ' 

original discrete exponential distribution. 
The four cases were simulated for an interarrival time A, of 7 seconds. The 

rest of the simulation parameters were not changed. Figures 6.28 through 6.30 
show the results. 

In figure 6.28, the average response time of updates, E, is shown as a function 
of h, the hole list size limit for the four cases. (This figure should be compared 
with figure 6.25.) Even though in all four cases the mean size of the base sets 
is constant, the response times are considerably different. This difference is par- 
tially due to  the fact that the variances of the different base set distributions 
arc not the same. As was expected, the MCLA-h algorithm is more sensitive 
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Figure 6.28. The bCLA-h algorithm ;:Seh hypcrcxponential 
base sets: Effect of h. N-6, Ar=7 sec.. H~1000, Bs=5, 
Is=Id=0.025 sec., Ta0.1 sec. 
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base sets: Average size of the hole List. N.6, 1V=7 sac., 
M=1000, Bs=5, Is=Id=0.025 sec., TSO.1 sec. 
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to  h when we use hyperexponentinl distributions, However, even in these cases, 
a relatively small value of h (e.g., 6) produces average response times close, to 
the ones obtaincd with h = oo. As was also expected, as p (the fraction of the 
updates with large base sets) or q (the factor by which the larger base sets'nre 
bigger) are decreased, the average response times and the sensitivity to h both 
decrease. 

The average size of the hole list,z, is shown in figure 6.29 as a function of the 
hole list size limit h. As was observed in figure 6.26, as the average response times 
grow, the value of B grows proportionately, Figure 6.30 shows the fraction of 
the updates that are delayed at the central node because their hole lists exceeded 
the limit h, As was expected, as p or q grow, the number of delayed updates 
inc re~~es .  

5.5 Some More Conclusions. 

If the distribution of the number of items in the base set of updates is discrete 
hyperexponential, the average response times of updates increase. This increase , 

is mostly due to the increased variance of the hyperexponential distribution. . 

For a given value of the hole list size limit, h, as the fraction of updates 
with larger base sets @) increases or as the mean base set size of these updates 
(q) increases, the response time increases. This increase is due.to the fact that 
the updates with iarger base sets produce holes that remain on the hole list for 
longer periods of time. This causes the hole list to overflow (i.e,, its size exceeds 
h) and causes updates to be delayed. However, a relatively small value of h (e.g., 
6) makes this increase in response time negligible. 

6, COf'PARISON OF STRATEGIES FOR LIMITED HOLE LIST COPIES. 

In section 1.9 of chapter 3 we described several strategies fop handling limited 
hole list copies. One of the~e strategies was to delay sending the "grant" message 
for a transaction until the hole list copy of the transaction had shrunk to a size 
smaller than the limit it. We cz!!ed this the "delay at central node" strategy. 
Another solution was to simply truncate the hole list copy to the right size. This 
was the "truncating" strategy. 

In appendix 7 we analyze the delays involved in the "delay a t  central noden 
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. . 
and the "truncating" strategies and we comparc these delays. In the appendix 
we show that  if the central node does know what holes will disappcar first from 
the  hole list, then the "truncating" alternative is superior. We also show that  if 
the  central node cannot predict what holes will disappear first, then the "delay . 

at central node" alternative is superior in most cases, 

. . 
7. THE SIZE OF THE "TOTAL-WAIT-FOR" LIST, 

In section 1.10 of chapter 3, we described a centralized locking algorithm 
(T WCLA) which used total-wait-for lists. The T WCLA algorithm is a centralized 
locking algorithm like the MCLA algorithm. Both of these algorithms eliminate 
all unnecessary delays (at least with our performance model), so we expect the  

* 

performance of both algorithms to be similar. Hence, we will not study the  
performance of the TWCLA algorithm in this thesis. . 

In this section we will only estimate the average size of the total-wait-for list 
at the central node in the TWCLA algorithm. It turns out that the average size 
,of the total-wait-for list is roughly the same as the average size of the hole list. 
This means that the performance of the TWCLA algorithm with limited total- 
wait-for lists should also be similar to the performance of the MCLA algorithm 

. 
with limited hole lists. 

The average size of the total-wait-for list, F, can be estimated as follows: 
Assume that  the system is stable and let S be the average time that an element 
remains on the total-wait-for list. The sequence number of update A is added . 

to the total-wait-for list when A releases its locks, Assuming that the process of 
granting all locks to  updates a t  the central node is a Poisson process with arrival 
ra,te N h  (see chapter 4), the time to the next grant is l / (Nh)  (because of the  
mcmoryless property). Say this grant is for update B. Then A's sequence number 
will remain on the total-wait-for list a t  most until B releases its locks. (Notice 
t ha t  a third update C could obtain its locks after I3 did but could finish before 
B did.) The average time for B to release its locks will be less than R, the total 
average response time of updates, Thus, 

and by Little's formula, 
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Therefore, we cxpcct the avcragc size of the total-wait-for list to bc about 
the same size as the average size of the hoie iist. (See equation (I).) However, i t  
sccms that the size of the total-wait-for list will not be as sensitive to updates 
with large base sets as thc hole list was. As long as there are updates with small 
base sets finishing in "short" times, the updates with larger base sets cannot 
cause the total-wait-for list to grow. Some simulations are needed to confirm this 
hypothesis. 

This concludes the presentation of the performance results for the update 
algorithms. 
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CRASH RECOVERY 

This chapter starts the second part of the thesis. In this second part we will 
eliminate some of the restrictions that were made for the performance analysis 
of thc first half of the thesis. 

We start by considering failures and their effect on the system performance. 
We  will show that it is possible to design a resilient centralized locking algorithm 
which does not use backup central nodes and which involves little additional 
overhead during normal opcration as compared to the original algorithm. When a 
failure occurs, the resilient ccntralizcd locking algorithm will temporarily opcrate 
incfiicicntly. Howevcr, after the system adapts to the new state, the algorithm 
wiIl operate as efficiently as before. It we assume that failures are rare, the avenge 
pcrformnncc of the resilicnt algorithm will be similar to the performance of the 
original centralized locking algoiithm, Thus, the centralized locking strategy 
continues to be an attractive alternative even in the presence of failures. 

In section 1 we comment on the state of the art in crash recovery for dis- 
tributed databases. Next, in section 2, we describe the types cf failures that 
can occur and we state which types wc will not consider in this thesis. Bcfore 
describing the resilient centralized locking algorithm, in section 3 we discuss some 
basic concepts that apply to any resilient update algorithm. In section 4 we 
outline the resilient centralized locking algorithm, and in section 5 wc briefly 
compare its performance to the other algorithms we have studied, assuming that 
these algorithms are also modified to make them resilient. 

I, STATE OF THE ART IN CRASX RECOVERY, 

Many crash rccovcry techniques znd algorithms for distributed databases 
have recently appeared in the literature [e.g., GRAY 77, STON78, ROSE78, 
MENA78, BADA78, LAMP, THOM76, ALSB76, BERN78, ROTH771. Before 
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describing any new algorithms, it is important t~ understand what has Kcen 
nchicved up to now in this area, what is still missing and what this chapter 
attempts to accomplish. 

By examining the current literature, we can reach several general conclusions: 
(1) Tllere arc many types of Iailures that can occur in a distributed database 

system. Any resilient algorithm should be able to deal in a proper way with a t  
least a good number of tilese types of failures. \Vc will discuss some of the types 
of. failures in section 2. 

(2) There are many available strategies for dealing with the different types 
of failures. For example, there is a "two phase commit protocol", there are 
"time-outs", there are "transaction logs", and there are "message pipes". (These 
tcchniqucs do not solve the same problem,) We refer the reader to the literature " 

for dcscriptions of these strategies. 
(3) If one considers one type of failure and one recovery strategy in a simple 

algorithm, then the incorpoiation of resiliency to the algorithm is not hard, it . 
simply has to  be done carefully. 

(4) However, making a complex algorithm resilient to direrent types of 
failures which can occur simultaneously is much much harder. The problem is not 
conccptually hard; it is simply that close attention has to be paid to innumerable 
details. Some of the published papers are clear testimony to this fact. 

(5) But  the worst part of the problem is that none of the complex resilient 
algorithms has been formally proven correct. After reading pages and pages of 
detailed code, the reader is always left with the fccling that there might be a case 
that  has not been considered. Scveral such cases or "bugs" have already been 
found in published algorithms. Once found, a bug is relatively easy to fix by 
including additional tests in the algorithm. But until the algorithms are formally 
proven correct (which might take some time considering the complexity of the 
algorithms), there will always be the possibility of discovering more bugs. 

Considering all this, in this chapter we will not attempt to present still 
another detailed resilient distributed algorithm. Unlcss we could prove the cor- 
rectness of such an algorithm, the algorithm itself would not be a significant 
contribution. The main thrust of this thesis is the performance of update algo- 
rithms for distributed databases. Thus our main interest is not how to  design 
rcsilient algorithms, but how these resilient algorithms will perform. Fortunately 
for us, it is not necessary to give all the gory details of an algorithm to understand 
how it will perform. Therefore we wiil simply give a "top level" description of 
the  resilient centralized locking algorithm we are interested in, We will also give 
arguments to convince the reader that it is possible to implement the algorithm 
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correctly. 
Anothcr reason for not bcing as intcrcsted in the low levcl implcmcntation 

details of rcsilicnt update algorithms is the following one. The rcdundnnt u p  
date algorithm is only part of thc complctc distributed databasc systcm. Crash 
recovcry tcchniques should not bc dcsigncd for each part of the systcm indepcnd- 
cntly, but should be intcgratcd in G uniform fashion into the complete system. 
Thcrcforc, t i w e  is little usc ir going through the implementation details of crash 
recovcry when we arc only studying the redundant update algorithms, In this 
chapter, thc only rcason for considcring crash recovcry techniques for an update 
aIgori thrn independen tly of the rest of the systcm is to cgnvincc the reader that  

1) it is possible to have a resilient centralized locking algorithm, and 
2) this clgorithm pcrforms well. 

If we can show that the above is true, then we can reasonably expect the 
centralized locking algorithm incorporated into a complete system with crash 
recovery to perform well. 

2. TYPES OF FAILURES, 

Tn this section we will classify the possible types of failures in a distributed 
database system. A good understanding of the possible failure msdcs will be 
hclpful in thc following sections. The types of failures that follow arc not disjoint. 
Tha t  is, a single failure can be classified iilto several categories. (F'or another 
discussion of possible failures and thcir problems, scc PTH771.) . .. 

' 
(a) Node Failure. This occurs when a node in the system "crashes" and 

temporarily ceases operation. Node failurcs can be further grouped into "so1t9' 
and "hard" failures. In a soft crash, the node docs not lose its vital data and it 
is possible for the node to get up-to-date by simply performing the updates it 
misscd while it was down, In n hard crash, the node loses some data (e.g., values 
in tllc database) and  backup tcchniques must be used to repair the damage. 

(b) Communication Line Failures. This occurs when messages are not trans- 
mittcd properly. If we assume that thc distributed database ~ys t em uses a com- 
munications sub-system, thcn this sub-system will take care of many of the  
failures. some common failures that are "solved" by the communications sub- 
system are missing messages, out of order messages (both ~olved with sequence 
numbcrs), and physical line failure& (solved by re-routing). In some cases, the 
communications sub-system will be unable to deliver or receive messages and one 
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or  morc nodcs will be temporarily isolated from the rcst of the network. In such 
cascs, wc bay that a network partition has occurred. 

(c) Detectable Failures. If all nodcs in the system are able to discover n 
failure (node or communication) bcforc the failure is corrected (the nodc brought 
u p  or the communication re-established), thcn the nodcs can take appropriate 
action and the failure is called "detectable". FaiIures are usually detected by 
time-outs or through "nlcrting" messages from other nodes. A failure that  is 
detected too late (i.e., an undetcctcd f~ilurc) can cause the database consistency 
t o  be violated. (For cxample, sce section 4.7.) 

(d) Malevolent Failures. In order to be ablc to recover from failures, we must 
assume that all nodcs coopcrate and follow thc system protocols. If a nodc docs 
not do so, it  can cause a rnalcvolent failure. These failures are almost impossible 
to correct. For example, if a node starts broadcasting "perform update1' (or 
"zcccpt update") messages, with garbage in them, then all databases will contain 
garbage. As another cxample, consider what would happen if the central node 
in the MCLA centralized locking algorithm started granting locks to  all update 
requests without chccking for conflicts. 

(el MultipleFailures. The failures mentioned above can occur one a t  a time or  
multiple failurcs can occur a t  once. Algorithms that recover from multiple failures 
are  morc complex bccause the number of cases that must be considercd increases 
tremendously. Furthermore, the case of failures occurring during recovery from 
a diffcrcnt sct of failurcs must also be considered. 

In this chapter, we will not consider certain types of failures. We will not 
considcr malevolent failures bccause crash recovery techniques are not adequate 
for this type of failurcs. Techniqucs from the area of protection and security 
a re  probably more useful. We will only consider communication failurcs tha t  
partition the network. (Notc: A partition might just havc one node.) We as- 
sume that  the communication sub-system will efCectively deal with the other 
communication failures. The resilient algorithms we discuss in this chapter will 
nttcmpt to recover properly from all the other types of failures mentioned. 

3. BASIC CONCEPTS. 

In this section we will discuss some basic concepts common to all resilient 
update algorithms. For simplicity, we are still assuming a completely duplicated 
database a t  each node and we are also assuming that all transactions are updates. 
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lIo??rcvcr, many of the ideas and concepts we wil! present can be extcnded to 
thc  more general case of partially duplicated data and read-only and update 
transactions. 

3.1 The Principal Idea. 

Tile principal idea behind the resilient algorithms is to reduce the overhead 
t o  n minimum during normal operation. Of course, some additional stcps must be 
pcrformcd during normal operation in order to allow recovery from a crash. But  
thesc additional operations should increase the number of messages transmitted 
and thc I0 and CPU ovcrhead as little as possibie. Only whcn a failure occurs will 
tfic algorithms temporarily operate less efliciently. But after a brief recovery and 
rcconfigurntion period after the crash, the algorithm should return to  its normal 
operation, even if nodes are missing. If we make the reasonable assumption that  
failures do not occur frequently, then the overall performance of the algorithm 
will not bc aKcctcd by these rare and brief periods of inefficient operation. . 

3.2 Logs. 

Consider thc crash of a sin& node in any update algorithm. Since this node 
will be out of operation for a certain period of time, it will miss a set of updates. 
This means that somehow the rest of the network will have to save these updates. 
There are many alternntives as to how and by whom these updatcs are savcd. 

One alternative is to assume that the communication sub-system will guar- 
antee delivery of a message that has been given to it. (The mail system in the 
A W A  net is an example of such a communication system.) Thus, all missed 
u pd atc messages are saved by the communication sub-system and when the node 
comes up after the crash, it nutcnatlcally starts receiving the messages as  if 
nothing had happcncd. AIthough this can be a useful technique in some systems, 
wc will not consider it here because we would like to solve the problem of missing 
updates explicitly. Therefore, we assume that the communication sub-system 
will attempt to send a message and will later inform the sender either "Yes, I 
sent it" or "No, I could not send it". 

If the cornmunic~tion sub-sy&ern does not save updates, the nodes ' t h e m  
sclvcs must save them. Thus we see the need for "logs". A log is a collection 
of performed updates that is "safcly" kept by a node. Each log entry contains 
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the  database vnlucs that werc modified by the update plus somc sequencing in- 
formation (c.g., a scqucnce numbcr or a timestamp). Now the question is: What 
nodes save what updates? 

Onc answer to this question is to have each nodc only save the updates 
tha t  arc "finnlizcd" a t  that node. A node finalizes an update when it decides 
tha t  thc update should be pcrformcd. In the centralized locking algorithm, a 
nodc would only save the updatcs that originated there, while in the distributed 
voting algorithm, a node would only save updatcs that are accepted a t  that node. 
This strntcgy savcs space in logs since each updatc only appcars in one fog. The  
obvious disadvantage of this schcmc is that when a node crashes, its log is not 
availablc and the updates in that log cannot be accessed by another recovering 
node. 

A second alternative is to have all nodes save all updates they ever perform, 
including updatcs that werc finalized at  other nodes. Although this is more 
wastcful in terms of space and time, a recovering node will always have access 
to  all the updatcs it missed (except if all other nodes are down or unavailable). 

A third alternative is to name a subset of reliable nodes to be the keepers of 
the  logs. Only thcse nodes would save all updates; the rest of the nodes would 
not save any of the performed updates. Hopefully, a t  least onc of the log keepers 
would be up a t  all times. Unfortunately, before completing an update, a node 
would have to  wait for a confirmation from the log keepers that the update has 
bccn properly saved. (If thc number of log keepers is larger tEz2 cr eqna! tc. the 
numbcr of nodcs required to form a majority, then one of the logs will always be 
available and no confirmation is needed. The reason why this is true will become 
evident after rcading section 3.4.) 

In somc systcms it might be convenient to keep a record of all previous 
updatcs. For example, the log could be stored on magnetic tape which provides 
incxpcnsivc, rcliabtc and abundant storage. However, in other systems i t  might 
not be possible to keep n continuously growing log. Fortunately, updatcs can 
bc removed from the log when w e  are positive that all nodes (active or down) 
have performed an update. There are several ways to do this trimming of the 
logs. One way would bc to have the node in chagc of each log periodically send ' 
out  a message to all nodes rcqucsting a list of pcrformcd updates. Thcn each 
updatc that has bccn performed at  all nodcs can be removed from the log. In the  
MCLA-h algorithm in particular (see chapter 3), there is an even simpler way 
of trimming the log. Suppose that update A, with sequence numbcr a, is in the 
log at nodc x. Then suppose that n "pcrform update" message from node y for 

- update B (with sequence number b) arrives a t  node x. Furthermore, assume that  
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b > o and assume that A is not in B's hole list. In this case, update A must 
have bccn pcrfornled a t  nodc y and thc "pcrform updatc" messagc for B acts a s  
n confirmation that A has bccn performed at  y. When node s rcccivcs similar 
messagcs from all nodes, updatc A can be rcrnovcd from thc log a t  nodc s. 

Our commcnts on saving pcrformcd updates for crashcd nodcs apply to  any 
updatc algorithm. Thus, we can expect any resilient update algorithm to have 
some sort of logging mechanism, and the ovcrhca:! prod~cc?. by the !cgs wi!! be 
very similar in all algorithms. 

Another common problcm t.o all update algorithms is the reliable broadcast 
of an update to all nodes once the update has been "finalized". Recall that  an 
update is finalized whcn a nodc dccidcs that the update should be performed. 
This happens whcn a nodc acccpts an update with a majority of votes in the  
distributed voting algorithm. In a centralized locking a!gorithm (e.g., MCLA), 
an update is finaiized whcn a node obtains locks for all the items referenced and 
computes the update valucs, 

No matter what algorithm was used to decide if an update can be performed, 
once we do decide to  pcrform it, ~ v c  would likc either that all nodes perform 
the update or that no nodes perform it. There are two basic alternatives for 
nccomplishing this. 

Tlic first altcrnntivc is not to perform any update a t  any node until wc 
can guarantee that that update will eventually be performed a t  all nodes in thc  
system. Thcre are many ways to achieve this, but most of them are variations 
of  the "two phase commit protocol" [GRM77]. Under this protocol, a node that  
has finalized an updatc and wishcs to pcrform it, first sends the new update 
values to all nodcs. The nodcs save thesc values without updating the database, 
When the finalizing node reccivca acknovvlcdgments from all nodes, it can be sure 
tha t  all nodes received and accepted the values, and only then docs it transmit a 
"commit" message to all nodcs. Upon receipt of this second message, nodes ac- 
tually pcrform the updatc on the database. By taking the proper precautions, this 
protocol can guarantce that cithcr the update is eventually performed everywhere 
or  the updatc is not pcrformcd a t  all. The disadvantage of this two phase commit 
protocol is that 3(N - 1) mcssagcs are necdcd in order to broadcast an update 
instead of the minimum of (N - 1) messages needed without the protocol (where 
N is the numbcr of nodcs). (In some algorithms, the finalizing node only has to 
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wait for o majority of ucknowlcdgmcnts.) In section 4 we will discuss how this 
protocol can be uscd in thc ccntralizcd locking algorithm. 

Thc sccond nltcrnativc to thc problem of reliable broadcast of an update i~ 
to allow "undoing" of updatcs. Undoing an update A at  node x is not especially 
hard. In the log entry for A (stored a t  x or at  some other node), wc simply add 
the old values of thc updated itcms. (The old values have already been rcad by  
whatever nodc computed the new valucs, so thcre is little overhcad in adding 
these values to the log.) Update A can then be undone by writing the old valucs 
of thc itcms into the database, Noticc that other updatcs with larger sequence . 
numbers (or larger timestamps) than A's and whose base sets have elements in 
common with A's base set, must also be undone. 

If we can undo updates, a node can perform an update without knowing 
for sure if the updatc  ill bc performed at  all nodes. If later on the node dis- 
covers that an update it pcrformcd was not pcrformcd at the other nodcs, i t  will 
undo the update. This means that a node that finalizes an update can simply 
scnd (N - 1) "pcrbrm update" messages to all nodes and without waiting for 
acknowIedgrncnts can procecd to update the local database and to mark the 
update as finished. EIowever, this also means that transactions a t  that node wilt 
scc values in the database that will possibly be undone in the future. Bccause 
of this, undoing updnics does iiot seem to be a satisfactory alternative for most 
cases. 

(Notice that in some special cascs undoing updates may not be necessary, 
even if we do not use o two phasc commit protocol. For example, if all transactions 
are commutativc (i.e., the order in which they are performed is unimportant), 
then a nodc that discovers an update transaction which was not performed at 
all nodcs, does not have to undo the transaction. The no& simply makes sure 
that  all nodcs do perform thc update. The fact that the update is pcrformcd in 
a dillerent order (with respect to othcr updates) is not important. See chapter 
8.1 

At this point some readcrs might think that the distributed voting algo- . 

rithm can opcrate safely without update undoing or without a two phasc commit 
protocol, thus making it superior to the centralized locking algorithm. As wc will 
see in the next two sections, this is not true if we want the algorithm to  operate 
efficicn tly cvcn when nodcs are inacccssiblc. In othcr words, the distributed voting 
algorithm (as wcll as the othcr algorithms) can opcrnte without undoing updates 
and without a two phase commit protocol but the price that must be paid is 
incfficicnt operation when one or more nodes arc down, . . 
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3.4 The Majority of Nodes Requirement. 

Suppose that the communicntion sub-system fails and par ti tions the nodes 
of the nct~vork into indcpcndcnt groups. A node in one of these groups can only 
communicate with nodes in the samc group, and from their point of view, it 
seems that the rcst of the nodcs crashed. We now address the following question: 
In what groups wiii wc allow ncw updates to be performcdi 

If we do not allow updatcs to bc undone, then we cannot permit a group 
smaiicr than n majority to perform any new updates bccause such a group cannot 
guarantee that thcir updatcs will bc performed at  the othcr nodes. (In an N node 
nctwork, a majority consisls of (N /2 )  + 1 nodcs if N is even or (N + 1)/2 nodes if 
N is odd.) For example, consider a six node network that is partitioned into two- 
groups with thrcc nodes each. If we alIow each group to continue performing new 
updates, the dctabascs in the two groups will diverge (i.e., will contain differenb 
valucs) and there will be no way of re-uniting the network without undoing some 
~ p d a t c s .  

On the other hand, if we allow updates to be undone, then every group of 
nodcs in a partitioned network can pcrforrn new updates. However, when the 
network is reunited, many of the updatcs will have to be undone. Performing 
updatcs that are possibly going to be undone is a wasteful strategy. Furthermore, 
coordinating the undoings as the network is united is a vcry messy and hard 
problcrn. Thcrefore, even if updatcs can be undone, it is wise not to perform new 
updntcs in groups of nodes that are not a majority, 

Thus, in gcncral, we will not pcrmit groups of nodes without a majority to 
pcrforrn any new updates. On the other hand, if there is a group with a majority - 
of nodes, then we will require that that group perform new updatcs. This is in 
line with our philosophy that a system should operate as efficiently as  possible, 
cvcn after failures have isolntcd some nodes. 

3.5 Cancelling Updates. 

If a majority group of nodes is to operate efIiciently, it is necessary for the 
group to bc able to cancel or invalidate any updates that had been icitiated but 
ncvcr completed by nodcs outside the group. 

For cxomplc, consider the casc where a node s becomes isolated (due to a 
cmsh or to a cornmunicntions failure) from thc majority group. Also assume that- 
thc system is using s centrniizcd bcking algorithm (e.g. the MCLA algorithm) 
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nnd aEsumc that x is not the central node. When node x was cut OK, it was 
holding locks for some of its updatcs in progress. Since node x is isolated, its locks 
will be hcld until s can communicate again. And since we cannot allow other 
updates in the main group to bc dclaycd indeSnitely bccausc of node x's locks, 
we need n'mcchanism lor reclaiming the locks. This mechanism must also insure 

;. 
I tha t  the updates that lost their locks (i.c, were cancelled) are not pcrlormed at 

ail, cvcn when nodc x come up again. We will dcscribe such a mccbanism when 
I we describe the rcsilien t ccntralizcd locking algorithm. 
t 

The nccd to cancel updatcs also arises in other update algorithms. For ex- 
ample, consider the distribu tcd voting algorithm with five nodcs. Suppose that  
an update A arrives at node 1 and then proceeds to obtain OK votes a t  nodes 
1, 2, and 3. At that point, node 3 accepts update A (e.g., finalizes it) but  a t  
the samc instant node .. . . 3 , js cut off from the rest of the system as in the example 
above. Since nodc 3 does'not have a chance to transmit any mcssagcs informing 
the  other nodcs of the acccptance of A, node 2 will later time out and will send a 

, vote request for A to say node 4. However, because of a second update B which 
conflicts with A and which has received OK votes at  nodes 4 and 5, update A 
receives deadlock reject votes (DR) at  nodes 4 and 5. Now update A has two OK 
and t\vo DR votes and needs another vote to decide its fate. Update B is delayed 
a t  nodc I &ting for update A to complete, and similarly other updates can be 
waiting for A and B. So unlcss the four up nodcs do something about update A, 
the  systcm will slow down. The only solution (if we do not allow undoing) is for 

4 the  lour up nodes (1, 2, 4 and 5) to together decide to cancel or reject update 

4 A, thus permitting other waiting updates like B to complete. The four up nodes 
can cancel P. because they constitu tc a majority of nodes. 

Notice that this example illustrates the need for some sort of two phase 
commit protocol in the distributed voting algorithm (unlcss updates can bc un- 
done). If node 3 performs update A locaily before making sure that the rest of 
the  nodcs have gotten its "accept" message, then node 3 will be performing a n  
updatc that will later be ~sncelled by the other nodes. (Notice that it might be 
possiblc to modify the distributed voting algorithm in order to simplify the two 
phasc commit protocol. When an update is accepted, a majority of nodes must- 
know of the cxistcncc of the update. Thus, if done properly, the voting phase 
might serve as the first phase of thc two phase commit protocol.) 

Similar cxamples can also bcconstructcd for all the other algorithms dcscribcd 
in chaptcr 3. Hence, it secms that all update algorithms will need some form of 
two phasc commit protocol and some type of update cancelling protocol [unless- 
w e  allow update undoing). 
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4. TKE RCLA-T ALGORITHM. 

In this scction wc will prc.sent a rcsilicnt ccntralizcd locking algorithm that  
is cficicnt during normal system opcration, We will call this the RCLA-T olgo- 
rit;hm bccnusc this algorithm uscs a variant of the two phase commit protocol 
and docs not undo any updates. This algorithm will work with any of the logging 
schemes we havc describcd, but for simplicity we assume that all nodes log nil 
the  updates thcy perform. Updates will bc performcd under this algorithm as 
long as  n majority of nodcs are up and ablc to cummunicate with each other. 

Thc RCLA-T algorithm does not use any explicit "backup" central nodes. 
A backup ccntral nodc would be a spccial nodc that is kept informcd of all of the 
ccntral nodc's nctivi tics, so that in casc the central nodc fails, the backup nodc can 
immcdiatcly replace it. The idea of using backup central nodes is vcry intuitive 
but  has a big disadvantage: kccping thc backups up to date on the ccntral nodc's 
activities introduccs additional ovcrhcad and delays cvcn during normal system 
opcration. The RCLA-T algorithm eliminates this type of overhead by not using 
backup nodes. Thc price that must bc paid for this is higher overhead when the 
ccn tral nodc fails and must bc replaced. Mfe prefer this alternative because we are  
assuming that failures do not occur often. Instead of using backups, the RCLA- 
T algorithm allows any nodc to becornc a ncw central node after thc failure of the 
oId ccn traI nodc. Bcrore starting opcration, the new central node must complete 
any pcnding work started by its predecessor. The details of this will be given in 
section 4.4. 

As we will see, the RCLA-T algorithm can recover from hard crashes where 
important statc information is lost. Nowevcr, the recovery from thcse crashes is 
more involved. In order to simplify thc presentation, for the time being we assume 
that  no hard crashes occur. Then, in section 4.7 we consider the modifications 
nccdcd to  recover from these hard crashes. 

4.1 The Two Phase Commit Protocol for Performing Updates. . . 

Under normal opcration, the RCLA-T algorithm is simply the MCLA-h 
algorithm with two modifications: logs of performed updates are kept and a two 
phase commit protocol is uscd to perform an update at  all nodes after the update 
has becn finalized. (Recall that thc MCLA-h algorithm wes describcd in chapter 

3.1 
Informnlly, the procedure for the two phase commit protocol is as follows: 
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When node x rcccivcs thc locks for update A Prom the central node, it procecds 
t o  compute the update values. (See appendix 1.) Then, bcfore performing A 
locnliy, node x sends "intend to pcrform. A" mcssagcs to all nodcs. Thc contents 
of this mcssngc arc similar to thc contents of the "pcrform updatc" message in 
thc original algorithm, except that now whcn the other nodes receive the "intend 
to  pcrform A" mcssagc, thcy do not pcrform updatc A. Instead, they save A and 
its new updatc values in a safc place, thcy acknowlcdgc rcccipt of the "intend 
to perform A" mcssage to nodc s, and thcy await a "commit A" mcssage. Na 
nodc will pcrform A without having sccn this second mcssage. But all nodes 
will "remember" A until either they see the "commit A" mcssage or they realize 
tha t  A has bccn canccllcd. Thc savcd "intcnd to perform A" message is calIed a . 

"pcnding" mcssage a t  thc nodc. Latcr on we will see other types of pcnding or  
savcd messages. 

Aftcr node x scnds thc N - 1 "intcnd to perform A" messages (where N is 
the number of nodes), it waits until it receives a majority of acknowlcdgmcnts 
from thc other nodcs. (Since node x has obviously seen the "intend to pcrform 
A" mcssagc, i t  only waits for [hT/2] acknowledgments from the other nodes.) 
After rcceiving a majority of acknow!cdgments, node x can guaranbce that A will 
bc pcrformcd and can procccd to update thc local database copy and to send the  
N - 1 "commit A" mcssagcs, (Nodc x can ignore any acknowledgrncnts for the 
"intend to pcrform A" message that arrive later.) After sending the "commit A" 
messages, node x is donc with update A. 

Nodc x can perform updatc A when it has only heard a majority of confir- 
mations of its "intcnd to perform A" mcssage bccause a t  that point node s can 
guarnntcc that update A will eventually be performed everywhere in the system. 
Update A will eventually be performed everywhere for two reasons: (1) Update 
A can no longer be cancelled, and (2) all nodcs implicitly know about update 
A because of the sequcnce number mechanism. (See chapter 3.) As we will see 
in section 4.2, update A can only be cancelled in a majority of nodcs have not 
heard anything about A. Sincc at  lcast one mcmbcr of any majority whatsoever 
has sccn the "iztend to pcrform A" message, then we know that update A can 
n o  lengcr bc cancelled. Furthermore, updatc A was assigncd a unique sequcnce 
number by the central node, so every node in the systcm is expccting to see 
"intcnd to pcrform A" end "ccmmit, A" messagcs. If these messages do not arrive 
nt  any nodc y, thcn that node will take tbc ncccssary actions to  insure that A 
is pcrformcd a t  y. Again, since a t  lcast one node in any working majority of 
nodcs has scen A, then nodc y will bc able to gct thc ncccssary information to 
pcrform A from that nodc that has sccn A. Therefore, update A will eventually 
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i 
i bc pcriormed a t  all nodes. 
i 

I! 
Thc two phase commit protocol described above and the logs arc the only - 

two crash rccovcry mechanisms that produce overhead during normal system 
? !  ' operation. The rcst of thc mechanisms we will dcscribe for tllcRCLA-T algorithm 
i 

! 
arc invoked whcn a failure occurs and arc only used for short pcriods of time 

i j while the system adapts itself to the new situation. The system uses timc outs 
: i 
.. i and invokcs the failare mechanisms whenever it notices-that something is not 
:.. 1 functioning properly. 

:I : i 
I 4.2 Update Cancelling Protocol. 

We now dcscribe the procedure for cancelling updates. The procedure could 
be callcd a three phasc commit protocol. Thc reason that three phases are needed 
is tha t  when the procedure is initiated by the central node, it does not know 
whether the update can bz canccllcd. Thus, a first phase is required to find ou t  
if an update can be cancelled. After this phase, two morc phases are required to 
actually pcrform the cancellation. 

The cancclling procedure is invoked by the central node when it notices that  
onc or  more nodes are not responding. The central node can also be asked to  start 
this procedure by other nodcs that have waited too long for a certain update. In 
Elle following discussion, we assu-me for simplicity that one update only is being 
canccllcd. This procedure can be generalized to allow the cancella',ioc of several 
updates a t  a time, 

Initially, the central nodc realizes that update A is missing and decides to 
t r y  to  canccl it in order to reclaim A's Iocks. The central nodc send a "propose 
to cancel A" mcssagc to all nodcs in the system and waits far confirmations. 

When a node s receives the "propose to cance: A" message, it chccks to  see . 
if it  has "sccn" update A bcforc. A node s has "seer." updatc A if nodc x has 
gotten n "intend to  perform A" message or it node x has actually performed A. 
If nodc x has sccn update A, it imrncdiatcly sends a "have seen A" message to 
the  central node informing it of this fact. (Node s also sends the central node . 

the  update values for A.) Upon receipt of this message, the central node aborts 
t hc  cancel proccdure. The procedure for aborting is described later on in this 
scction, 

If node s has not scen update A, then it sends a "have scen proposal to 
cnnccl A" message back to the central nodc. With that message, node x makee 
a commitment not to acknowlcdgc any "intend to perform A" messages it might 
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rcceive later, Thus, node x must remember the pending "propose to  cancel A" 
mcssngc until it hcars from the ccntrnl nodc ngnin. 

Whcn thc central node reccives a majority of "have sccn proposal to cancel 
A" mcssagcs, it knows that it is impossible for updatc A to bc pcrformed and 
hcncc A can be cnncellcd. EIowcver, since failures could occur before the protocol 
complctcs, thc ccntral nodc must still usc an additional two phascs to actualIy 
canccl updatc A. Thereforc, thc central node scnds "intcnd to cancel A" messages 
to all nodcs. Whcn rcccipt of these rnessagcs is acknowlcdgcd by a majority of 
nodcs, thc ccntral nodc sends out a "canccl A" message to all nodes. 

A nodc that rcccivcs and acknowicciges a "intcnd to cancel A" mcssagc knows . 

tha t  updatc A cannot be pcrformed. Whcn the central node rcceives a majority of 
acknowlcdgrnents for the "intend to cancel A" message, it knows that a majority 
01 nodcs know that update A cannot be performed. Only a t  that point can the 
central node guarantee that in any possiblc majority of nodes, a t  least one node 
will know that A cannot bc pcrforrned. In other words, if the central node fails 
after this point, any othcr nodc that bccomes the ccntral node will be able to  find 
ou t  t ha t  A cannot bc performed and will thus finish the cancelling proccdure tha t  
was not terminated. (This aspect will be described in more detail in scction 4.4.) 
So aftcr receiving a majority of acknowlcdgmcnts for the "intend to  cancel A" 
message, the central node can send out the "cancel A" messages which actually 
cancel thc update. 

Thc cffcct of the "cancel A" message reccived a t  node x is very similar to  the 
effect of a "commit A" message, except that no actual values are stored in the  
database. That is, updatc A is rccozdcd as a null update, its sequence number 
is addcd to  the list of performed updates and a log entry b r  A is made. T h e  
log entry for A indicates that update A is a null update. After having sent ou t  
thc  "canccl A" mcssagcs, thc central node releases A's locks and makes them 
avililablc to  other updates. 

As wc stated previously, the central nodc may decide to abort the cancel 
procedure during the first phase if it discovers that update A has been seen by 
a nodc. (The cancel procedure will not bc aborted after the sccond phase has 
star  ted.) In addition to aborting the cancelling procedure, the central node should 
make sure that all nodes pcrform update A. Since the central node now has n copy 
of thc update values nccdcd for pcrforrning A (obtaincd from the nodc that had 
sccn A), it uses the following two phase prctcc~! to abort the cancelling procedure 
and t o  pcrforrn A a t  all nocies: First a "force performance of A" message is sent 
t o  all nodcs. This message is similar to the "intend to perform A" message except 
that the "iorce performance of A" message overrides any "~ropose to  cancel A" 
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pending messages a t  the nodes. In other words, any node that had n "propose ' 

to  cnnccl A" pending n~cssagc simply forgets about this message and remembers 
thc new message. If both a "force performancc of A" and a "intcnd to perform 
A'' rncssages arrive a t  n nodc (in any ordcr), the nodc only has to remember the 
"forcc pcrformancc of A" message bccausc it implies thc existence of the "intend 
to  pcrlorm A" message. After a nodc has processed the "force performance of 
A" message, it sends an aclcnowlcdgment to the ccntral nodc. Whcn thc central 
nodc receives a majority of acknowledgments, it sends out "commit A" messages 
which cause A to actually bc pcrforrncd a t  all nodes. 

Thcre are o few details wc have omitted in our description of the cancelling 
protocol. It  is possible that a node z that has sccn update A, receives an "intend 
l o  cancel A" message from thc central node. This can occur is the "have seen 
A" message sent by node t arrives a t  the central node after the central node has 
g c ~ c  into the second phase of the cancelling protocol. When node z receives tll- 
"intcnd to  cancel A" message, it can acknowledge the message and node z can 
prctcnd that it never saw A because at that point node B knows that update A 
cannot be performed. 

I t  is also possiblc for a node to receive an "intend to perform A" message 
after i t  has received a "cancel A" message. This can occur if A's originating 
nodc is not awarc'that update A has bccn cancelled and is still trying to  perform 
it. We solve this problem by requiring nodes not to acknowledge an "intend to 
perfsrm A" message if A has already been performed (i.e., cancelled). 

If thc ccntrs! nodc cannot get a rnzjority of acknowledgments in the first 
phase, but gets no "have seen A" rncssages either, then the central node has 
lost its rnajorihy of nodes and should go into central node recovery procedure 
described in section 4.6. Similarly, if the central nodc fails to get a majority of 
acknowlcdgrnents for its "intend to cancel" or "force performance" messages, i t  
has also lost its majority. After we describe how a new central node is elected, we 
wiI1 describe how an unfinished canceIling procedure is terminated by the new 
central node. 

4.3 State Diagrams, 

. -. 
we summarizc the two phase commit protocol and the cancelling protocol 

by giving the "state diagrams" for the nodes. Table 7.1 presents the diagram 
for thc central nodc, while tabIe 7.2 gives the state diagram for any non-central 
node. In these diagrams we list the possible states of a node (with respect to 



TABLE 7.1 
STATE DIAGRAM FOR THE CENT2.4L NODE 

(The t o p  e n t r y  i n  each square i s  the next state; the bottom e n t r y  
i s  t h e  message t h a t  must be sent out t o  a l l  nodes. means t h a t  t h e  
event  cannot occur i n  t h a t  s ta te . )  
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1 1  w i l l  ( * l c a n -  I w i l l  
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(1) I n  Sh's case, there are two possib le next  s ta tes .  The successor 
c e n t r a l  node can e i t he r  remain " i d l e "  (and no t  send out  any 
nessagss) o r  i t  can go t o  s ta te  " w i l l  performn (and send o u t  
" f o r c e  performancen messages). 

( 2 )  i n  t h i s  case there  are a lso two possib le outcomes. The 
successor c e n t r a l  node can e i t he r  go t o  t lw i l l  canceln (sending 
" i n tend  t o  cancel" messages) o r  i t  can go t o  " w i l l  perform" 
(sending o u t  V o r c e  performancen messages). 



TABLE 7.2 
STATE DIAGRAM FOR THE NON-CENTRAL NODES 

(The t o p  e n t r y  i n  each square i s  the next s tate;  the  bottom e n t r y  
i s  t h e  message t h a t  must be sent out i n  response t o  the  event . '  
The response message i s  sent t o  the node t h a t  sent the message 
caus ing  t h e  event. "*" means t h a t  the  event cannot occur i n  
t h a t  s t a t e . )  
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one updotc) on the left. Across the top, we give the possible events that  might 
occur a t  the nodc. Each square in the diagram rcprcsents the action that must 
bc tnkcn by thc nodc whcn it-is in the givcn statc and the listcd cvent occurs. 
Fo r  exarnplc, if n non-ccntral node is in statc "seen" (i.e., it has sccn the "intend 
to pcrform" mcssagc for thc updatc) and e "intcnd to cancel" mcssagc arrivcs for - 
that  updatc, then the node nlust send an acknowIcdgment to thc central node . 

and must move to statc "will cancel". If a square is marked with an asterisk, i;his 
mcans that  thc listcd cvcnt should not occur whcn the node is in the given state. 
(Since wc have assumed that there is no loss of state information, if the actions 
in a square are interrupted by a failure, then these actions will be complcted 
correctly when the nodc comes up again.) 

. In thc statc diagram for the central node, there is a special column marked 
with the event "failure". The rncaning of this column will become clearer after 
having rcad section 4.4. At this point, simply notice that squarcs in this column 
have a slightly diflcrent meaning from the other squares. The next state indicated 
in these positions is the statc that the successor ccntral node must assume after 
a crash of thc old central node. AIso notice that in some cases there.are two 
possible next states. Which next state is assumed by the successor node after 
the  crash depends on the nature of the crash. Finally, observe in the centraI 
node statc diagram that the central node always advances towards "performed" 
or  "cancelled" states, and never goes back to previously visited states. 

4.4 The EIection Protocol. 

We now describe the mechanism for electing a new central node whcn the  
old one fails or is isolated from the majority of the nodes. There are two basic 
stcps in this proccdurc: (1) Elcct a ncw central nodc that can cornmunicatc with 
n majority of nodes and (2) The new central node collects "state" information 
from all active nodes and complctcs all unfinished updates or cailcellations. After 
thcse two steps, norma! system opcration can resume. 

There are many alternatives for the election procedure. Some of these al- 
tcrnativcs can bc quite involved if they are to work while ncw failures appcar 
and old failurcs disappcar. Fortunately, the election procedure does not have 
to be particulorly efiicient, as long as it guarantees that onc and only one new 
central node will be elected in the'system. 

The solution we prcscnt here is not the most efficient but is relatively simple 
and safe. If the aystem does not change while the c!ection procedure is in progress, 
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then our clection procedure will certainly produce a new unique central node. 
If the cnvironmcnt is changing, thc proccdurc might fail €0 elcct a new ccntral 
nodc. In this casc, the procedure is rcpcated until it succecds. If the system 
rernnins unstable (e.g., new failures appear or old failurcs disappear constantly), 
thcn n ncw ccntral nodc might ncvcr bc clcctcd during the unstable time. 

Thc election proccdurc is based on the use of node identification numbers 
and central nodc vcrsion nurnbcrs. \4e assurr,c that all nodes in the system have 
a predefined identification numbcr. Thcse intcgcrs are unique and pcrmnncnt and 
will bc uscd as priority numbcre in the clcction proccdurc, (Actually, wc could 
do away with nodc identification nurnbcrs by modifying the algorithm slightly, 
I-Iowcvcr, wc bclievc that these number makc the algorithm more intuitive.) 

Thc ccntrnl nodc version numbcr is an intcgcr that identifies an instantiation 
of the ccntral controllcr and is uscd to distinguish bctwecn different instantia- 
tions. TIic version numbcr is appcndcd to ali update sequence numbers generated 
by the central nodc. I t  is therefore possible to distinguish updatcs whose locks 
were granted by different central nodcs by simply comparing the version nurnbcrs 
in  each update. During normal operation, all active nodes have a copy of the 
ccntrnl node's version numbcr and will rcject any mcssagcs regarding updates 
with anothcr vcrsion numbcr. When a new ccntral nodc is elected, it will choose 
a vcrsion nurnbcr that is largcr than any previously used version numbcr and i t  
will distribute this new number to all active nodcs. Notice that sequence numbcrs 
for a given version number can start at  zero. 

If we assume that failurcs of thc central node are not very common, then 
a small number of bits should be enough to represent version numbcrs. EIcnce 
the incrcascd overhead in transmitting these nurnbcrs should not be significant. 
Notice that if scveral scquence nurnbcrs are sent in a single rncssage (e.g., s hole 
list), thcy must all have the same version number and only one copy of this 
number is nccdcd in thc message. It is possible to design an algorithm that  rcuses ' 
vcrsion nurnbcrs. A vcrsion numbcr can bc rcuscd if we are positive that all 
nodes, nctivc or not, have performed all updatcs authorized during the existence 
of that  version number. For simplicity, wc do not consider this algorithm and 
we assume that vcrsion numbcrs arc uscd in increasing order without recycling. 

4.4.1 Tile Election Protocol -First Part. 

The iirst part of the clcction protocol dccts a new central node. Thc basic 
idca herc is to have "candidate" nodes attempt to bccome the new ccntrnl node, 
A node s is n candidate if it can communicate with a majority of other nodes 
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tha t  have also lost contact with thc central nodc and node x has the largest 
nodc identification numbcr of the set. Under certain circumstances, several nodes 
might attempt to bccomc central nodcs simultaneously. Therefore, attempts to 
become a ncw ccntral nodc can fail and must be repeated if necessary. 

In the following discussion, lct us assume that due to failures in the corn- 
rnt~nications system, it is possible to have one way communications only. That .is, 
n nodc x might bc ablc to communicate with n d e  y, but nodc y may bc unable to 
communicatc with nodc x. Thc three other cases are that both nodcs x and y can 
communicatc with each other, that neithcr one of the nodcs can communicate 
with each othcr, and that y can communicatc with x but not vicevcrsa. 

Thc election of a new ccntral node works as follows. When a node x dis- 
covers that it cannot communicate with thc current central node, it  immediately 
suspcnds all normal activitics and goes into failure rnodc. (We may allow some 
restricted read-only transaction to run in faiIure mode.) Then, every tr seconds, 
node x will send out a "What is going on?" message to all nodes. When another 
nodc y rcccivcs such a mcssagc, it will acknowledge the message and will inform s 
if i t  (y) can commlinicate with a central nodc. (Node y could also bc sending out  
i ts  own "What is going on?" ncssages simultaneously.) Thus, every .seconds, 
nodc x constructs an "activc tablc" which indicates what it can communicate 
with. If this active table indicates that node s can now communicatc with a. 
nodc that  calls itsclf the centrat node, then node x initiates the crash recovery 
procedure described in section 4.5. If oil thc other hand, node x di~cavers that  
i t  can communicate with a majority of other failed nodes and that nodc s has 
the highest node idtxtiEcz?ion number, then nodc x bccomes a candidate and 
attempts to  bccome the new ccntral node. If node x is not a candidate and 

' 

cannot communicate with a ccntral node, it waits tl seconds and constructs a new 
active table. (To see how several nodes might believe that they are candidates, 
consider a three nodc system that is electing a new central node. Nodc 3 (highest 
priority) can ccmmunicate with all other nodes and thinks that it is a candidate. . 

Nodc 2 can only communicatc with nodc 1 and therefore also believes that it  is 
a candidate.) 

A candidate node attempts to bccome the new centra! node by sending out 
thc  message "Nodc x proposcs to bccome ncw central nodc" to all nodes in x's 
nctivc table. When n node y rcccivcs a "Node x proposes to bccomc new central 
node" message, it  will send out a coniirmation (which wc cs!l a a vote) to  node x 
if node y thinks that node x can bccomc the new central nodc. The vote will only 
be sent if y has not "recently" sent a vote to some other node. (What we mean 
by rccently will be explained shortly.) In other words, node x is attempting to ' 
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"lock" all the nodcs and onljr if it succccds in locking all of thcm, will x bccomt 
thc new central nodc. Every nodc y sending a vote will also include t l ~ c  latest 
vcrsion numbcr sccn by it. This way, if node x becomes a new central node, i t  
can pick a vcrsion number largcr than any sccn by the nodcs. 

If nodc s docs not get votcs from all nodcs in its active tablc, it  must rclense its 
"locks" by sending a "I did not make it" message to all nodcs. Unfortunately, be- 
cause of somc ncw failure, these mcssagcs might not reach thcir destinations. We 
thcrcforc need a default mcchacism for freeing nodcs after they havc confirmed 
or  voted for a "Node s proposes to bccomc new central node" message. We will 
say that  a nodc y that scnt such a votc will honor it for only t2 seconds. During , 
these tz scconds, node y will await news of the election from node x and will 
ignore all otller messages. Whcn t2 scconds go by without hearing frorn*node s, 
node y will bc frce to send anothcr vote to some other node that rcquests it. 

If nodc x can scnd out the "Node x proposes to become new central node" 
mcssagcs, rcceive all the vat-cs, inform all the nodes that it succeeded, and receive 
a second ncknowledgmcnt from the nodcs, all in less than t2  seconds, then nodc 
x can bc sure that it became the ncw ccntral node. If node x cannot do all this in 
Icss than tz seconds, thcn it must assume that it railed and node x should send 
ou t  '$1 did not mnkc it" mcssagcs, Notice that as long as node x docs not take 
any actions regarding the updates, it is frcc to quit. If node x quits, nodes that  
scnt a vote to 3; will time out after t 2  seconds; nodes that sent a vote to  s and 
though that  x had bccome the new central node, will simply go into failure mode 
again when thcy rcalizc that node x is not the central nodc. 

If the cIocks or tirncrs a t  the nodes do not advance a t  the same rate, then 
the  limit for node x to become the central node will be less than t2 .  Let d be the 
maximum numbcr of scconds that any two clocks can diverge in tz real scconds, 
Thcn, if node x completes the elcction in less than t2 -d scconds, it can be sure 
tha t  no node voted for another candidate. 

After nodc x obtained votes from all nodes, it selects a version number. 
Thc  vcrsion numbcr it  sclccts is one plus the largest version numbcr reported 
by the voting nodcs. Thcn nodc s informs all active nodes of its success in the 
elcction and gives thcm n copy of the new vcrsion number. After getting a new 
acknowlcdgmcnt from all nodes, node x can gaarantee that it is the only central 
nodc and that all active nodcs have the new version number. Furthermore, any 
futurc central nodc will use a largcr version numbcr because a majority of n ~ d e e  
havc sccn the current onc. 

If node s fails bcfore distributing the new version niimber to a majority of 
the nodcs, thcn it is possible that the samc vcrsion number will bc chosen in a 



CH. 7: CMSI-I. RECOVERY 

future election. This is no problem because in that case, the version number had 
not bccn uscd for any thing yct. Howcver, after x distributes the vcrsion number 
to all active nodes, it is surc that no othcr ccntral nodc will use that number and 
thcrcforc nodc s can start the second part of the election procedure, 

4.4.2 The Election Protocol - Second Part. 

Bcfcre node x, a ncwly elccted central node, can authorize any updates, i t  
must make surc that all old updates arc either completed or cancellcd. This is 
the  second step ol the election procedure, 

Suppose that the current vcrsion number is i. Then node s requests all 
"state1' information for vcrsion i - 1 from all active nodes. The state information 
for nodc y includes (a) the list of all vcrsion i - l updates performed by y and 
(b) the list of all pcnding "intcnd to perform A", "propose to cancel A", "intend 
t o  canccl A", and "iorcc pcriormancc of A" mcssagcs savcd by y for any version 
i - -1 update A. If both lists arc cmpty lor all nodcs, then the ccntral node for 
version i - l failed before any updates were ccmmi ttcd, so node s then rcquests 
the  state information for versions i - 2, i -- 3, .  . . until it finds non empty lists. 
Say that the version with non empty lists is version j. Since the central node ' 

of version j authorized somc updatcs, it means that it made sure that all pre- 
vious vcrsions wcre compictcd correctly and hence node x only has to  check the 
correct completion of unfinished- updates of version j. Even though a11 updates 
from versions j - l and earlier have been completed correctly (c.g., a majority 
of nodcs have performed them), some of the active nodes might nct have seen 
them. Thcrelore, the central node x must first make sure that all active nodes 
m e  brought up to date up to version j - i. This is done using the protocol that  
is describcd in scction 4.5. 

In summary, this is the situation before the second part of the election pro- 
cedure begi-s. All active nodes are in election mode and have halted all normal 
operations. Also, all active nodes in the current majority have completed all 
updates in vcrsions 0 through j -  1. The new ccntral node, s, must make sure 
tha t  all updates in version j arc either performed or cancellcd by a majority of 
nodcs. To accomplish this, node x has all the state information of the active 
nodcs. However, node s rcnlizcs that othcr pre~ious central nodcs with vcrsion 
numbers j + 1, j + 2,. . . i - 1 have also attempted to complctc all updates in 
vcrsion j. These other ccntral nodes did not finish thcir job (else they would have 
nutllorized somc updatcs for their version). This means that the state information 
coilectcd by nodc x from the othcr nodcs not only contains pending messages that 
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originatcd a t  ccntrnl nodc j, but may also contain pcnding mcssages rcgnrding 
n vcrsion j updatc that originatcd at  ccntral nodcs j+ 1, j + 2, . . . i-- 1 as they 
were tr;.ir).g tc complctc vcrsior! j updatcs, . 

In ordcr to make nodc x's job,simplcr, wc would like to bc ablc to distinguish 
whnt ccntral nodc gcncrntcd cach pcnding mcssagc found. This can be donc if we 
rcquire that  cach ccntral node scts a spccial flag in cach message it scnds during 
thc  elcction proccdurc. Each spccial message will include thc currcnt central 
nodc's vcrsion numbcr as wcll as thc vcrsion numbcr of the update that  it  is 
trying to complete. Therefore, when nodc x collccts all the state information, 
i t  can sort thc mcssagcs by the version numbcr of the ccntral nodc that scnt it. 
(All mcssagcs should dcal with updatcs of version j only.) 

The ncxt step of the second part of the clcction procedurc is to decidc what 
to do with each updatc of version j. The new ccntral node, s, considers each 
updatc a t  a timc, indcpcndcntly from the othcrs. The decision for update A is 
based only on the state information that involvcs update A. WC now dcscribe 
the  proccdure that nodc x follows in o ~ d e r  to decidc what to do with update A. 

STEP 1. (Check if A has been performed everywhere.) The new central 
nodc, x, has collccted all thc state information for update A. If all the active 
nodes have pcrformed.A, then node s does not do anything else with update A. 

STEP 2. (Check if A has bccn pcrforrned somewhere.) If update A has 
bccn pcrformed a t  one or more active nodes (but not all), then the new central 
node must make sure that A is coriectly pcrformcd at  all nodcs. This is done 
using the updntc values for A found in any log and with the two phase commit 
piotocol that  lorces the performance of an update. (See section 4.2). Node x 
scnds out  "forcc performznce of A" messages, and when a majority of these e r e  . 
tlcknowlcdgcd, it sends "commit A" messagcs and is then finishcd with A. Any 
pcnding mcssagcs involving A at  thc nodcs can bc ignored bccause wc know tha t  
A must be pcrformcd. Notice that the update values for A found in an "intend to  
pcrform A" pcnding mcssagc could be diffcrent from the Iog valucs. The values 
in thc  pcnding message should be ignored. (Ekeicisc for the reader: How can this 
situation occur?) 

STEP 3. @ccide whnt to dc with A. hitial step.) Otherwise, update A 
has not bccn pcrformcd at  any activc node, and thc new central node, x, rnnsti 
dccidc what to do by examining the pcnding messages involving A. It starts by 
looking nt  thosc messagcs the wcre scnt by ccntral node vcrsion i - 1, and will 
thcn cxaminc thc messagcs from vcrsions i - 2, i - 3,. . . in turn, until node s 
can decide what to do. (Ftccall that i is the currcnt version numbcr.) Let k be 
the  version number of the central node that sent the rncssagcs we are currently 



CII. 7: CRASH RECOVERY 

examining. That is, initially set k to i - I. 
STEP 4. (Analyzc messages horn central node version ic.j Unless k is equal 

to j ,  there are only two types of pending messagcs that the new ccntral nodc 
can obscrvc. (Recall that j is the version number 01 the updates we arc trying 
to  complcte.) This is true because the second part of the election procedure only 
''intend to  canccl A" or "force pcrformancc of A" messagcs are sent. Notice that  . 

"commit A" and "canccl A" mcssages are not pending mcssages. If any of these 
mcssages exist a t  a nodc, the node reports to node x that it has performed A. (The 
casc where k = j is considered in step 5.) Furthcrrnore, it is impossible to  have 

' both "intcnd to pcrform A" and "force pcrformance of A" messages originating 
, 

from central node version k bccause no ccntral node will ever decide to  both 
canccl and perform update A. Therefore, we only have three cases to consider. . 

Thcse arc dcscribcd in steps 4 A, 4 B, and 4 C: 
STEP 4 A. (No messagcs.) Central node x does not observe any "intend 

to cancel A" or "force performance of A" nlessages from central node version 
k. Since no update is cver cancelled or performed without a majority of nodes 
knowing that this is going to happcn, node x is sure that central nodc k did not 
pcrform or canccl update 5. In this case, node x cannot decide anything yet and 
thcrciorc sets k to k - 1 and repeats step 4 in order to discover if any previous . 

central node did anything. 

STEP 4 B. (An 'Tntend to cancel A" message observed.) Central node s 
observes a t  least one "intcnd to cancel A" message that was sent by ccntral node 
version k. This means that central node version k had decided to cancel A and 

L 

was therefore positive that A had not bccn previously performed a t  any node. 
Evcn tllough ccntral nodc version k did not complete the cancelling procedure, ' 

we trust that i t  was doing the right thing before it crashed. Node .T a:se k~;ows 
. 

that no Inter central nodc with version numbcrs k+ 1, k + 2,. . . i -- 1 performed 
A either (otherwise, this procedure that node x is executing would ha:-e stopped 
before reaching version k). Thcrefore, node x is positive that update A was never 
performed, so node s will complete the canceliing proccdure. However, there 
is no need for the first phase of this proccdure because node x already knows 
tha t  A has not been pc~formcd and it knows that A cannot be performed in tiie 
future because all nodes have halted normal operation. (That is, no "intend to 
pcrform A" messages will be acknowicdgcd.) Therefore, the new ccntral node s 
scnds "intend to cancel A" mcssages to all nodes. When nodc x gcts a majority 
of acknowledgments, it can guarantee that any successor central nodc will-see 
one of the "intend to canccl A" messages and hence the successor central node 
will complete the cnncellation ol  A. So node x can then send out the "cancel A" 
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mcssagcs to  complete the procedure for update A. 
STEP 4 C. (A "iorce pefrormance of A" message observed.) Central node s 

obscrvcs nt Icast onc "farce performance of A" message that was sent by ccntral 
node vcrsion ic. This case is similar to the case of stcp 4 3, except that now node 
s is positivc that update A was never cancelled. Therefore, node x will make 
surc that A is performed at  all nodes by following the t\ia phase commit protocol 
to force thc pcrformance of A. After getting acknowledgments for a majority 
of new "force pcrformance of A" mcssagcs, node x can guarantee that A will 
bc pcrformcd by czjr successor ccntral node, so it sends out the "commit A" 
mcssagcs to all nodcs and is finished with update A. 

STEP 5. (Analyze messages from central node k = j.) Step 4 is repeated 
for valucs of k = i - 1, i - 2, and so on until a pending message sent by central 
node vcrsion k is found. At that point, the new central node x can decide what 
action to take with A and finishes the procedure. However, if no mcssages are 
found', node x can reach the last value of k = j. In this case, we can still dccide 
what action to take.. 

When k = j, there are other messages that can be observcd for this version 
number in addition to the "intend to cancel A" and the "force performance of A" 
mcssagcs. These are the "propose to cancel A" and the "intend to perform A" 
mcssagcs. However, if node x observes at least one "intend to cancel A" message, 
i t  can be sure that A has not been pcrformed under version k = j. Since A 
was not performed under any other version, node x can proceed as in stcp 4 B 
abovc and cancel A. Similarly, if  a t  least one "force performance of A" message 
is found, update A is pcrformed as in step 4 C. If neither one of these messages 
is seen for version k = j, thcn node x knows that no previous central node took 
any spccific action on update A. If any "ifitend to perform A" messages are found 
(sent during version j), then A might have been performed and the node x lorccs . 

the pcrformance of update A as in stcp 4 C above. If no "intend to perform A" 
mcssagcs are seen, thcn A was not performed, so node s cancels A as in step 4 
B. This concludes processing of update A. 

Thc process just described ensures that all updates whose existence is known 
by the ccntral node are either cancelled or pcrformed at  all nodcs. Howcver, 
thcrc might bc somc updates that were authorized by the ccntral node vcrsion 
j hut thnt the new central node x docs not know existed. Let s be the largest 
scqucncc number of vcrsion j that was observed by node x in the collcctcd state 
information. Then, node x knows that updates with sequcncc numbers 0 through 
s existed and the above procedure will deal with them. But it is also possible 
thnt  updates s+ 1, s +.2,. . . wvcrc authorized by central node version j and were 
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I in progress nt some of the nodcs that arc isolated from the current majority of 
I nodes. 

:I Sincc thc ncw central nodc x knows that none of thc updates with scquence 

: 1 numbers s + 1, s+ 2,. . . were ever pcrformcd (clse nodc x would sce somc rccord 

1 of thcm), nodc x can cnncci them all. Nodc x cannot canccl thcm individually 
:! 
: ' 
I 

bccausc it docs not know how many of these updatcs there are. But by execut- 
;; ing a first dummy update in vcrsion i, all mcssages of previous versions will be : ? 
; i automatically made void by thc version number mechanism. @ccall that undcr 
I 
; normal opcration, nodcs rcjcct any messages from oldcr versions.) The dumrr~y 

8 i 
- !  first update will also scrve to (1) make sure that any node that recovers later will 
r :  
! 

perform updatcs with scquznce numbcrs 1 through s from version j, and (2) make 
,. . sure that  no other future ccntral node should worry about correctly completing - a the updatcs of version j (or oldcr). 
i Therefore, the Iast step in the second part of thc elcction procedure is for 5 
I tlic ncw central node s to perform a dummy "update" with sequence number 
1 

I . 1 C under version i. This update will not rcally be an update to thc database, 
I 

.I 
:I 

but  will cause thc largest sequence numbcr s and the old version numbcr j to 
-I bc written in thc logs. The log entry will later be used by recovering nodes to 
i 
I find out what updatcs from vcrsion j they missed. And by performing the first 

I update in version i, we make a permanent rccord that all updatcs in versions 
i - 1 and earlicr have becn pcrformcd correctly. Sincc updates 8 + 1, s + 2,. . . 
were ncver completed, this is a dcfacto cancellation of these updates. 

I The update with sequence number 0 and version number i is performed with 
thc majority two phase commit protocol. (Scc section 4.1.) After update 0 is 
pcrformcd, a node can go back to normal operation. The node can then throw 
away any pending messages from versions older than i. When the central node 
pcrforms update 0, it sets all item locks free and it can then start granting locks 
t o  new updates. . .  

4.4.3 Some Comments on the Second Step of the Elcction Protocol. 

When wc discussed the rncchanism for completing unfinished updatcs, we 
said that  stcps 1 through 5 were pcrformcd for each update individually. EIowever, 
i t  is also possible for the new central node, x,  to first decide what to do with every 
update, and then to send out a mcssage which includes all thc "intend to  cancel" 
and "force performance" messagcs for thc updates. An acknowlcdgrncnt of this 
compound mcssage by a node is equivalent to all the individual acknowledgments. 
Then all the "commit" and "cancel" messages can be sent out together. 
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Now lct us briefly considcr what happens if new failures occur during the 
second step of the clcction proccdurc, If a non ccntral nodc fails or is isolntcd, 
it will simply be eliminated from thc ccnbral node's list of active nodes. If this 
causcs thc ccntra: nodc to losc a majority of nodcs, thcn thc ccntral nodc will 
go into failure mode. During thc clcction, no ncw nodcs will be allowed to  join 
the majority. Since any mcssagcs from those nodcs havc old vcrsion numbcrs, it 
casy to  ignore thc mcssagcs until aftcr the election. If the new ccntral nodc fails 
bcfore initiating updatc 0 of the ncw vcrsion i, the fixing up of version j will be 
continucd by any succcssor ccntral node. And since two phasc commit protocols 
arc bcing uscd by the ncw central nodc, thcrc is no problem with lcaving partially 
complctc updatcs or cnncciiations. Ii nodc x, the new central nodc, crashes bcforc 
a majority of nodcs see updatc 0 vcrsion i, thcn the succcssor ccntral nod2 might 
or might not scc this update. If the succcssor nodc docs not see updatc 0, it will 
have to go back and cllcck vcrsion j, There is no problem with this since no 
rcal updatcs in vcrsion i had bccn authorized yct. If the successor central node 
docs sce an update 0 vcrsion i that has not been perforxed =t all nodes, then it 
will not chcck vcrsion j (which was not necdcd anyway) ~ n d  will make sure that  
updatc 0 is pcrformcd at  all nodcs. Finally, if update 0 was completed by node 
x, thcn any successor central nodc will see it and will know that recovery from 
versions i - 1 and earlier was complctcd correctly. 

4.5 Non-CentmZ Node Recovery Protocol, 

A non-ccntrnl node can havc two typcs of failures: detected or undetected. A 
node detects a failure if it is unable to communicate with its current central node 
(i.e. with same vcrsion number), or if it realizes that .a larger version number is 
in use by other nodes, or if the nodc is "told" by the opcrator that i t  has failed. 

4.5.1 Detected Non-Ccntral Node Failure. . 
Le t  us first study dctcctcd failures. After a detected failure, a node goes 

into failure mode where all normal activities are halted. The failed nodc will 
start  constructing its activc table.unti1 it either joins in an election or it is able 
to communicate with a central node. The first case Ilas already bccn discussed. 
In the second cat, the node will pcrform the following procedure in order to  be 
brought up to dutc. 
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Lct  y bc the nodc that is rccovcring. Let us assume that y remcmbcrs what 
updntcs it has already pcrformcd, and in particular, y knows that it has correctly 
pcrformcd all updntcs from vcrsions j or less. Hence y is surc that it has not 
lost any updates from thesc vcraions. (Noticc that j could be zero.) Let k bc the 
vcrsion number nt the central node that y has located. 

T o  rccovcr, y scnds a "I would like to rccovcr" mcssage to the ccntral node. 
If the ccntral node is in the middle of the election procedure, it will tcll node 
y to  dcfcr its recovery until the election is over and normal operation has bcen 
rcstorcd. When thc ccntral nodc receives the mcssagc, it also checks that it  still 
is thc ccntral nodc by making sure that it can communicate with a majority of 
nodes. Next, the ccntral node informs a11 the other active nodcs that node y is 
n o w  up and that thcy should start sending messages to y. (For a timc, node 
y might not acknowledge these messages because it is busy catching up, bu t  
this causcs no problem.) Thcn the central node informs nodc y that the current 

I version number is k. 

Ncxt, nodc y requests update 0 version k from one of thc logs. Suppose that  
updatc says: 'Zast sequence number for vcrsion m was 6". Thcn y knows that 
i t  must pcrform all updatcs 1 ,2 ,3 , .  . . s from version m, and that thcrc an: no 
updatcs from vcrsions m + 1, m + 2,. . . k - 1. Next, node y rcqucsts update 
0 vcrsion m from the logs and rcpezts the procedure until version j is reached. 
In this way, node y can discover the sequence and version numbers of all the 
updatcs it could have missed. Ey comgaring this list to the list of updates it  did 
pcrform, it can find out all thc updates it missed. The update values for these 
updatcs can bc requested from the logs and the updates can be performed. 

Node y might havc somc updatcs from older versions in progress (i.e., the 
updatcs had originated a t  y, node y had obtained their locks, br;t ;ode y had not 
rcacllcd thc point whcrc it tiad a majority of acknowlcdgmcnts to the "intcnd to 
pcrlorrn" messages). Since these updates originated a t  an old :rersion, then they 
have certainly bccn cancelled, and node y should either throw them away and 
inform the users or node y should restart thc updatcs from scratch. Any pcnding 
mcssagcs (e.g., "propose to cancel") from older versions em also be thrown away 
because the fatc of these updates has already bccn decided. 

Node y is now caught up to all prcvious versions (up to k- 1), but still has to 
catch up to  the current version k. I-iowever, node y does not have to worry about 
this bccnusc thc rest of the protocols will automatically force y to perform any  
updstcs of vcrsion k that it misscd. Therefore, node y can set its current vcrsion 
numbcr to k and can bccorne a normal membcr of the systcm. I t  can start  acl 
kn~wledging "intend to perform", "propose tc c~ncel", "force performance" and 
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"intcnd to  cancel" messages. When a "commit" or "cancel" mcssage arrives, nodc 
1~ will request and perform the missing updates before committing or cancelling 
(because of the sequence numbcr rule). 

Wc still havc to discuss what happens to any pending messages from vcrsion 
k that  node y might have. Thcsc mcssagcs can exist if there was no ccntral 
nodc vcrsion numbcr change while node y was down. Thcsc mcssngcs definitely 
cannot be thrown away bccnusc node y is now part of the active majority and i t  
n ~ u s t  honor the commitments it made to remember thcse mcssagcs. Some of the 
messagcs might refer to updates that have alrcady been pcrformed or cancelled. 
Only in thcse cascs can nodc y throw away thc messages. This can be done by 
checking for pending messages as each missed update is pcrformed. 

If node y has any vcrsion k updatcs in progress (i.e,, the updatcs had 
originated a t  y under vcrsion k, y had obtained their locks, but y ha2 not obtained 
a majority of acknowledgments for the "intcnd to pcrform" messages), it  can 
continue processing them. If thc updates havc been cancclled, node y will never 
be able to obtain a majority of acknowlcdgmcnts for the "intcnd to  perform" 
mcssagcs, and those updates will never be performed. In those cases, node y must 
either inform the users or must restart the updates from scratch. 

4.5.2 Undetected Non-Central Node Failure, 

Wc now discuss the case of an undetected non central node failure. This 
can occur if a non ccntral nodc y temporarily halts but then resumes opcratioii 
a t  exactly the place wherc it lcft off, without realizing that it was delayed. 
Fortunately, this ease is no difTcrent than thc case where the failure was detected. 

If the central node was replaced whi!~ nodc y was down, then node y will 
immediately detect the failure because it has an old version number. And if the  
same ccntral node is still activc, then the normal protocols will bring node y u p  
to  date just as wc dcscribcd above, 

4.0 C!cntrl Nodc Recovery Protocol, 

A central nodc discovers that it has failcd whcn it sees a higher vcrsion 
number in use by any nodc or wlicn it finds that it cannot communicate with 
a majority of active (i.e., not failed) nodes, In that case, the central nodc stops 
acting like a ccntral node and goes into failure mode like any other nodc would. 



CH. 7: CRASH RECOVERY 

Recovery thcn is pcrforrncd as dcscribed in the previous scction. 
In sornc cnscs where the network is partitioned, a central nodc and n minority 

of other nodcs might continue to operate for sornc time before realizing that thcy 
havc all failed. The ccntral nodc can grant locks to updatcs, but these updatcs 
will ncvcr bc pcrformcd bccausc there is no majority to rrcknowlcdge the "intend 
t o  pcrform" mcssages. Thcrcfore, whatcver the central nodc and its ininority 
t ry  to  do, it will bc of no conscquencc to the rest of thc system. The successor 
ccntral node will cancel all the updates that were authorized after the failure. 
(See section 4.4.2.) 

4.7 Rcwvcry From Loss of State Information, 

Up to this point in this chapter, we have assurncd that no node loses its vital 
s ta te  information. This information' includes the database, the list of updatcs 
tha t  havc bcen pcrformcd at  the nodc, and any pending messages (e.g., "intend 
to  pcrform A") a t  that node. In this section, we will discuss how a node can 
recover from thc loss of its statc information. 

First we must assume that any loss of information is detected by the node 
tha t  loscs it. A node that loscs state information and does not realize it, can 
easily cause thc RCLA-T algorithm (and almost any othcr algorithm) to fail. 
(Note: If wc change our definition of majority of nodes to mean the truc majority 
plus rn nodcs more, then the RCLA-T algorithm can tolerate the simultaneous 
undctccted loss of pcnding mcssages a t  rn nodes. Rowever, this modification does 
not prcvcnt crrors if the database or if the list of performed updates is lost or if 
erroneous pcnding mcssages can appear. This modification will not be discussed 
furtllcr in this thesis,) 

It is possiblc to recover from a detected loss of state information, but the  
rncchanism is more involvcd than the simple rcccvery ;vithout losses. First we 
will discuss rccovcry when only the pending messages have becn lost. Later we 
will discuss the case where the list of performed updates is lost and finally we 
consider the case where data in the database is lost. 

4.7.1 Loss of Pending Messages, 

Suppose thut node y is recovering from a crash wherc thc pending mcssagcs 
have becn lost. Also assume that thc current version number is k. Since g's 
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pcnding rncssagcs are not necdcd in ordcr to come up to date to vcrsion k - 1, 
this part of thc recovcry protocol is unchanged. (Sce section 4.5.) When y is 
rcndy to start processing vcrsion k updates, it informs the central nodc that it 
is doing so without pcnding rncssages. The ccntral node replies with the current 
scqucnce numbcr that is being uscd. Supposc that this sequence numbcr is s. 

Thc rest of the sccovery procccds as bcfore, except that nodc y docs not 
acknowledge any messages involving updatcs with sequence numbers smaller 
than oi. cqual to  s. In other words, nodc y acts as if it wcre down for any mes- 
sages involving thcsc upda tcs. Neverthclcss, "cornmi t;; and "canccl" messages 
arc proccsscd by node y corrcctIy for all updates. 

Since node y is not rcsponding in reference to updatcs with sequence numbers 
'icss than or cqual to s, thc central nodc must find a majority that does not include 
y bcforc it takes any action on one of thcsc updates (c.g., canccl it or lorcc its 
pcrlormancc). Therefore, all updates with sequence number smaller than or eqcd 
to s will bc proccsscd corrcctly. 

If thc central nodc cannot communicate with a majority of active nodcs that  
havc not lost their pcnding rncssagcs, then the system might operate incEcicntly. 
For  example, if node y is rcquircd by the central node in order bo obtain a 
majority of nodes, then the central nodc will be unable to cancel updatcs with 
scqucnce numbcrs lcss than or cqual to s. Thcre docs not seem to be a way around 
this problcm. In such a casc, the central node can decide to continuc opcration 
without cancelling these updatcs or it can decide to quit until it can find more 
nodcs that  havc not lost their state information. (If a majority of nodes loose 
h e i r  state information regarding zn update A, then the central node will never 
bc ablc to pcrform or canccl update k.) 

If the central nodc crashcs before all updatcs with sequence numbcr less than 
or cqual to  s are pcrformcd or canceled, nodc y must inform the successor central 
nodc of its loss of pending mcssagcs for updatcs with scquencc numbcr less than 
or cqual to s. Thus, the new ccntral node will not take any action on update A 
unlcss it  finds a majority of nodcs that have not lost pcnding messagcs regarding 
A. 

4.7.2 Loss of the List of Performed Updates. 

I t  is also possible to recover from the loss of the list of pcrforrncd updates 
a t  a nodc y. (The list of pcrformcd updatcs consists of the sequence numbers 
of the updates that  hove been performed at that node.) If node y is keeping s 
106, this list can bc~ccons~ructed from the log. But let us suppose that either 
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there is no log a t  y or that the log has bccn dcstroycd. The loss of the list of 
pcrforrned updatcs can occur without the loss of the pcnding messages, but here 
we will consider the more general problem of losing both the pending messages 
and the list of pcrformcd updatcs. 

Lct us assumc that cvcry node periodically saws in a safe place n copy of 
the  list of pcrformcd updatcs and the vcrsion number corresponding to that list. 
This is callcd chcckpoinling. The recovcry of nodc y can thcn start from this 
checkpointed state. (If there is no chcckpoint, we simply start with an empty 
list a t  vcrsion 0.) 

To rccovcr, node y simply assumes that the list of pcrformcd updatcs at the 
chcckpoint is the current one and thcn procccds as was described in section 4.7.1 
above. Clcarly, some updates will bc performed twice a t  node y, but this causcs 
absolutely no problcrns, as long as updatcs are performed in order of increasing 
version and scquence number. (Actually, the updates can be slightly out of order 
if their hole lists pcrmit it. Scc chapter 3.) 

T o  see why this last statement is true, consider a scquence of updatcs ul, 
u2, 213,. . . Ur ordered by increasing version and scqucnce number. Databasc Dl 
is obtained by applying the updatcs in order to an initial database Do. Database 
4 is oblained by first applying a subset of the updates to Do and then applying 
all thc updates in order. To show that D2 has the same values as Dl, take any 
item i in the database. If none of the updates modify item i, then this item will 
have the original value of Do in both Dl and D2. Otherwise, let uj be the last 
update in the sequence that modificd itcm i. Let v be the value stored into item 
i by update u j e  Then itcm i in Dl will have a value v and item i in D2 will also 
have a value of v. Therefore, both databases ore identical. 

4.7.3 Loss of Data in the Database. 

A nodc y can also lose part or a11 of its database. Let us also assume that  
node y has also lost all pending messagcs and the list of performed updates (which 
is not very useful after the databasc has bccn ruined). 

Node y has three basic alternatives. Each alternative coocld be useful in 
certain cases. The first alternative is to go back to a chcckpoint database and 
i ts  list of pcrformcd updates and then to rccovcr from there as outlined in the 
previous sections. 

Thc second alternative is to start from an cmpty database and thcn to per- 
form all old updatcs to recreate the database. The last alternative is to copy the  
databasc from another node. It is intcresting to note that ncw updatcs could be 
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pcrformcd a t  thc source nodc while the copy operation was in progress. Aftcr 
lllc copy operation ends, nodc y would perform all the updates that occurred 
during the copy and the database would then be up to date and consistent. (To 
sec why, consider the argument at  the end of section 4.7.2.1 

4.8 Summary of tho RCLA-T Algorithm. 

We have outlincd the design of a resilient centralized Iocking algorithm 
that  uses a two phase commit protocol to perform updates. We discussed the 
mcchanisrns for cancelling updates, for electing a new central node and for 
rccovcring from crashes. Altlrough we did not prove the correctness of theRCLA- 
T algorithm, we hope that the reader is convinced that the algorithm could be 
implcmcnted and that such an algorithm would operate correctly in the presence 
of Iailures (except malevolent failures which we did not consider). 

5. PERFORMANCE OF THE RCLA-T ALGORITHM. 

As was stated a t  the beginning of this chapter, we have tried to keep to  a .  
minimum the overhead of the RCLA-T algorithm during normal (c.g. without 
failures; opcration. The two main sourccs of additional overhead during normal 
operation as compared to the original M C L A  centralized locking algorithm, are 
the  logging of the pcrformcd updates and the two phase commit protocol for 
performing updates. Also rccall that in section 3.5 we showed that any resilient 
update algorithm would have at  least this overhead during normal operation 
(unlcss we can undo updatcs). Therefore, when we compare the performance of 
the RCLA-T algorithm to other algorithms, we assume that these algorithms 
also have sinilar overhcad. 

5.1 Logging of Updates, 

Le t  us considcr how this overhead can be taken into account by our system 
rnodcl and parameters. (Sec chapter 4.) The logging of updates can either occur 
nt the same I0  device that is used for the database or it could occur a t  a separate 
dcvicc (c.g., a tape unit). 
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II a diflcrcnt dcvice is uscd, wc would have to add that dcvice to our model. 
Notice that in this case, the dclay incurred by updates duc to logging would be 
indcpendcnt of the algorithm bcing uscd. The dclay would only dcpcnd on the 

1 numbcr of updates being logged ( N/A,  pcr sccond) which is the samc for all 
algorithms. Thus for the casc of indcpcndcnt logging devices, the logging delay 
docs not have to bc considcrcd when wc arc only comparing the pcrformance of < 

thc  diRercnt algorithms, . . 
IT the same I 0  dcvice is bcing used for logging, we can assume that a log 

cntry is writtcn just bcforc thc new database values arc written out. We can 
modcl this by assuming a single I0 operation for logging and for performing 
the updatc and by increasing the value of the parameter Id. Recall that Id was 
the  I 0  scrvicc timc nccdcd to writc onc itcm to the database. Thcrcforc, the 

6 
! pcrformnncc results of chaptcr 6 can still bc uscd to compare the performance of 
$ 5 

the  different algorithms. Using thc results of chapter 6, we observe that unless the 
systcm has a very high 10 load and is close to saturation, the centralized locking 

i: 
5 :  

algorithm still pcrforms bcttcr than the other algorithms as the parameter & is . 

?: in'creased (starting a t  the typical value used in chapter 6). ;: 
L! 

5.2 Thc Two Phase Commit Protocol, 
I 

i Next, we considcr the additional overhead of the two phase commit protocol. 
: This ovcrhcad involves sending "intend to perform" messages and waiting for 
f a majority of acknowlcdgmcnts. The second phase, i.e., sending the "commit" f mcssages is not considcred additional overhead bccause it is equivalent to  sending 

I thc  "perform" or "acccpt" mcssagcs of thc original algorithms. 
Thc two phase commit protocol can increase the response timc of updates 

in two ways: First, thc protocol increases the CPU load at  each node because 
thc additional mcssagcs havc to bc proccsscd. This additional load will cause an 

2 increasc in the CPU queue wait times fcr all CPU operations of ihe algorithm. 
> Secondly, the response timc of updates can also be increased by the additional 
3 

i 
tmnsrnissions and by thc wait for a majority of acknowledgments. 

+. Lct  us considcr the first source of overhead. The CPU time needed to process 
1 an  "intcnd to  perform A" mcssagc is very small. (There is no 10 involved in 
t proccssing this mcssagc.) To proccss such a message, a node has to  chcck if it 

I has seen updntc A bcfore and the mcssage has to be stored in memory. Checking 
for A involvcs looking a t  the list of pcrformcd updates and at  the list of pcnding 

I 
j mcssages. (If there are many messages, the check can be pcrformcd with the aid 
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of o hash table.) Thus, the time to process an "intend to perform At' message is 
comparable to the CPU time needed to set o lock, i.e., C.. (See c h ~ p t c r  4.) 

Processing the acknowledgments of the "intend to perform A" nlessage will 
takc cvcn less timc. The node that rcccivcs these acknowlcdgmcnts must simply 
count the numbcr of acknowlcdgmcnts. When a majority of acknowlcdgrncnts is . 

rcached, thc processing of the update will be completed, 

Since the additional CPU Ioad is in both cases minimal, the increase in 
CPU wait time will bc negligible for the parameter values we have considered. 
Thcrcforc, the incicase in response time 01 the other algorithm stcps will also be 
negligible. (Notice that this last statement is not true if the CPU utilization is 
very high. In such cases, even a small load increase can cause large increases in 
the  wait times. I1Towever, in all the cases we studied in chapter 6, this was not 
the  case. As n matter of fact, in ail the cases the CPU utilization was quite low.) 

Now let us consider the increase in response time due to the additional waits 
of thc two phase commit protocol. Computing the increase in update response 
timc is not simplc. Nevertheless, in the cascs that were studied in chapter 6, the 
incrcnse in update rcsponsc timc can be approximated by 2T because the CPU 
timcs invoivcd are ncgligiblc. (Recall that T is the network transmission time.) 
This means that the differences in rcsponse times between algorithms found in 
chapter 6 are valid even if a two phase commit protocol is used in thc algorithms. 

If the CPU time needed for processing the messages of the two phase protocol 
is not negligible, then the delay will be larger than 2T. However, in many cases, 
this increased delay will be smailer in the MCLA centralized locking algorithm 
than in other algorithms like the distributed voting algorithm. To see why this 
is true, rccnll that the CPU load at all nodes except the central node in the  
MCLA aigorithm is !ewer than the CPU load at  all nodes in the other algorithms. 
This happens because in the other algorithms, all nodes arc locking or voting, 
while in the MCLA algorithm only the central node is locking. Therefore, in the  
MCLA algorithm, a node will wait a smaller amount of time b r  n majority of 
aoknowlcdgmcnts. The acknowledgment from the central node will takc longer, 
bu t  this rcally does not matter bceause only a majority of acknowlcdgmcnts are 
nceded. Of course, in some special cases where the acknowledgment from the  
ccntral node is nceded to gct a majority, the delay in the MCLA algorithm could 
bc greater. 
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5.3 Summary. 

In scction 5 we studicd thc pcrbrmance of the RCLA-T algorithm and com- 
pared it to the pcrformancc of other rcsilicnt update algorithms. We observed 
tha t  a ccntraliscd locking algorithm with logging and two phase commit protocol 
still pcrlorms bctter than tllc other algorithms with similar modifications unless 
the I0 or the CPU servers are heavily loaded, 

This concludes chapter 7. To simplify the presentation, in the next chapters 
we are again going to assume that no failures occur in the system. Then we will 
bricily reiurrl to the issucsof crash rccovcry in chapter 11 when we consider crash 
recovery in o par titioned database with multiple controllers. 



CHAPTER 8 

RES.TRfCTED TRAIU'SACTIONS 

Anothcr one of the assumptions that was made for our performance analysis 
was that the update algorithms must be able to process arbitrary transactions 
as dcfincd in chapter 2. In this chapter we will study the implications of this 
assumption, and we will discuss why we will not eliminate this restriction. 

In section I we show that the update algorithms can be modified to take 
advantage of advance knowlcdgc of the transaction types that will run in the 
system. In section 2 we justify our decision for not studying these specialized 
algorithms. Finally, in section 3 we make some brief comments on the SDD-1 
systcm [BERN78]. Thc SDD-1 is a distributed database system which attempts 
to take advantage of particular transaction types in an automatic way. 

1. THE ARBITRARY UPDATE RESTRICTION. 

Throughout our studies we have assumed that an update algorithm should 
bc able to handle any transaction which reads an arbitrary set of items in the 
databasc and then, based on what it read, the transaction writes into a subset of 
those itcms. IIowcver, if wc restrict the types of acceptable transactions, then we 
can simplily the algorithms considerabiy. We present two examples to illustrate 
this fact. 

1.1 Examples. 

. Assume that all update transactions do not need to read the database in 
ordcr to compute their update values. That is, every updatc is simply a set of new 
itcm values that must be stored in the databasc regardless oi the old contents. 
This typc of updates arise in any database which only acts as a passive recorder 
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oi outside information. For cxamplc, stock brokers have databases which simply 
contain the current status of the stock markct. An update in such a system 
simply informs the dntnbnsc that a certain stock has o new price or that  a certain 
vol~imc of stock has bccn traded in a day. These updates, which come in directly 
from. the stock market, are independent of the old contents of the database. 

There arc many simplified algorithms that can bc suggested for s database 
with the described update restriction [GRAP76]. Using the terminology of Gray 
ct  a1 [GRA177GJ, in this casc we only nccd dcgrcc 1 consistency bccausc there arc  . 
no read actions in thc transactions. All wve require is some sequencing mechanism 
that  guarantces that all updatcs arc performed in the same order a t  all nodcs. 
Simple timestamps [JOHN751 or a central site that issues sequence numbcrs 
provide solutions to the problem. Clcarly, these simple nlgori thms perform better 
than thc gcricral algorithms would whcn uscd for these restricted updatcs. 

As a sccond example, consider transactions which are of the form "Add 
a constant k to itcm i". In this case all transactions simply read the value of 
one itcm, add k to it, and store thc new value back in the same item. Such 
transactions could arisc in a bank database where customer accounts arc dcbitcd 
or crcditcd as money is withdrawn or dcposited. The same situation shows u p  
in an inventory control databasc where parts enter and lcavc thc warchousc. 

For this situation, scveral simplified algorithms can be designed that take 
advantage of the update typc restriction. Notice that updates arc commutative. 
This nlcarls that two updates can bc pcrforrncd in any order a t  a sitc and the end 
result will bc thc same. Thcrcfore, an algorithm only needs to guarantee that  all 
updates arc perlormcd (in any order) a t  all nodcs in the distributed database. . . .. w  thin cach sitc wc nccd a concurrency control that makes each update atomic 
a t  a singlc database. However, our distributed algorithms have always assumed 
that  this cxists. No timestamps or locks are nccdcd; an update aigorithm simply 
dclivcrs all updatcs (in thc from "add constant k to item a") and then each node 
pcrforrr~s the read and write operations. Duc to the type of updates, the databases 
will always be consistcnt. 

1.2 More Than One .Transaction Type. 

In  the above examples we have of course assumed that there is only one 
typc of update. If we have, say, t t ~ o  typcs of updates, then the simple algorithms 
might r,ot be enough. For cxarr?plc, JYC may also have updates of thc form "Make 
itcm i equal to constant k" in the second example of section 1.1. Since the new 
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updates arc not commutative with the old ones, the simple protocol breaks down 
and we can easily get inconsistcncics. 

We will illustratc how these inconsistencies can arise, Supposc that wc have 
two datnbsses and the valuc of an item j is 10 in both databascs. Then suppose 
that  an update to increase itcm j by 5 arrives at nodc 1. Let us call this update 
tra.nsaction A. Suppose that update A is only performed at node 1 and, for some 
reason, tile "pcriorrn update A" message to nodc 2 is delayed. Then the value 
of itcm j will bc 15 a t  nodc 1 and 10 at nodc 2. Next, an update B of the new 
type arrives and sets item j to 100 at both nodes. M7hcn the dclayed message for 
u ~ d a t c  A arrives a t  node 2, it increases the value of item j by 5, leaving item j 
with a valuc of 105. At this point, the databases have a permanent inconsistency 
bccausc the valuc of itcm j at nodc 1 is 100. 

One solution to the multiple transaction types is to  use a gcneral algorithm 
that  works for arbitrary transactions. TIlc algorithms we have been studying 
(e.g., MCLA, CCA, dislributcd voting) are of this class. Another solution is to 
use scvcral specialized algorithms, onc for each transaction type possible. The  
spccializcd algorithms can then take advantage of the particular t~ansaction type'  
it  is assigned to. 

1.3 Another Example. 

We will now illustratc this idea by considei-ing thcfollowing example: Assume 
that  we have n system where a majority of thc updates are of the typc "Make 
itcm i equal to constant k?. I V c  will call thcse the typc TI updatcs. Thc rest 
of thc updatcs arc of typc T2 and can be arbitrary updatcs. Furthermore, we 
assume that it is easy to decide the type of an update simply by examining it. 
For  our  system we choose to  havc two different algorithms or protocols, one for 
each u pdatc typc. There arc many alternatives available for the two algorithms. 

Onc alternative is based on centralized locking. We choose A2, the algorithm 
for the txpe T2 updates, to be the MCLA-infinity algorithm (see chaptcr 3) with 
one slight modification: The tablc of locked items (i.e., locked(i) in Appendix 1) 
also contains the sequence numbci- of the update that has locked the particular 
item. That is, given a lockcd item numbci; the central node (where locks are . 

granted for all T2 updatcs) can tell what update holds that lock. The ciTort needed 
to kccp this cxlrn information should be minimal bccausc the extra information 
can bc storcd in thc same (hash) table used to keep track of what items a re  
locked. 



CH. 8: RESTRICTED TRANSACTIONS 

Algorithm A l ,  tlic algorithm for the type T1 updates, is simpler than A2 
bccnusc type T1 updates do not need to hold locks while they are being performed. 
Only thc correct scqucncing information is necdcd bcforc a TI update can be 
pcrforrncd and such information is available at  the central node, We now present 
an outlinc of the A1 algorithm: 

Algorithm A l .  a 

STEP I. Update B arrives at nodc x: "Make item i equal to constant k". 
Nodc z identifies this updatc as type TI and marks it as such. Node s forwards 
the update to the ccntrai nocic. 

STEP 2. Upon receipt of the "Makc item i equal to constant Ic" updatc, the  
central nodc checks if item i is locked. If it is, go to step 4, else go to  step 3. 

STEP 3. Itcm i is free. Therefore update B need not wait for any of t he  
currcn tly cxccu ting updates. SOB is assigned the ncxt available sequence number, 
thc "hole list" (see below) is appcndcd and the "perform update" messages are . 
sent to  all nodcs. Go to stcp 5. (Notice that the "perform update" messages 
can be sent directly by thc ccntzal nodc without having to first send a "grant" 
mcssagc to the updatc originating nodc. This can be done this way bccausc there 
is no basc sct to read and no computations to pcrform before the ncw valuc for 
iicm i (i.c., k) is obtained.) (Thc hole list contains the scqucncc numbers of the  
currcntly exccuting updatcs. This list rcprcscnts thc updatcs tliat B docs not 
havc to wail for before bcing pcrforrncd a t  a nodc. See chapter 3 for details.) 

STEP 4. Itcm i is Iockcd by updatc C. Say C's scquencc numbcr is r. 
Thcrcforc, 73 only has to wait for thc update with scqucncc number r. So B is 
assigned the ncxt scqucncc number, and a holc list with all sequence numbers 
cxccpt r is appended to B. (This means that B can bc performed a t  any node 
tllat I1n.s pcrforr~led updatc C.) The "pcrform update1' messages are sent out t o  
nli nodcs. 

STEP 5. Upon receipt of thc "pcrforrn update1' messages, all nodes (including 
the ccntrnl nodc) pcrform thc updatc in thc usual way (i.~., checking the hole 
list and the sequence number of B). (End of algorithm Al.)  

hiot.icc that a TI update does not obtain any locks and is never dcfcrred 
st thc ccntral nodc. The ccntral nodc only attaches the necessary sequencing 
irlforrnation to each TI updatc so that the nodcs know when the update can be 
pcrfoi.mcd. Also notice that the scqucilcc numbcr of a TI update is not p'raccd 
in thc fici:, list (bccausc updatcs iil the holc list arc thc ones that currently hold 
locks and T1 updates ncver hold locks). This means that any other updates that  
follow B, a T1 update, will havc to wait for B bcforc bcing performed. This 
rcprcscnts no problem at  a11 since B cannot be delayed reading a base set and 
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conlputing as tlic othcr gencral updatcs can. 
The A 1 ,alp,oritl~n~ we havc described is much more efiicient than the general 

A2 (i.e., MCLA-infinity) algorithm bccause several of the steps of the general 
algorithm havc bccn climinatcd. Furthcrmorc, bccausc the TI updates are able 
to exccutc without holding locks, the rcst of the updates wiii also benefit i rsm 
the A l  algorithm. Of course, thc magnitude of the savings will strongly depend 
on the mix of TI and T2 irpdates in the system. - 

2. W EIY WE ONLY STUDY ARBITRARY TRANSACTION ALGORITHMS. 

Anotllci. altcrncltivc for the systcm with TI and T2 updates is to design two 
algorithms based on the use of tjrncstamps and the distributed voting algorithm. 
In this casc the A2 o.lgorithrn for t l~c  T2 updatcs would be the gencral distributed 
voting algorithm. (Sec chapter 3 and [THOM76].) In the A l  algorithm lor TI 
updatcs, wc can eliminate the voting phase of the A2 algorithm bccause TI 
update6 do not rca.d any data. As before, all IVC nccd is thc correct scqucncing 
i~lforrrtation, which in this casc is providcd by thc tirncstamp mechanism. FIence, 
in tlie A 1  nlgoritllrn, all wc need to do is to obtain the current timestamp a t  
a nodc and attach it to thc "perform updatc" mcssagcs \vliich are immediately 
sent out to all nodcs. 

The A1 algorilhm that uscs timcstamps sccms to be morccficient and simpler, 
than its counterpart that uses ccntraiizcd control. (Aftcr wc study rcad only 
ti.a.nsaction in cl~aptcr 9, wc may disagLec with the abovc statement. For  the 
tirnc bcing wc arc only considering updatcs, so the abovc statement is valid.) On 
LEie othcr hand, as wc havc sccn in chaptcr 6, thc A2 algorithm is morc efZicicnt 
when centralized coztrol is uscd instcad of timestamps. We thcreforc reach the 
conclusion that the particular mix of T1 and T2 updates will determine whether 
the central control or thc tirncstamp stratcgy is supcrioi.. 

Rccall that the abovc discussion rcfcrs only to a particular cxamplc where 
TI upcla!.es arc of the form "Makc item i cqual to constant k" and T2 updatcs 
arc any othcr updatcs. For a diffcrcnt set of transaction typcs we may find that  
a particuiz;. stratcgy la always superior, or we may again reach the conclusion 
that the transaction mix dictates the bcst stratcgy. 

For a given set of transaction types and mixes, we arc able to compare the 
performance of scveral altcrnativcs by using the simulation and analysis methods 
outlined in this thesis. But it is vcry hard to reach any general conclusions as 
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to which is thc bcst stratcgy or algorithm for all transaction types and mixcs. 
We wiIi tllcrcfore limit oursclvcs to study only thc general algorithms that  can 
handlc arbitrary transactions. Thc designers of a gencral purpose distributed 
database systcrn will probably havc to use a gcncral updatc algorithm and wiH 
hcncc bc ablc to  use thc rcsults we have obtained so far. The dcsigncrs of a 
spccializcd dntabasc system with a known set of transaction types will have to 
s tudy their particular systcm. We hopc that thcy can use some of the tools tha t  - * 

wc havc uscd in this thesis to reach thcir own conclusions. 

3. THE SDD-l SYSTEM. 

. ncforc wc concludc this cliaptcr, wc mention a distributed database systcrn 
currently being dcsigncd which attempts to take advantage of particular trans- 
action typcs in an automatic way. In the SDD-1 system PERN781, the database 
a.dministrator sclccts n set of prcdcfincd transaction typcs which he  hopcs will 
covcr most of the updates that will bc submitted by the users. Tllc system has 
4 updntc algorithms or protocols. The algorithms have different dcgrccs of corn- 
pIcxity and of gcncrality. At systcm crcation timc, the choscn transaction types 
arc ana.lyzcd in an automatic way and a protocol is chosen for each type. Thc  
protocol cl~oscn for a transaction type is the most cficient one of thc four thzt  
can correctly handlc thc transaction. \.I.'hcn the systcm is in operation, updates 
arc analyzcd to dccidc what thcir type is and the corresponding protocol is used 
to cxccutc the updalc. If the update docs not fall within one of thc predefined 
Gypcs, thc least clficicnt but most gcneral protocol must bc uscd. 

An intcrcsting rcsearch project would be to study the most gencrnl SDD- 
1 protocol and comparc it to thc othcr arbitrary updatc algorithms we have 
prescntcd in chapter 3. We havc not done this in this thcsia. ;FIo\vevcr, at first 
sight;, tllc SDD-1 most gcncral protocol sccms to bc more complex and less cficicnf 
than thc othcr algorithms. Furthcrinore, thc advantage of the SDD-1 systcm lies 
in ils ahi1it.y to l~aridlc 4 diircrcnt protocols autornal;ically, and only by studying 
the system in a particular application with n givcs scb of transaction typcs and 
nlixcs, w o ~ l d  wc bc ablc to makc a fair comparison to sornc other systcm. 

In  surnmary, in a specific application where many of the transaction typcs czn 
bc analyzed at systcnl crcation time, t11c STID-I systcm could operate cficiently. 
I-Jowcver, by adopting any of the 0 t h ~ ~  update algorithms to the same application, 
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we could probabIy gct pc~formancc improvements too. What strategy performs 
best depends on the particular application and transaction mix. 



. . 

READ-ONLY TRANSACTIONS 

In this chapter we will study the elimination of the update-only restriction 
that was made in the performancs analysis. In section 1 we define read-only 
transactions (queries) and we classify them into three groups: free, consistent 
and current queries. In the following three sections we present consistent and 
current query algorithms for the cases where the MCLA-h, the DVA, and the 
Ellis type algorithms are used for the update transactions. In these sections we 
also study the consistency provided by these query algorithms by applying the 
notions of consistency developed by Eswaran et a1 pSWA?S!. In passing, we also 
prove the consistency of the MCLA-h algorithm (in section 2.3) and the end (or 
convergence) consistency of the DVA algorithm (in section 3.2). In section 5 we 
discuss the performance of the query algorithms, while in section 6 we state some 
conclusions for this chapter. - 

1. REAP-ONLY TRANSACTIONS. 

A read-only transaction or query reads a set of items from the database and 
presents the values obtained to the user. The transaction in no way modifies the 
database. This means that a user c a ~ n o t  make an update to the database based 
on the data obtained from a query. If the user wishes to submit such an update, 
the update must first read the data again to check if the data has not changed. 

A read-only transaction or query can be considered as an update transac- 
ticn where the write set is empty. Therefore, the update algorithms can also be 
used to read data. However, many simplifications are possible when handling 
queries. That is, since queries arc simply a restricted type of update, we can take 
advantage of this to improve eficiency. 

We are now making an exception to the statement of section 2 of chapter 8 
that we will only study general algorithms for handling arbitrary transactions. 
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Thc rcason why we will study these rcstrictcd updates cnllcd queries is that queries 
arc  very common in almost any csnceivabic database system, rcgardlcss of the 
typcs of updatcs that arc performed. As we may suspcct from thc discussion of 
chapter 8, we will be unablc to rcach sweeping conclusions as to which algorithm 
pcrforms bcst bccausc the cfficicncy will dcpend on the types and percenttiges of 
queries submitted. However, we will be able to reach some limited but interest- 
ing performance conclusions which will be very useful in any system that  must . . 
process queries. 

1.1 Types of Queries, 

There are two requirements that we can make on queries. The first is t o  re- 
quire that the query should give the user a consistent view of the data PSWA761. . 
In other words, all consistency constraints or assertions that can be fuliy evaiuated 
with the deta read should be true. (Constraints that cannot be fully evaluated , 

with the data read by the query are irrelevant here.) A second independent 
rcquircmcnt that can bc made on a query is that the data read from the database 
is the l a t e ~ t  or most current [GRAY79]. In other words, we can require that  a 
query submittcd. to the systcrn at time t should reflect any updates that were 
performed anywhere in the system before and up to time t. We thar! say that  the 
da ta  produced by the query is current as of time t .  (In our discussion of currency 
we use time in an intuitlve fashion. The ideas could be formalized using concepts 
in [LAMP78].) 

We can deSne tour types of queries according to the consistency anc! cur- . 
rency requirements they make. A "free" query makes n= req~i ic i i le~t ,~  a t  all. 
A "consistent" query requires consistent data, while a "current" query requires 
current data. Finally, a "current and consistent" query makes both requirements. 

1.2 An Example, 

we-will illustrate some of these coecepts through a simple example. Suppose 
tha t  we have a subset of the database, d, and a sct of consistency constraints, c, 
on this subset. Assume that at  time to all copies of d have the same vs!ue, there 
ore no pending updatcs that involve d, and d is consistent (i.e., c(d) is true). 

Next, three conflicting updates ul, IQ, and u, that involve d are performed. 
Update ul is first performed at a node a t  time tl, update u2 is first perforr-,.d 
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a t  a node a t  time tz, and update u3 is first performed at time 5, where to < 
tl < tz < t3. Since the updates conflict, we assume that the node that performs 
% must have seen ul first. In other words, u2 was computed bnsed on ul(d), 
where ul(d) is the resulting subsct of the database after ul has been performed. 
Similarly, u3 was computed based on y (ul (d)) to preserve consistency. . 

A consistent query should return either d, ul(d), u2(ul(djj or u3(u22(ul[d))) 
because only these values are consistent. In some update algorithms (c.g., the 
distributed voting algorithm), a node can perform the updates ul, u2, uJ in 
a difl'erent order, In such a case, that node cannot answer a consistent query 
until all updates are performed. Hence, if the local database is u3(ul(d)), the 
query must wait until is performed. Then uz(u3(ul(d))), which is here equal to 
u3(~(ul(d))),  can be returned as a consistent answer to the query. Notice that in , 

, 

other update algorithms (e.g., the centralized locking algorithm) u2(uJ(ul(d))) is 
not equal to u3(u2(ul(d))) and the updates can only be performed in the proper 
sequence. In such algorithms, any database will either contain d, ul(d), u2(ui(d)) 
or u3(u2(ul(d))), and consistent queries can simply read any database.. 

The values in d are current up to time tl. After time tl, d is still consistenti 
but is out of date. Thus, a current query Q submitted at  time t, ti < t < t2, 

should reflect update u1. Current query Q could read ul(d). This data also 
happens to be consistent. However, current query Q could also read u3(ul(d)) 
which is current as of time t but is inconsistent. A consistent and current query 
submitted a t  time t ,  ti < t < t2, can only read ul (d), u2(ul(d)) or u3(u2(ul(d))) . 

and not d. 
A free query can read data that is inconsistent and out of date. For example, 

e free query submitted a t  time t ,  t > t3, could read d, q(d), u3(u2(ul(d))), u2(d), . 

%(u3(u1 (d))),  or any such combination. 

1.3 Why We Need Different Query Types. 

I t  might seem that free queries arc not very useful because they can produce 
data that is inconsistent and out of date. On the other hand, free quezics are 
cxtrcmely simple and eflicient to process since all they must do is read the'data 
at a node without bothering with anything else (not even with local concurrency 
control). In many applications, users may be willing to sacrifice consistency and 
currency for cfficiency. Furthermore, in well designed systems, free queries should 
produce results bnsed on data that is not too old. For example, a warehouse ' 

manager might want a rough idea of where the inventory stands. The manager 
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docs not really carc if the data obtained is 15 minutes old. Thc manager might 
not mind that the total number of parts rcportcd does not exactly match the 
sum of thc itcmized entries in the report obtained. As another cxample, consider 
a qucry that computes an averagc salary for a large set of employecs. Thc result 
might not bc accurate if some of the salaries are being updated during thc long 
period that thc averaging query is running. But the uscr might decide that such 
occasional conflicts will not alter the average significantly. Fzlrtherrnore, not 
running the averaging query as n free query will produce long delays in other 
transactions that access thc salary data. 

Anothcr cas2 where free queries are valuablc is in one item queries. A query 
tha t  only reads one item will always give a consistent view of the data. To 
scc why this is true, consider a given item j and its value v a t  node x. The 
valuc v must have been written by scme 2gdat.e U. If there are any consistency 
constraints that deal exclusively with item j, then update U must have produced 
a consistent value v because a single update never violates the consistency con- 
straints. Therefore, the frec query mechanism can be used for one item queries 
and the result will always be consistent. In many systems, one item queries are 
very common and considerable effort can bc saved if we use an efficient method 
like the  free query mechanism for performing these queries. 

Clearly not all queries in a system can be frec queries. In some queries, a 
. consistent view of the data is required, The checking account monthly statcrnent 
* 

tha t  is sent to  a bank customer must be consistent. (For example, the sum of 
cashed chccks shouId equal the total debits entry.) Also, a rcad-only transaction 
to look up the location of a device in a distributed system directory given the  
name of the device should not encounter duplicated names in the directory. These 
a re  only two of the many cases wherc consistent queries are needed. 

In many systems, the currency of the data is not a critical factor. For  ex- 
ample if a query to produce a monthly statement for an (interest free) checking 
account misses some of the latest withdrawals or deposits, they will simply be 
rcportcd in the ncxt statement. Howcver, in other situations current queries are  
a must. Consider a general who has to decide whether to fire or not s missile at . 

a n  incoming warship. In this situation, the general needs the latcst information 
on the ship's position and speed in order to make the best decision, 

1.4 The Query Algorithms, 

We will now describe how queries can be processed in a distributed databnge 
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system. Thc algorithm uscd for queries depends on the update algorithm bcing 
utilized, so we will divide the following discussion into three sections, one scction 
ior each of the main update algorithms we have studied. We still assumc that  
dntabascs arc completely duplicated at each nodc, and that transactions (queries 
and updatcs) fully spccify a t  their inception the items that they reference. We 
are  again going to  assume that no failures occur in the system. (In chapter 11 we 
mnkc some comr~ents as to how failures affect queries.) We will not discuss free 
queries in thk next sections because the algorithm for them is independent of the 
update algorithm. To process a free query, a node simply reads the referenced 
valucs from the local database. Not even local concurrency control is needed for 
free queries. 

2. QUERIES IN THE CENTRALIZED LOCKING ENVIELONMENT, 

2.1 Consistent Queries, 

'When thc centralized locking algorithm (IMCLA-h) is used for updates, all 
updates are assigned a sequence number after they obtain their locks. At each 
node, conflicting updates arc always performed in ascending sequence number 
order. In othcr words, the base set data read by an update wiii reflect all updates ' . 

with lower sequence numbers; and the data that is written by an update wilt be  
sccn by all updates that need this data and that have higher sequence number. 
This means that if all updates are performed at  nodes as atomic operations, then 
the  database will always be consistent in between these operations. Therefore, 
if a qucry rcads its data between thc cpdate operations, it  wi!l get a consiste~b . 
view of thc database. This is equivalent to saying that a consistent qucry only 
nieds local concurrency control in order to be executed. Hence, when the MCLA- 
h algorithm is used for updates, queries can be executed very efficiently without 
t he  necd for communicating with other nodes. 

The ebove discussion has been very informal. We will now show that  the  
above statements are true in a more formal way. In passing, we wiii aiso show 
tha t  thc MCLA-h algorithm for updates provides all updates with a consistent 
view of the database. The kiiowing iormalizatioii is sii~ply an npplkztion of the 
consistcncy notions defined in PSWA76j with a few minor modifications. T h e  
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reader is strongly urged to read PSWA76j since it p i ~ ~ i d c s  the basis for . the 
following material. 

2.2 The Notions of Consistency i~. ,  a Didributed Database. 

The notions of consistcncy in a distributed database system are identical to 
the  oncs in a centralized system. In both cases we have a set of items, some con- 
sistency constraints, and some processes that are executing actions on the items. 
The  fact that in the distributed system the items are stored in different nodes and 
the  processes may run on diffcrcnt computcrs makes no difference. Therefme, 
we will simply view the distributed databases as a single large database where 
each item d[i, x] in this database corresponds to item i at  node x. (See chapter 

- 
L 2.) The  consistency constraints for the distributed database are simply written 
,I 

h in this notation. For example, assertion a = b + c at  node 3 is now written as  
x4 d [a, 31 = d [b, 31 + d[c, 31. Since the databases are completely duplicated, then 

I 

$ the  assertion a = b +- c will become a set of assertions d[a, y] = d[b, .;I $ d[c, y] 
for 1 5 y 5 N (N is the nunber of nodes). In addition to the constraints at 

i 

i each node, we would like a duplicated item i to have the same value a t  all nodes. 
?.hese are simply the implicit consistency constraintsdli, x] = d[i, y] lor all nodes 
s, y. (Sce chapter 2.) 

The  concepts of actions and schedules are not changed for distributed da- 
tabases. An action is represented by (T,a, e), where "T" is the name of the  . 
transaction, "a" is either read (r) or write (w), and "e" is an item. We assume 
tha t  all actions are atomic and that they can be written in a linear sequence 
which is called the schedule of the acticns. F o r  a formalization of the ideas of 
actions and schedules in a distributed database see PERN781.) 

Our  model of an update transaction is a series of read actions a t  a single node 

i followed by a series of identical write actions a t  all nodes. (See chapter 2.) That  

I is, let T be an update transaction that originates at node x. Transaction T first 
reads items d[Bl, x], d B ,  XI,. . . d[Bb, $1 at  originating node x, where Bl, Bz, . . .Bb 

f are  the indices of the items in the base set of T. After reading and pcrforrning 
computations, T writes the items d[Bl, y], d[B2, y], . . . d[Bc, y] for all nodes y such 
tha t  1 5 y 5 N. Notice that all written items are in the base set, that is, c ( b. 

Thus, we represent update T, which originated at node x, by the socpcnce 

1 

1 where (1) action ai = read for 1 < i 5 b; (2) item ei = d[Bi,x] for 1 5 i 5 6; 



CH. 9: READ-ONLY TRANSACTIONS 

(3) action ai = write for 6 < i 5 6 + Nc; and (4) items ei lor b < i 5 b + NC 
arc  the items dpl, 4,. . . d[Bc, y] for 1 5 y 5 N in some order. Notice that  the  
particular crdcr cf the writc actions is not important as long as thcy all follow the  
read actions. We assume that if T is run on a consistent database and without 
interference from other updates, it will produce another consister,$ dztebssc, For 
example, the actiongfT, w, d[k, I]), (T, w, d[k, 2]), . . . (T, w, d[k, N ] )  (fixed k) must 
writc the same value in order not to violate the implicit consistency constraint 
d[k, 11 = d[k, 21 = . . . d[k, NJ. 

A schcdule is said to be serial if the transactions in it are exccutcd one a t  a 
time, A schedule is said to be consistent if it is equivalent to a serial schedule. 
The  requirement that an algorithm produce a consistent schedule is stronger 
than the requirements we had defincd for an algorithm in chapter 2. That  is, if 

I an algorithm produces a consistent schedule then (1) all transactions will get a 
consistent view of the data, and (2) the implicit consistency constraints will not  

I be violated. As we will see shortly, the inverse of this statement is not necessarily 
I 

i true. 
T o  scc that al! transactions in a consistent schedule read c o ~ s i s t c ~ t .  4zta t 

simply note that the consistent schedule is equivalent to a serial schedule and tha t  
all transactions in a serial schedule see consistent data because the transactions 
are  executed one a t  a time. (Sce chapter 2.) Similarly, the implicit consistency 
cn~s t ra in t s  are not violated in a consistent schedule because it is equivalent to 
n serial schedule where the implicit consistency constraints are not violated. ' 

2.3 Cozsistency of the MCLA-h Algorithm for Updates, 

The concepts presented up to this point apply to any of the update algorithms . 

we have studied. Now we will concentrate on the MCLA-h al'gorithm. Consider 
the schedu!c S ,nrsc!nced by running a set of update transactions (as defined in 

r 

i section 2.2) under the control of the MCLA-h algorithm. In this case, we can 
i prove the stronger condition that S is consistent. To show that S is consistent 
I 

I I 

(i.e., cquivalent to a serial schedule) we must shcw that the binary relation "4" 
I 

i on the set of transactions, which is defined &!ow, is acyclic FSWA76!. 

i The relation "4" produced by schedule S is defined as follow& T p  4 T, @ 

I dillerent from g) if and only if .for some i < j, 

I .  S = (. . .(Tp, ai, e), . (Tq, aj, e ) ~  * *) 

I where (1) either ai or  aj are write actions and (2) there is no k such that i < k < j 
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and ek  = e and ak = write. 
To show that "-(" is acyclic, we ordcr the transactions using the szqi.lcnce 

numbcrs that were assigned to each update at  the central nodc (in the MCLA-h' 
algorithm). Let T p  be the update transaction with sequence number p. We will 
now show that Tp 4 T, implies that p is less than q and therefore that "+"is 
acyclic and S consistent. 

THEOREM 1. Let Tp and T, be two dinerent update transactions, with sequence 
numbcrs p and q respectively, that were executed using the MCLA-h algorithm. 
Then Tp 4 Tq implies that p < q. 

PROOF OF THEOREM 1. Let S be the schedule produced by the MCLA- 
h algorithm. Tp 4 Tq implies that for some i < j, 

i 
? 
J . S = (. . .(Tp, ai, e), . a . (T,, aj, e), . . a) 
a 

5 where (1) either ai  or aj is a write action and (2) there is no k such that i < k < j . 

2: and ek  = c and ak = write. Let k be item d[m, x] a t  node s. Since both Tp and 
Tq reference item d[m, x], these updates conflict. 

I We show that p < q by contradiction. Assume that p > g. This means that 
Tp obtained its locks a t  the central node after T, did. Since Tp  and Tq conflict, 

' 
I - when Tp obtaiced its locks and its sequence number p, Tp must have released its 
2 locks at the central node (else Tp could not get locks for item d[m, x]). Thesclo~e, 
i 
5 Tq is not in T d s  hole list. This in turn implies that node x cannot perform any Tp 

i action involving dim, x] until Tqls write action in\rolving dim, x] has completed 
i at s. (This is guaranteed by the local concurrency control a t  node x.) That  is, . 

ony cctio~? (Tp, d[%., z]) must fo!!ow an action (Tp, w, d[m, XI] a t  nodc x. Since 
all of Tqts reads precede its writes in S, then (Tp,ai,d[m,x]) must also follow 
any action (T.q, r, dim, XI). Therefore, the above schedule S is impossible for aily 
actions aj, aj. This is a contradiction, so p must be less than q. (End of proof.) 

i 

TIIGOREM 2. Any schedule S for update transactions produced by the MCLA- 
h algorithm is consistent. 

PROOF OF THEOREM 2. Suppose that the relation "4" defined by S has 
a cycle Tp 4 Tg 4 . . . 4 TI 4 Tp. By theorem 1, this implies that p < p, which 
is impossible. Therefore, "4" cannot have any cycles. This implies that  S is 
equii-oleilt to a 6ericl schcdule PSWA761 and hence consistent. (And thus, the 
M ~ P I - ~  provicics transactions with a consistent view oT the database and does 
not violate the implicit consistency constraints.) (End of proof.) 
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2.4 Consistency of Queries, 

U p  to now, we have only dealt with update transactions in the MCLA-h 
algorithm. We will now show that any query that is performed a t  a node x with 
local concurrency control will also get a consistent view of the database. A query 
or  read-only transaction is of the form 

Q = ((Q, a1, 4, (Q, a2, c2), * * * (Q, ab, eb)) 

where (1) all ai for 1 5 i 5 b are seads, and (2) ei = d[BiJ X] for 1 5 i 5 b. 
The concurrency control at  a node x should process queries as follows. 

Suppose that a query Q arrives a t  node x a t  time t. At that instant, a set P of 
update transactions have initiated their writes a t  node x. That is, if Ti E P, 
then some action (Ti, w, d[m, x ] )  occurs before time t (for some valid item index 
m). If T j  P, then no action (Tj,wJd[mJx]) occurs before time t a t  node X. 

Query Q should be processed a t  node x in such a way that it sees the effects of 
all updates in P and sees no effect of any updais not in P. 

The following observation may seem surprising a t  first, but we will shortly 
show that it is no cause for concern. 

OBSERVATION. Not all schedules S for query and update transactions produced . . 
by the MCLA-h algorithm and the local concurrency control described above are  . 

consistent. 
FROOF GF OBSERVATION. We show that this observation is true by  

looking a t  a particular schedule S, produced by the MCLA-h algorithm and the  
loca! concurrency control, which is not equivalent to any serial schedule. Consider 
two update transactions Tp and Tq in a system with two nodes x and y. Update 
Tp simply updates item 1 without reading any data, while update Tq similarly 
updates item 2. Thus we can write 

and 
Tq = ((Tqj w, d(2, Y]), (Tq, w, d[2, 'I))* 

' J~tice that these two updates do not conflict because they reference different 
items. Therefore, the actions of Tp and Tp can occur in any order in schedule S. 

Next, consider two queries which read items 1 and 2. One query, Ql, is 
performed at node x, while query Q2 is executed at node y. We con represent 



The following schedule S can be produced by our algorithm: 

Schedule S is legal because the MCLA-h algorithm permits Tp acd Tq action6 
in S to  come in any order and because both queries either see the complete effect 
of updates or they do not see any effects. According to the definition of the 
relation "+", we see that T p  4 Q1 in S because transaction Tp "hands" an item . 

(i.e., d[l,  XI) to transaction Q1. Similarly, Ql 4 T,, Tq 4 Q2, and Q2 4 Tp. This 
implies that  the relation "4" is cyclic and hence schedule S is not equiveleot to 
any serial schcdule. (End of proof.) . 

We can interpret the above observation as follows. In S, Q1 sees TP but. 
does not see Tq, while Q2 sees Tq but not Tp. There is no way that these four 
transactions can be exccuted one a t  a time (i.e., serially) and produce this same 
IP e::xt. In aily serial schedois, if Qi secs Tpr sad Qz !c!!?ws Q: in the schedule, 

then Q2 must also see Tp This L not the case in S. 
Although this result may secm surprising at  first, it does make sense. Notice 

tha t  in S we are executing 5ome transactions (e.g., Ql and Qz) without any - 
global concurrency control. If we wanted S to bc strictly consistent, then all 
transactions, including Q1 and Qz, should be performed following the MCLA-h 
nlgori thrn, 

Fortunately for us, the fact that S is not consistent does not mean that  Q1 
and Q2 do not see a consistent view of the data. If we eliminate Q2 from S, 
we observe that the resulting schedule is consistent and equivalent t o  the scri71 
schcdule {Tp, Q1, T,) (i.e., Tp exccutcd first, then Q1, and then Td .  Thos, Q1 
secs a consistent database a t  node x. Similarly, if we delete Q1 actions from S, 
wc find that  Q2 secs the consistent data at node y produced by serial schedule 
(T,, Q2, Tp> in  other words, both qceries see a database produced by some 
scrla! execution of the updates, but these serial executions of updates may be 
dinerent for each query, Sincc queries in no way modify the database, then the 
fact that the qucries perceive different serial executions of the updates is of no 
ccnsequence. (Notice that if 6ome user were able to look a t  the resuits produced 
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by Q1 and &z at  the same time, the user may be confused. Here we assume tha t  
uscrs*only look a t  the results of their own queries.) 

T o  conclude this section, we wiI1 prove for the general case that queries 
sce a consistent view of thc database, even if the overall global schedule is not 
consistent. 

THEOREM 3. Any schcdule S, produced by running a single query Q a t  node x 
with local concurrency control together with a set of update transactions under 
the control of the MCLA-h algorithm, is consistent. 

PROOF OF THEOREM 3. We show this by contradiction. Assume that  
there is a schedule S that violates the statement of theorem 3. Then there must 
bc a cycle in thc "4" relation dcfincd by S. This cycle must contain Q because 
(as was shown in theorem 2) any schedule of updates is cycle free. Say tha t  
this cycle is Q 4 TI 4 T2 4 . . . 4 Tn 4 Q (where T1,T2, .. .T. are update 
transactions). Since Q -( TI, there is a write action of Ti that follows a read of 
Q. And because of the concurrency control a t  node x, no write. action of TI can 
precede the first read of Q in S a t  node x. In particular, the first write action 
of TI must follow the first read of Q. By a similar argument, we can show tha t  
T, < Q implies that the first write action of T, at node x must preceed the first 
read of Q a t  x. Combining these two observations, we see that the first write 

. . 
action of T, a t  x must occur before the first write action of TI a t  node x.  This 
can only occur if T, has a lower sequence number than T1. However, theorem 
1 and the fact that TI -( Tq -< . . . 4 Tn, implies that T1 must have a lower 
sequence number than T ,  This is a contradiction. @nd of proof.) . . 

2.5 Current Queries in the Centralized Locking Environment, 

A current query Q submitted to thc system at  time t must reflect any updates 
tha t  were performed anywhere in the system before and up to time t. When the 
centralized locking algorithm is used for updates, the currency restriction can 
be expressed in terms of the sequence numbers (assigned by the central node) 
as follows: Let  s be the last scquencc number assigncd by the central node the 
instant that  Q is submitted. Then Q should reflect all updates with sequence 
numbers u p  t o  s. 

There arc many altcrnativcs for dealing with currcnt queries. Here we will 
simply outline a few of them, One straightforward way to process a current 
query Q that originates at node x is to use the update algorithm for it. Since Q 
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will receive a sequence number q greater than s (the current sequence number at 
the central node when Q was submitted), then all conflicting updates with lower 
sequence number than s will have been performed a t  s when Q is ready to be 
"performed" . 

This algorithm can be made more efficient by not having Q hold locks a t  the 
central node and by not having Q obtain a sequence number. Furthermore, Q 
docs not even need to wait at the centrnl node if it finds a locked itcm. Instead, 
Q can note the current sequence number, s, and obtain a copy of the current hole 
list as  soon as it  arrives a t  the central node, Then, as Q checks if the items i t  
references are locked, it simply deletes from its copy of the hole list thc sequence 
number of any update that Q discovers holding a lock for an item Q needs. After 
this processing at the central node, Q returns to its originating node x (or to any 
other node) where it waits until all updates with sequence number less than s 
and not in its hole list c o ~ y  ere performed at  the node. After this wait, Q can 
be executed. By following this strategy, Q will not wait for updates with lower 
sequencc numbers that do not modify items referenced by Q. 

A further improvement in the response time of query Q may be obtained 
having the centrnl node send copies of Q to various nodes after Q has obtained 
its sequencing information. This way, the first node to have all the necessary 
da ta  for Q can execute Q and send the results to the user (who may be a t  another 
node). However, the duplication of effort produced by this strategy may slow 
down other transactions. 

Finally, if response time is not critical, a very simple algorithm can be 
devised. I n  this algorithm, a corrent query Q, originating at node z, simply 
rcqucsts the latest sequence number issued by the central n i i  .. Then Q waits 
until all updates with sequence number up to the latest one have been performed 
a t  node s. 

2.0 Current .and Consistent Queries in thc Centralized L&ng Environment. 

A current query which also needs consistent data simply follows both protocols 
for current reads and for consistent reads. In other words, when a qucry Q is 
finally cxccuted according to any of the current algorithms mentioned above, it 
shouici be stibjectec! to the local concurrency control in order to  obtain consistent 
da t a  as weii. 
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2.7 Summery. 

In this section we have shown how current and consistent queries can be ex- 
ecuted when thc MCLA-h algorithm is used to coordinate updates. We observed 
tha t  the sequence numbers issued by the central node are a very powerful concept 
which permit us to perform consistent queries with simple local control and to ' 

perfcrin crrrrect queries in an efficient and intuitive fashion. 

3. QUERIES IN THE DISTRIBUTED VOTING ENVEtONMENTo 

3.1 Consistent Queries. 

In this section we will study how consistent queries can be executed when the 
distributed voting algorithm is used to handle update trznsacticns. We will find 
tha t  local concurrency control is not enough for consistent queries. The fact that  
a more complex protocol is required for consistent queries in this environment is 
a serious drawback of the distributed voting algorithm. 

T o  show that Iocal concurrency control is not adequate for consistent queries, 
we consider the following example. The system consists of three nodes: s, y, and. ' 

z; and the database a t  each of these codes contains three items: a, b, and c. CvPJe ' 

can think of thcse items as bcing the "deposits" "withdrawals" and "balancet' 
items used in the examples of chapter 2. We LC i e  shorter names a, b, and c . 

hcre in order to  simplify some of the expressions Y will write.) Suppose that we 
have defined the consistency constraint "a - b : 2' on this database. (That is, 
I 1  1 acposits" - "withdrawals" = "balance".) Initi,ily, the value of item a is 100 
a t  all nodes; the value of item b is 40 at  all nodes; and the value of item c is 60 
a t  all nodcs. Thus, the consistency constraint is satisfied. Now suppose that  we 
have two updates. Update A is "increase a by 10 and c by 10" (i.e., "deposit 10 
dollars") and update B is "increase b by 5 and decrease c by 5" (i.e., "withdraw 
5 dollars"). Update A arrives first and receives OK votcs a t  nodes x and y and 
is accepted by node y. Node y sends cut "perform update A" mcssages to  all 
nodcs. (These messages indicate that the new value for item a is 110 and the new 
value lor item c is 70.) Update A is then performed with timestamp tl a t  nodes s 
and y but for some reason the "pcrform update A" message to node z is delayed. 
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Then update B arrives and rcccivcs OK votes a t  nodes x and y. "Perform update 
B" mcssages indicating that the new value of item b is 45 and the new value of 
item c is 65 are sent out to all nodes. Update B is performed ad nodes x and y 
with timestamp b, where t2 > tl. 

The databases a t  nodes x and y first contain a = 100, b = 40, c = GO; then 
a = 110, b = 40, c = 70 (after A); and finally a = 110, b = 45,c = 65 (after A 
and B). All these databases are consistent (i.e., a - b = c). I.Iowever, at node 
z, updatc B is performed even though the "perform update A" message has not 
arrived. Node z has no way of knowing that this message is missing since i t  did 
not vote for update A. This leaves the database a t  node z with a = 100, b = 
45,c = 65, which is an inconsistent state. Any queries performed a t  z after B 
has bccn performed and before the "perform update A" message arrives, will get 
an inconsistent view of the database. 

Of course, xhcn the "perform updatc A" message arrives a t  node z, the 
value of a will be changed to 110, leaving the database consistent once again. 
Notice that the value of c (equal to 65) is not affected by the "perform update 
A" message because the timestamp of item c in the database is &, while the 
timestamp of update A is tJ, which is less than &. 

3.2 Consistency of thc Distributed Voting Algorithm for Updates. 

In order to understand more fully why it is that the distributed voting al- 
g o r i t h  may temporarily leave inconsistent data a t  some nodes, we will briefly 
discuss the type of consistency provided by the distributed votiilg algorithm. It 
turns out that not even the distributed update algorithm with only update trans- 
actions provides consistency in the sense that the centralized locking algorithm 
does. 

OBSERVATION. Not all schedules S for update t~ansactions produced by the 
distributed voting algorithm are consistent. 

PXOOF OF OBSERVATION. Using the notions of transactions and consis- 
tency defined in section 2.2, we can write the update transactions of the previous 
examplc (section 3.1) as: 
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and 
B=( (B,r,d[b,~]), (B,r)d[c,zI), P,W,d[b,yI), 

(B, w, d[c, ylj, (B, w, 311, PI w, d[c, XI), 
(Q w, d[b, zj), (B) w) d k 4)). 

The schedule obtained by cxecuting A and B as described in the example is 

s = (  (A,r,d[a,xl), (A,;d[c,xl), (A,w,dIa,yI), 
(A, w,  d[c, Y]), (A, w,  d[a, XI), (4 w, d[c, XI), 
0% r, d[bJ XI), PJ r, dIc, XI), (B, w, 46, ~ 1 1 ,  
( ' 9  w, d k  Y]), @) w )  d[b, $1)) P, w, d[c,xI), 
@, w, zl), P, w, d k 41, (A, W, dla, 211, 
(A, w, dIc, zl)). 

By examining S, we observe that A 4 B (because action (A, wJ d[c, x]) preceeds 
action (B, r, d[c, x]) ) and B 4 A (becailse action (B, w, d[c,z]) preceeds action 
(A, w, d[c,s]) ). Since the relation "4' is cyclic, S is inconsistent. (End ?roof of 
observation.) 

TheB  4 A relation in S is produced by the last action (A, w, d[c, 4). However, 
this is not a "normal" write action because it is never actually performed. Recall 
tha t  update A had obtained timestamp tl while item c a t  node z had timestamp 
tZ, greatcr than ti. Hence, t h e  timestamp mechanism at  node z simply ignores 
action (A, w, d [c, z]) and item c keeps its old value of 65. 

Thus, in z secse, the relation B 4 A does not represent a real dependency 
I. . of transactions A and B. In other words, B 4 A means that an action of B must 

come before an action of A in schedule S, but in this case this is not strictly true. 
The  action of A (LC., (A, w,  d[c,z]) ) could be moved ahead of the B action (i.e., 
(B, w, d[c,t]) ) and the end effect of the actions would be unchanged. That is, let 
schedule S' be the schedule obtained from S by moving action (A, w, d[c,z]) as 
follow6: 

s' = ( (A, r, d[a, XI), (A, r, d[c, $11, (A, w, d[a, YI), , , 

(A, w, d[c, yl!, (A, w,  4% XI), (A, W ,  d[c, XI), 

If we start with some initial state of the database and perform schedule S' we 
obtain the same final state as if we had started with the same initial state and then 
performed schedule S. This is truc because, in either case, action (A, w, d[c, z])  has 
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no cffect on the final state. In S', the value written by this action is overwritten 
by the following action (without any other actions having read the value) while 
in S, the action is not actually pcrformed. In this special sense, schcdulcs S and 
S' arc cquivolcnt. 

Wc will use thc term "end equivalcnt" to dcscribc two schedules whose final 
effect on thc system is the same. A schedule which is cnd equivalent to  a serial 
schedule is end consistent. (The terms mutual consistcncy [THOM76] and ccn- 
:rcrgencc consistcncy [GRAY791 have been used for what we call end consistency 
here.) 

Notice that schcdule St is a consistent schedule because the "+" relation 
for S' has no cycles (i.e., we have eliminated the B 4 A relation). Therefore the 
original schedule S is end equivalent to some serial schcdule. We will now show 
that  in general, any schcdulc S produced by the distributed voting algorithm, 
with update transactions only, is end equivalent to some serial schcdule. B u t  
before we do so, it is useful to rccrrll how timestamps are assigned to update 
transactions in the distributed voting algorithm (see chapter 3): 

The timestamp of transaction T, ts(T), is assigned to T when T is accepted 
and must bc (1) larger than the timestamps of the items read by T at T's 
originating node, and (2) larger than the clock times at all (,he nodes visited in 
the voting process. Also notice that when T requests OM votes ni; a node, tha t  
node reads all the timcstamps in the base set oi T. ii any of these timestamps is 
larger than the corresponding timcscamp read by T at  its originating node, then 
T is rejected. Therefore, it T is-accepted, ts(T) will also be larger than all the  
timcstamps encountered in the voting process for the ifems in the base set of T. 

THEOREM 4. Any schedule S of update transactions produced by the disSribz?BeG 
voting algorithm is end equivalent to some serial schedule. 

PROOF OF TEEOREM 4. Let S be the schcdule produced by the distributed 
voting algorithm for a set of update transactions. (We assume that all actions 
of transactions that were rejected by the distributed voting algorithm have been 
rcmovcd from S. Since rejected transactions only read data, their actions are not 
important in determining end equivalence.) Let TL, Tz, . . . T, be the transactions 
in S (i.e., the transactions that completed successfully) and let ts(Ti) be the  
timestamp of transaction Ti, 1 < i r< n, 

STEP 1, We transrorm scheduie S into schedule S' by moving all write 
actions that were not performed because of a timestamp conflict. That is, for dl 
occu rrcnces 

S = (. . .(Ti, W ,  el, . . . (Tj, W, e), . . . ) 
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I 

I 
I where ts(Ti) > ts(Tj), we move action (Ti, w, c) to immediotcly precedc (Ti, W, e). 
1 The ncw schedule S' is end cquivalcnt to S because the effect of action (Tj, w, c) 

is null in S and is overwritten (without having been read by any other action) . 
in St. 

! Notice that in schedule St all write actions ore "normnl" actions. That is, 
write actions in S' actually write a value (and a timestamp) into the database. 
Also notice that there can bc no read actions of Ti between actions (Ti, w, e) and 
(Tj, w,e) in schedule S. To sce why this is true, let x be tile node where both 
Ti and Tj rcceivc OK votes. Also, let zj be the instant when Tj gets its OK 
vote a t  nodc s, and let 2;. be the instant when Ti gets its OK vote a t  node r. 
Since ts(Tj) < ts(Ti), i j  must occur before 2;.. Since all reads of Tj occur before 
Zj, and zi occurs before (Ti, w, e), then all rcads of T j  must occur before action. 

\ .  
? 

(Ti, w, e). This last statement implies that the actions of transaction Tj ore still 
' i 

Y 
in a propcr ordcr in schedule St. In other words, all the reads still precede all the 

. G 
i -1 write actions of Ti in St. 
. e 

i 
STEP 2. We now have to show that S is consistent and thus equivalent 

: .. t o  some serial schedule. To do this, we will show that if Tp 4 Tq in S', then 
f 

t6(Tp) < ts(Tq) Once we show this, it immediately follows that "4" is acyclic 
I 

and that S' is equivalent to a serial schedule, 
I 

If Tp 4 T,, then for some i > j, 

i 
1 S1 = [. . .(Tp, ai, e), . . . (T,, aj, e), , , ,) 
4 
I where (I) either a i  or a j  is a write action and (2) there is no k such that i < k < j 
i and ek = e and ak = write. There are three cases we must consider now. 

1 Case 1 of step 2. ai = a j  = write. In this case, ts(Tp) must be less than 
6 ts(Tq) because otherwise, in step 1, we would have moved (T,, aj, c) to  precede 

(Tp, ai, e). 
Case 2 of step 2. ai = write and a j  = read. When Tp writes e, it also writes 

timestamp ts(Tp). Thus when T, reads e, it will see this value and Tq will be 
a assigned a timestamp larger than ts(Tp). Therefore, ts(Tp) < ts(TP). 

i Case 3 of step 2. ai  = read and a j  = write. This case is somewhat more 
complcx than thc previous two. First notice three important facts: (1) Notice 

i tk'at T, and T, conflict because the write set of T, shares item e with the read 

1 set  of Tp; (2) Notice that since both Tp and T, were accepted by a majority of 

f 01< votes, there must be a nodc x that voted OK for both updates; (3) Let  to be 
thc  timestamp read by Tp in oction (Tp,r,e). Since timestamps for data  items 

i can only increase in value, tp must be less than ts(Tq), which is the value of the 

f 
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timestamp written by Tq in action (Tq, w, e). Within case 3, there are now two 
sc bcases we must now consider: 

Subcasc A 01 casc 3 (stcp 2). Suppose that Tp arrived at  x bcfore Ts did. IT 
a t  thc time when T, arrives, T, has not been performed, then T, will be delayed 
(because Tp and Tq conflict). Hence, in any case, Tq will see Tp pcriormed at s. 
Alter Tp is performed at  x, the clock at  x must have a highcr value than ts(Tp). 
Since ts(T,)' must be larger than the clock reading a t  node x when Tq receives 
its vote, we see that ts(TP) > ts(Tp). 

Subcasc B of case 3 (step 2). Now suppose that Tq arrived a t  node s bcfore 
Tp did. This implies that when Tp votes at  x, it sees a timestamp of ts(Tq) , 

" 
for item c. Since this value is less than lo, Tp will be rejected. Since this is a 

I 

i contradiction, Tq will not arrive bcfore Tp. 

I We have shown that in all cases, ts(Tp) < ts(Tq), and t h s ,  Tp 4 Tq im- 

i plies that  ts(Tp) < ts(Tq). This in turn implies that St is equivalent tc some* 
I serial schedule and that S is cnd cquivalcnt to that same serial schedule. Hence, 
1 the  distributed voting algorithm provides end (or convergence) consistency for 

updates. (End proof o l  theorem 4.) 
4 The result of theorem 4 implics that any update transaction Tp sees a consis- 
1 tent view of the database when pcrforrncd with the distributed voting algorithm. 
, To check this, consider the set of values read by Tp in schedule S, where us 
! 

I before, S is the schedule produced by the distributed wting algorithm. These 
vniucs arc exactly the same values rcad by Tp in schedule St produced alter step. 

1 1 above. This is true because the values read by any action are not nffccted 
j by the transformation of stcp 1. Since St is consistent, we find that Tp in S 
i 
i does indeed see a consistent view of the database. Thus, the distributed voting 

1 algorithm satisfies one of the requirements for a concurrency control mechanism. 
f (Scc chapter 2.) It is easy to show that the distributed voting algorithm satisfies 
i the  second requirement, Suppose that at a given time we stop receiving new . 
! transactions and finish processing all existing transactions. The schedule obtained 
1 

from this, S, is a valid distributcd voting schedule. SchcduIe S is end equivalent 
t o  a serial schedule St. Since S' is serial, it leaves the database in a state where 

1 all the implicit consistency constraints are true. Thus, S also leaves the database 
I in the same state. 
I 1 . . (It is hard to compare end consistency to any of the degrees of consiskcr.cy 
i defined in [GRAY76]. In a sense, end consistency is similar to degree 3 consis- 
i 
I -  tcncy becnuse they both provide protcction from arbitrary transactions. That 

i is, with consistency degrees 0, 1, or 2, there are transactions that may leave the 

! dn tnbnse permnnen tly inconsis tent. Ncithcr degree 3 nor end consistency have 
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this problem. On the other hand, end consistency seems weaker than dcgrec 3 
consistency because with end consistency (e.g., like the distributed voting ,nlgo- 
rithm) the databases nt a node may be inconsistent between "perform update" 
mcssagcs and not useful for local consistent querics. 

Earlier, we showed that local concurrency control is not enough for consis- 
tent queries in the distributed voting environment. However, the observation 
that  updates do see a consistent vicw of the database suggests a way to execute 
consistent queries. Simply handle queries as if they were updates with an empty . 

' 

write sct (i.e., dummy update). Thus, querics will Iollow tha voting protocol and 
:..ri!I scc e consistent view oi the datebase. Unfortunately, this method is much 
less eficicnt than local reads with concurrency control. 

By'generalizing the example of section 3.1 to an N node network, we can 
sce that any consistent query algorithm will have to visit a t  least a majority of 
nodes in order to guarantee consistency. Thercfore, the efiiciency of any other 
consistent query algorithm for the distribu ted voting environment will be similar . 
t o  the efficiency of the query algorithm described in the previous paragraph. (It 
might bc possible to modify the distributed voting algorithm in order to  allow 
consistent querics to be esecuted at  a single node. For example, by including in 
the  "pcrform update" messages thc timestamps that were read a t  a transaction's 
originating node, and by forcing nodes to wait until they see these timestamps 
locally before performing the update, we can force the "perform update" mcs- 
sages to  be executed in the correct order a t  a!! nodes. We have not studied thie 
modified algorithm and its perfdrmance.) 

3.3 Current Qc2zies in the Distributed Voting Environment. 

The currency requirement for queries in the distributed voting environment 
can be expressed as follows: A current query submitted to the system a t  time t 
must rcflcct any updates that have been accepted at  any node before and up to 
time 1. In the following discussion, we assume that a node that accepts an update 
transaction performs the update locally before honoring any queries. Thus, the . 
eflect of any update accepted a t  node x a t  time t will be seen by all queries 
received a t  node x after time t. 

Just as in the'centralized locking environment, there are many alternatives 
for dealing with current querics. One simple algorithm for query Q submitted 
nt  node s at time t is to send Q to all nodes and to ask them to execute Q, 
(This can be done seria!ly or in parallel.) When node s collects all the answers, 
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i t  chooses the values with the most recent timestamps. That is, for each item 
rcfcrcnccd by Q, node x wi!l collect N values and will choose the value which has 
the  largest timestamp (where N is the number of nodes). The values obtained 
in this fashion will reflect all updates acccptcd before timc t (and possibly other . 

updates accepted after time t )  because these updates have been pcrformed at 
lcast a t  one node. 

The number of nodes consulted for a current qucry can be reduced t o  a 
majority of nodes by having qucry Q also check the list of pending updates at 
each node it visits. A pending update a t  node x is an update that node x has 
voted OK on, but on accept or reject messagc has not yet arrived a t  node x. If 
qucry Q finds a pending update a t  node x, thcn it shoald wait until the outcome 
of the update is dccidcd before proceeding. This wait is necessary because there 
is a chance that these pending updates are pcrformed before time t at a node 
tha t  Q docs not visit. After having visited a majority of nodes, Q can guarantee . 
t,h-?t. e!! apdztcs pcrforrned bcforc time t have been refiected in the data i t  has 
read, 

, I t  is impossible to have a current qtJery algorithm that visits less than a 
mCjcrit,y cf ncdes. I thc nodes not visited by query Q constitute a majority, 
thcn the? could have accepted an arbitrary number of updates, before time t, 
without Q and the rcst of the nodes finding out. 

3.4 Current an4 Consistent Queries in the Distributed Voting Environment. 

Current and consistent queries in the distributed voting environment can be 
processed as dummy updates using the distributed voting algorithm. As we have 
secn in section 3.2, this algorithm provides any transaction with a consistent 
view of the data. This view is also current because this algorithm also makes 
transactions wait for other pending transactions, as w& described in section 3.3. 

3.5 Summary, 

In section 3 (and its subsections), we have shown how current as  well as 
consistcnt queries can be executed when the distributed voting algorithm is used 
t o  coordiilatc updates. Thc consistent query algorithm is less eficicnt than iLs 
counterpart in the centralized locking environment. Similarly, most of the current 
query algori thms seem to Ec less efficient than the centralized locking versions. 
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Thc main rcason for thcsc diffcrences is that there arc no sequence numbcrs 
to order updntcs in the distributed voting systcm. Timcstarnps arc uscd for 
sequencing in the distributed voting algorithm, but the tirncstamp of an update 
is not as hclpful as the scqucncc number ol an update. For cxample, from an 
update's timcstamp wc cannot tell how many othcr updates havc been previously 
pcrformcd in the system. 

4. QUERIES WITH TZIE ELLIS TYPE ALGORITHMS, 

4.1 Consistent Queries, 

It is easy to  study the consistency of the Ellis type algorithms. (See chapter ' 

3.) The original Ellis ring algorithm (OEA) actually performs updates one a t  a 
time, so that  all schedules produced by that algorithm are not only consistent 
bu t  scriai as wcll. In this casc, consistcnt queries can be processed locally a t  any 
node with local concurrcncy control. The proofs of these facts are so simple and 
s imi l a~  to our previous proofs that we will not present them here. 

The othcr more efficient E!lis type algorithms (KE3AS and m A P )  also 
provide the same typc of consistency as the OEA, In the modified Ellis algorithm 
with sequential updates (MEAS) and in the modified Ellis algorithm with parallel 
updates (MEAP), an update transaction T with base set B does not perform any 
action a t  node x until all othcr transactions that previously referenced items in 
B havc been completely finished at  node x. This implies t h d  if Tp 4 T (i.e., T 
depcnds on Tp), then Tp cannot depend on any transactions that follow T in a 
lcgal schcdule. Thcrcforc, any cycle Tp I( T 4 TI 4 T2 -i . . . 4 T, -< Tp i8 

impossible and any schedule produccd by the MEAS or the MEAP algorithms is 
consistent. It is also easy to shc* that local concurrency control provides local 
qucrics with a consistent vicw of the database. 

Therefore, all the Ellis typc algorithms are just as cEcient for processing 
consistent queries as  the centralized locking algorithm. 
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4.2 Current Queries. 

In the Ellis type algorithms, a11 nodes must be "locked" before an update is 
performed a t  any node. This means that any node can find out if n new update 
is being performed somewhere in the system. This implies that current queries 
can be executed locally without consulting eny other nodes. This is an important 
advan tage ~f these algorithms. 

The current query nlgorithm for the OEA environment is very simple and 
encicnt. When a current query Q arrives at  node x at  time t ,  this node checks 
the  database state, If the database is idIe at  node s, then all updates that have 
been performed up to that instant (time t )  have been performed locally and Q 
can be executed immediately. If the database state is passive, then some update 
A might havc been performed before time t at  some other node but not a t  node x. 
Therefore, Q must wait until the next "perform update" message (corresponding 
t o  A) arrives. After A is performed at node x, query Q can be executed. If the 
database state is active, then node s itself is trying to obtain locks for a new 
update A'. But since the state is still active, the locking process for A' did not 
finish bcforc timc t and At was not performed anywhere before time t. Thus in 
this case, Q can also be executed immediately. 

Tlic current query algorithm for the MEAS and the MEAP algorithms are 
very similar to the above algorithm, The only difcrence is that the current query 
nlgori thm must check the state of every item referenced in the query. For every 
passive state found, the query is delayed until the update involving that item 
arrives. After these waits, the query can be executed. 

5. PERFORMANCE OF TEE QUERY ALGORITHMS. 

We have seen that for every update algorithm there are consistent and current 
query algorithms. Some of these new algorithms are more eficient than others. 
For cxamplc, thc consistent query algorithm corresponding to the centralized 
locking and the Ellis type algorithms arc much simpler and efficient than the 
consistent query algorithm corresponding to the distributed voting algorithm. 
The currcnt query algorithm for the Ellis type algorithms, is morc eficicnt than 
t he  curren t query algorithm for the centralized locking algorithm, which in turn 
is morc eficient than the one for the distributed voting algorithm. (The second 
part  of this last statement may not be true in some cases where the central node 
in the centralized ~ t ra tegy  is congested. See chapter 6.) 
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s 

Tile overall system pcrformancc will strongly depend on the qucry types 
and thc fraction of the total transactions that they represcnt. For example, if 
most transactions are free reads, then all algorithms will perform identically. 
If most transactions are current qucrics, then a system that uscs an Ellis type 
update algorithm will pcrform thc bcst bccausc current qucries can be executed 
with vcry Iow overhead. If most transactions are consistent qucries, then the  
ccntralizcd locking or an Ellis type algorithm will perform best. The case where 
a11 trnnsactions arc updates has already becn studied, and we discovered tha t  
the ccntra2ized locking algorithm pcrforms best in most cases of interest. 

When wc have different transaction types running, thc choice of algorithm . 
. - .  

will d c p c ~ d  on the particular percentages of transaction typcs and the system 
pararncters. However, the trends should be obvious by now. For example, if 
p transaction are updates while I - p are currcnt qeries, then as p decreases 
towards 0, thc centralized locking algorithm will be less attractive as compared 
l o  the original ~ 1 l i s . r i n ~  algorithm (OEA). At some low value of p, the OEA will 
become thc bcst choice. A detailed simulati~n could give us a good approximation 
to  the value 01 p where the switch-over occurs. But unless we have a particular 
system in mind, the exact value of p is hard to evaluate. Therefore, we will not  
perform any such simulations here. 

6. SOME CONCLUSIONS. 

Frcm our study we ran rcach the following general conclusion. Out  of the  
algorithms we studied, the centralized locking algorithm (i.e., MCLA-h) seems 
to  be the best algorithm for handling a combination of update and rcad only 
(qucry) transactions except it: 

(1) The central node is heavily loaded (due to the centralized locking) and 
updates constitute a large part of thc icad. In such cases, the distributed voting 
algorithm may handle updates mc-c ;fficiently; If updates are not frequent, then 
the  increased response time of updates In the centralized locking system will be 
offset by the reduction in the response time of queries. 

(2) Most transactions are currcnt queries. In this case, the Ellis type algo- 
rithms will operate more efficiently because current queries can be executed at 
a singic node. 



CHAPTER 10 

TRANSACTIONS WITH AN INITIALLY UNSPECIFIED BASE SET 

Up to now we have assumed that all transactions ~pecify fully at their incep 
tion the set of items that they will reference. We have called this set of referenced 
items the base set of the transaction, so we call this assumptioz? the base set 
assumption, In this chepter we will study transactions that do not specify their 
basc set initially. In other words, these transactions must read some item values 
before deciding what other items to read, 

In section 1 we discuss how the fact that transactions do not initially specify 
thei;. base set affects the algorithms we have presented in previous chapters. In 
scction 2 we study how thc MCLA-h algorithm can be modified to deal with 

. .. . 
transactions that do not spccify their base set initially. (The rest of the nIgo- 
rithn~s we have studied either are not affected by the base set assumption, or 
the modifications needed by them are very similar to the modifications given for 
the MCLA-h algorithm.) Finally, in section 3, we discuss the performance of the 
modified MCLA-h aIgorithm, 

1. OVERVIEW, 

The elimination of the basc set assumption only ailects some of the algo-' 
rithms we have studied, Notice that none of the query algorithms of chapter 
9 arc affected. Iil all these quer,v algorithms, all the data needed by a query is. 
read a t  a singie node with iocai concurrency control, so that a query does not 
have to specify its base set beforehand. (Recall that in some query algorithms 
like the DVA algorithm, the query must visit other nodes bcfore completing. But 
evcn in these cases, all the data is read at a single node.) In other words, to 
read data a t  a node, a query can request some local locks, read the data that 
is locked locally, pcrform some computations based on the data read, and theii 
dccidc that it wants to read more data. To read the additional data, the query 
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simply requests more local locks, reads the additional data, and possibly repents 
the cycle. Thus, it is not necessary that queries specify their base set initially. 
(Noticc thnt this can i e ~ d  to iocai deadlocks.) 

The update algorithms thnt are not bascd on locking are not affected by 
the base set assumption either. The algorithms that do not use locking arc the 
DVA and the CCA algorithms. No modification is required in these algorithms 
in order to handle transactions that do not specify their base set initially. In 

, thc distributed voting algorithm, the item values and their timestamps are read 
initially before any votcs have bccn obtained. Thus, the node that is doing this 

, initial read is free to read 6ome values, then compute some, and then based on . 

the computations, iti can decide to read other items. When the read phase has ' 
completed, the votirig phase can commence just as if all the item values had 
bcen rend in a singleboperation. The other algorithm that does not use locks is a 
complete centralization algorithm where all values are read and all computations 
performed a t  the central node. In this case, there is no problem with initially 
unknown base sets either. 

Therefore, in this chapter we will only s t d y  the locking update algorithms. 
Since the modifications needed to cope with transactions that do not specify 
their base set initia!!y are very similar for all the locking algorithms, we will 
concentrate on one of the update algorithms, the MCLA-h algorithm. 

In this chapter we will continue to assume that no failures occur in the 
system. We still assume that the-database is complctely replicated at all nodes. 
Finally, since we will only study update algorithms, in this chapter we can assume . 

that all transactions are update transactions (i.e., no queries). 

2. STRATEGIES FOR THE MCLA-h ALGORITHM, 

In the case of the centralized locking algorithm (MCLA-h), the base set is 
needed beforehand so that locks can bc requested from the central node. When 
the base set is initially unknown, it will be impossible to request all locks as a 
first stcp. Thcre are three possible alternatives: 

STRATEGY 1. Enlarge the base set. In some cases we can get away with 
simply requesting a few more locks from the central node in order to cover all 
alternatives. For example, a transaction might read the balance of a bank account 
in ordcr to record a withdrawal. If the new balance is negative, a speciai entry 
must bc made in $he overdraft record. We can process this transaction by simply 
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requesting locks for the balance and the overdraft records, even if we are not 
sure we will nccd the ser-nn.1 itcm. The advantage of this strategy is that we only 
rcqilcst locks once. However, the disadvantage is that we unnecessarily restrict , 

concurrent cxccution of other updates because of the extra locks we hold. In  
our example, many transactions may request the lock for the overdraft record 
even though in most cases they will not use it. Thus, most of the transactions 
could run concurrently but will actually run serially because they unnecessarily 
request the lock for the overdraft record. 

STRATEGY 2. Request locks as they are needed. When this strategy is 
foilowcd, an update first specifics an initial set of items it would like to  read. 
Locks arc requested and obtained, and the update reads the items and computes.. 
If the transaction discovcrs that it would like to read some more items, then i t  . . 

requests more locks from the central node. After these new values are read, more 
could be requestec! and so on, This method does not seem very attractive if the  . 

number of rcquests' to  the central node is not small. In the centralized locking 
algorithm, we want to avoid "visits" to the central node as much as  possible 
because this is the system bottleneck. 

However, for many transactions, a second or third lock request will be very . 

rare, and most transactions will run with only a single request to the central node. 
In the bank example above, we can request the lock for the overdraft record only' 
when it  is actually needed. Thus, only the few transactions that find negative 
balances will have the extra overhead of requesting the additional lock. 

When locks are requested as they are needed, there is a danger of deadlocks. 
These deadlocks can be detected by the central node. Some transactions may 
have to  be backed out, but this does not represent o problem because no item 
values have been modified by a transaction requesting locks. 

STRATEGY 3. Read without locks and tbr .I request locks needed. (A similar 
strategy is followed by the distributed voting algorithm.) Using this method, a n  
update reads all the data it needs a t  its originating node, without holding locks. 
This way, on update can rcad data aud compute in stages. Once the ilpdate is * 

rcady to  write the new values, locks are ,requested from the central node for all 
items that  were referenced. 

Of course, the problem with this strategy is that by the time the locks are  ' 

obtained, the values that were initially rcad might be invalid. Therefore, we need 
n rnechacism for detecting conflicting updates that wcre performed during the 
read. When such a conflict is discovered, the update will have to  be restarted. 
There are several altcrnntives for processing the second attempt. 

One way is to release all the locks obtained and to start the update.once 
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more from scratch. (Dummy updates with the update's sequence number will 
have to be sent out to all nodes.) On the second attempt, we may use strategies 
1 o; 2 (above) because we might now have a better idea as to what items will be , 

needed. 
Another alternative is to  keep the locks form the first attempt, reread the 

da t a  to  obtain the current values, and then to proceed using strategy 2. In other 
words, the fact that some updates conflicted and modified some values that  were 
read docs not necessarily imply that another base set will be needed. 

For  example, if we use this idea on the bank account example, the update 
will read the balance (with no locks) at  node x and will then discover that it needs 
the  overdraft record. This item will also be read a t  node x, and the first phase 
will complete. Then both locks will be requested, but when they are granted, 
may discover that some other conflicting update was performed between the  time 
the update started reading and the time when the locks were granted. Assuming 
tha t  a conflict did occur, the data read is obsolete, but there is no need to throw 
away all our previous work. Chances are that the new values will not increase the 

' 

base set ncedcd. So we can reread the balance and the overdraft record locally 
and rccxecute the computations. When we do this, we may find a new overdraft . 

record value, but this should not force us to read other items. We may also find 
a new balance and that we do not need the overdraft record after a!!, bct this 
does not force us to read other items either. (That is, the base set is now smaller, 
so i t  does not matter if we have obtained an extra lock.) In some special cases, 
we may find a completely different balance which may force us to read some 
other items. (For example, w e  may now need an "overflow" record because the 
account has too much money !) In many applications, occurrences of drastic base 
sct changes due to item value changes will be rare. In such cases, a read without 
locks strategy will allow most updates to complete with only one lock request to 
the  central node. 

2.1 Mechanisms for Detecting Conflicts, 

The rncchanism to detect conflicting updates can be fairly simple. When 
an update starts its reading phasc (with no locks) a t  node x, it makes o copy 
of the set of performed updates. Let "Copy" be this copy of Done-set[x]. The  
values rcad by the update will reflect all updates in this set. When the locks are 
obtained !atcrj the update will receive a sequence number s and a hole list I .  If 
all updates with lower sequence number than 6 and not in hole list I  are in set 
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Copy, then the data initially rcad is current and the update can proceed (i.e., ib 
can be pcrformcd a t  all nodes). If some update is missing from set Copy, then 
the update must restart as outiined at  thc end of section 2. 

As a mattcr of fact, the chcck can be made at  the central node itsclf after all 
locks are granted. The central node can send out the "perform update" messages 
directly because the new updatc values have already been computed. This way, 
we savc somc timc because we do not wait for the grant mcssage to reach node 
x. Furthermore; if the " p c r f c r ~  ~pdate'' =messages ere sent out by the central 
nodc itself, the locks obtained by on update will be rcleased immediately, so we 
might as well do away with locking completely. We can also do away with t.he 
hole lists because the list of updatcs that have obtairzed locks but not released 
them (i.e., the hole list) will always be empty. Only the sequence numbers issued 
by the centra! node will still be used to properly sequence each update. 

In summary, this is how an update would be processed. When update A is 
rcceived a t  node x, the sequence number of the last update performed at  node x is 
recorded. Let this number bc s. Then update A will read the values it  necds and 
computes somc czw values. These new values, together with sequence number 
s are sent to the central node for authorization. When the central node receives 
them, it  checks that thc latest sequence number issued by the central node is 
indccd 6. If this is not true, A is rejected and node x is informed. (In this case, 
updatc A must be started from scratch because no locks are held by it.) If s is 
the last sequence number issued,-then A is accepted. Update A is assigned the 
next scquence number (i,e., s+ 1) and the "pcriorm update" messages (with the 
new values that were computed at  node x) are sent out to all nodes. 

The problem with this mechanism (the original one we described or the 
simplified version described in the previous paragraph) is that some updates may 
be unnecessarily rejected. For example, suppose that an update A has started 
rcading data a t  node x and a sccond updatc A', which does not conflict with A, is 
pcrformcd a t  node x. When update A arrives at the central node for au thoriza- 
tion, it will be rejected because it did not see updatc A! (Notice that A' has a 
Iowcr sequence number than A,) Neverthelcss, update A could have been accepted 
because A' did not modify any of the values read, by A. 

Thcrc is another mechanism which we can use for detecting conflicts which 
is more eficient than the onc described above. The idea is that the local concur- 
rency controller at each nodc dctccts thc conflicts. As an update A is reading 
a t  nodc s without global hcks (i.c., those issued by the central node), i t  sets 
local Iocks, These local locks are hcld until A obtains global locks and completes, 
Thcrcfore, when a "perTorrn updatett message for a conflicting update A' arrives 
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at x,  thc concurrcncy control will immediately detect the conflict. If updnte A 
is stiI1 rending, it  should be halted and restarted in order to avoid wasting more 
timc on it. If updnte A has finished reading and is waiting for locks from the 
central nodc, then node s remembers that the data obtained by A is no good. 
Whci; tlic grant message for A arrives, either the global locks are released and 
A restarted, or thc data is reread as described previously. In any case, the local 
locks of A arc rclcased and update A' is peiforriied. 

Aftcr update A obtains global locks, it must still wait until all updates with 
Iowcr sequence numbcr and not in its hole list are pcrforrned locally a t  node x. If 
after this step no conflicts have been detccted by the local concurrency control, 
then update A can bc performed. The new values produced by A are stored in the 
local database, the Iocal locks are released, and the "perform update" messages . 

are  sent out to all nodes as before. 
With this ncw mechanism, only updates that actually read values that were 

subsequcntly modified by another update will be rejected. The use of the local 
concurrency control to detect conflicts does not produce any overhead since this 
control is required a t  all nodes in order to perform the updates correctly. 

2.2 The Other Loeking Algorithms. . . 

In the case where the other locking algorithms are used for updates that  d o  
not spceify their base set initially, we have similar problems to the ones of the  
MCLA-h algorithm. The problems do not appear in the original Ellis algorithm 
(OEA) because, bhcrq updates lock the entire databasa regaidless of what they 
will read. But in the other algorithms (c.g., m A S ,  MEAP, WCLA, TWCLA), 
updates must obtain locks for the items they will read, before they actually read 
any  data. In these cases, we have the three same options that we had for the  
MCLA-h algorithm: (1) enlarge the base set, (2) request locks as they are needed, 
and (3) read without locks and then request locks. Since these solutions are so 
similar to the ones for the MCLA-h algorithm, we will not discuss them here. 

3, PERFORMANCE OF THE DIFFERENT STRATEGIES, 

Only the performance of the locking algorithms is afltctcd by the elimination 
of the base set rcstriction, All other update algorithms operate as before, and we 
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can therefore use the pcrformance results obtained in chapter 6. In this section 
we will concentrate on the change in performance of the MCLA-h algorithm due 
to  thc initially unknown base sets. The elimination of the basc set restriction 
will affcct the other locking algorithms in a similar way. 

Studying the performance of the MCLA-h algorithm in the case where the  
i base set is initially unknown is not simple. We have outlined scveral different . 

strategies that cou!d be used for this case (e.g., enlarge the base set, read without 
locks, etc.) and in each case the performance depends on how well the update 
transactions suit the strategy. Such factors as how many extra locks are needed 
to cover ell possible base sets (for the enlarge the base set strategy) or how 
many lock requests to the central node are needed by an updatc (for the request 
locks as  needed strategy) will entirely define the performance of these algorithms. 

-i Unfortunately, the update model that we have used so far does not take into 
> 

4 account any of these factors, and it is hard to add the factors without application 
j knowledge, 

'7 

.I Fortunately, a t  least it is possible to study the "read without locks" strategy 
and obtain a rough cstirnate of how this strategy performs. In appcndix 8, we 

li , present a simple analysis of the "read without locks" strategy which provides 
us with an approximation for the average response time of updates. (The local 
conflict detection mechanism is used; an infinite hole size limit is assumed.) The  

1 

i results are plotted in figure 10.1. We can observe that the increase in response 
i 
1 

time is very small. That is, the number of updates that are rejected is so small 
% tha t  i t  only bccomes significant when the system is heavily loaded. In these cases 
J 
i where the system is close to saturation, a small load increase due to the rejected 
5 updates can increase the average response time of all updates significantly. in ! 

all other cases, the increase in average response time is small. 
The  results of figure 10.1 are obtained assuming that updates reference items 

at random within the database. Of course, in many applications, there are certain 
2 items that  are frequently referenced by updates. In this case, the number of 

conflicts and updatc rejections will be larger, ead the response time of updates 
i 

will bc worse than what is shown in figure 10.1. 

i However, the assumption of random reference was also made b r  the analysis 

4 of thc other update algorithms, so that it is fair to compare the results of figure 

1 10.1 with the previously obtained results. In figure 10.2, we graph the results 
I for the "read without locking" MCLA-h algorithm together with the results for 
3 

3 thc  distributed voting algorithm. To make the comparison realistic, we should 
mnkc the '>?' paramctcr for the centralized locking algorithm smaller than for 

I the  distributed voting algorithm. (See chapter 6.) Recall that the I. parameter 

I 
4 
1 220 
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Figure 10.1. The :<CIA-h algorit!!: The read without locks 
stratecjy. 1=5, H=1000, as=5, Id4.025 sec. ,  T=0.1 sec.. 
hzinfinity. 
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(I0 time slice) is the I0 time needed to read or write a timestamp or n lock. 
For  n locking algorithm, 1. is near zero because the lock table can be kept in 
main mcmory as a hash table.' Therefore, in figure 10.2 wc give the results for 
t h e  MCLA-h algorithm (with read before locking, h = infinity) with I, = 0. In 
chap ter 6, 0.025 seconds was used as a typical vaiue for I, for the DVA a'lgori thm, 
bu t  by using caches this value may bc reduced somewhat. In figure 10.2, we give 
the response time of the distributed voting algorithm for 1, =.0.01,1, = 0.005, 
and I, = 0 seconds because n true value should be in this rangc (probably closer 
to 0.01 seconds). The IMCLA-h algorithm performs better than the distributed 
voting algorithm in most cases of interest. If I, = 0 for the distributed voting . 

algorithm (which is unlikely), this algorithm performs better than the centralized 
locking algorithm when the system is heavily loaded. (This is not shown in figure - 
10.2. This efTect eppears in figure 6.2 of chapter 6.) However, for the more 
realistic values of I, = 0.01 or = 0.005 seconds, the MCLA-h (read without 
locks) performs better for aii values of the interarrival time (A,). 

In figure 10.3 we compare the results for theMCLA-h algorithm (read without 
locks, h = infinity) with the completely centralized algorithm, CCA. In  the  
complctcly centralized algorithm, all u~da tes  are totally performed a t  the central 
node. Eccall that in this algorithm no global locks are required; the !oca! COE- 

currency control a t  the central node is sufficient. Thus, for this algorithm, the  
I 0  time slice parameter I, is aIways zero. Also notice that updates do not need 
to specify their base set beforehand. 

The MCLA-h (read without locks, h = infinity) algorithm with I. = 0 
performs better than the completely centralized algorithm, as can be seen in 
figure 10.3. If the I, parsineter is increased for the MCLA-h algorithm, then the  
complctcly ccntra!iz.ed algorithm can perform better. However, this is not a fair 
comparison because I, = 0 is the most likely case for the MCLA-h algorithm. 

The rcsults obtained from the analysis of the "read without locks" strategy 
for thc MCLA-l~ algorithm show that our previous conclusions r e g d i n g  the  
performance of the update algoritl~ms (for complctely duplicated databases, u p  
dates only) are not altered. The MCLA centralized locking algorithm still gives 
the  bc6t average response time for updates in most cases of interest, even when 
the  base set is initially unknown. Furthermore, in the analysis of the MCLA-h 
algorithm in appendix 8 we did not consider many possible simplifications that 
could improve eficiency. (For example, we did not consider that updates could 
bc aborted wlrile tiicy were reading and computing because of a conflict. In the  
analysis, we assumed that all updates requested locks from the central node, even 
when the updates knew'lor sure that they would bc rejected. 

. , 
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Figure 10.3. The read without locks V11W and CCA algorithm. 
t:=6, M=1000, 3s=5, Id=0.025 sec., W.1 sec. 
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We have not analyzed the "increase the base set" or thc "request locks as 
nccdcd" stratcgies. However, we have discovered that the "read without locks" 
strategy performs fairly well. The other strategies should only be used when they 
improve the performance. That is, if for n give application the other strategies 
do worse than the "read without locks" one, then the latter one should be used. 



CHAPTER 11 

1 

PARTITIONED DATA AND M U ~ I P L E  CONTROLLERS 

In mast distributed databases, the data is not completely replicated at all 
nodes in the syfitem as we have assumed up to this p i n t  in this thesis. In this 
chapter wc eliminate this assumption. We study distributed databases where the 
data is partitioned and we present several algorithms for processing transactions- 
in this environment. 

In section 1 we present a partitiooed d a h  model and we show how the ai- 
gorithrns of chapter 3 can still operate in this case. In section 2 we introduce 
the concept of multiple controllers and we discuss how a partitioneci distribukcd 
database system with multiple controllers can operate more effrcicntly. In section 
2 we also prcsent an update processing algorithm for the partitioned data, mu]- 
tiplc controller case. Thcn, in section 3, wc study query processing algoritlims 
for thc partitioned data, multiple controllers environment, and we study their 
performance. 

To simplify the presentation, we wilI first assume that no failures occur in 
the system and that transactions specify their base set initially. Then, in section 
4, we will consider how these assumptions can be relaxed in the partitioned data, 
multiple controller environment. In sections 4.1 and 4.2 we will look at tmnsac- 
tions that do not'specify their base set beforehand, while in section 4.3 we will 
discuss how the algorithms presented in this chapter can be made crash resistant. 

.. 
I. PARTITIONEI) DATA. 

In  this section we will discuss how our algorithms can be modified to handle 
partitioned databases. Up to this point in our research, we have assumed that 
every data item is replicated at every node in the system. In a partitioned dis- 
tributed database, items are not repIicsted at all nodes. As a matter of fact, 
some items might not be dupiicnted at ail. That is, there might exist a single 

226 
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. . 

. . , . 

copy of some items. From the point of view of a single node, it has a fraction or n 
par tition of the database. This par ti tion can be identics1 to, cc;n?letel~ disjoint 
from, or can overlap the partitions at other nodes. 

.. 
1.1 The Partitioned Data Model. 

We wili now extend the database model we defined in chapter 2 in order to 
model partitions. We chose a simple model which explicitly shows where the data 
is replicated. As  bcfore, the database is a fixcd set of M shared named resources 
called items PSWA76J. Each iten1 has a name and some values associated with 
it. For simplicity, we use the integers between 1 and M as the names of the items 
in the database. (E.g., item 10, item j). In addition, each item i has associated 
with it a set S(i). Set S(i) is the sct of nodes which havc a copy of the value of 

ntwccn item i. Tha t  is, each clement of S(i) is the node idcntification number (b, 
1 and N) of R node wllere a value of item i is stored. We assume that all sets 
S(i) are not empty. We represent the values associated with item i by d[i, x] ,  
where s is n node in S(i). (For nodcs y not in S(i), d[i, y] is undefined.) 

In our model, the storage locations of one item are completely independent 
from the location of other items. 1401vcver, for convenience be may group items 
that have identical storage characteristics into "fragments". A fragment F is a 
set of itcms that havc the same S sets. We use the notation S(F) for the set of 
nodes where F is'stored. (That is, S(F) equals S(i) for all items i in F.) 

From the point o! view of the uscr, the locations of the items in the system 
(i.c., S(i)) is irrelevant. The uscr transactions still view the dahbasc system as if 
it were a single local datirbase whcre all item values existed, Therefore, our model 
of a transsct.ion will be not be changed. A transaction T sirnply reads the values 
of a set of items (the base set), performs some comput.ztions and generates new 
values for a subset of the itcms that were read (the write set). As before, we also 
have a set of consistency constrainis or assertions ricr'ined on the database. These 
user corrstraints are specified only in terms of the itcms; the location of the itein 
values is agsin irrelevant. (Later, the location inforniation can be added to the 
uscr constraints as was done in chapter 9.) We assume that a transaction that 
is run by itself on a single database with all itcms values available will preserve 
the consistency of the database. 
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1.2 Transaction Procer;sing With Partitioned Data. 

Let us assume that a transaction T specifies fully a t  its inception the items i t  
will reference; that is, T fipecifies its base set&(T). (We will study the elimination 
of this restriction in section 4.) For the time being, we will concentrate on update 
transactions. Possible simplifications for read-onIy transactions will be discussed 
in section 3. a 

We olso assume that the szstern has n directory which gives the Iocretion of 
the  item values. A directory is a mapping that produces the set S(i) (or S(F)) 
given the item name i (or the fragment name F). By consulting the directory, 
a transaction T will be ablo to find out the set S(i) corresponding to  every item ' 

in fi(T). 
The directory itself is a distributed database and can be partitioned as was 

described in section 1.1. For exnmplc, the directory information for a certain 
, . 

frngmentF can be located at  some nodcs and not at others. A transaction needing 
to  find out where F is locatcd must visit one of the nodcs that have a copy oi 
Ihc S(F) set. There are two main problems that arise now: (a) How does tho 
transaction know what nodcs have a copy of S(F), and (b) How can wc update 
the  elements of S(F)? These are hard probIems in themselves. They c::lrrespond 
to the area of distributed directory management, wvllich wc consider to  be beyond 
the  scope of this thesis. Nevertheless, here we will make some tshort corrlments 
M o r e  rnoving on to the problems we rcally want to address in this chapter. 

We d o  not wish to 11avc n "second level" directory which can tell us whcrc thc 
"first ICPCI" directory is located because this would only push down the problems 
to  this "sccond level" dircc: .-.;I. Orie simple solution is to rcplicate the complete 
(first level) directory a t  all nodes. Another solution is to find out the location oi 
data by broadcasting a request "Where is item i (or fragment F) located?" to . 
all nodes. The nodes with a copy of the corresponding partition of t l ~ c  directory 
would respond "Jtern i (or fragrnest I;? is located nt nodes S(i) (or S(F))" and the  
nodcs that do not have tlie right irlforlnation \vould respond "I do not know". 
By remembering in caches the location of the commonly referenced items, nodes 
can speed up the lookup procedure. Notice that if the information in a cache 
becomes obsolete, there is no serious problem. For exampie, suppose that a node 
s incorrectly b'clicves that a value of item i is !ocntcd nt nodc y. Wbcn nodc x 
rcquesbs the value of item i from node y, node y will inform node s that  it does 
fist have t hc value. Node s will then have to locate item i through the longer 
broadcast procedure. Also notice that it is highly convenient for the nodes in 
S(i) themselves to have the directory information for item i .  
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The directory information can bc updated, but the concurrency control 
mcchanism for doing this is different from the one we discuss in this chapter. 
The rcason for this is that considerably more safeguards must be taken when 
modifying a directory. In this tliesis we will not discuss directory updating; we 
will assume that the directory is static. 

Once the system has all the necessary information, it has to decide how to  
r i n  the transaction. There are two distinct issues involved here. The first, which - - 
we will study in this chapter, is how to provide each transaction with a consistcist 
view of the database; that is, how to deal with the concurrent execution of the 
transactions when the data is partitioned. A second and different issue is how 
and in what order to perform the read operations and computations in ordcr to  
minimize the effort and dciays involved. In our previous research we did not have 
this sccond problem because all the datz required by a transaction was available 
fit any node. But now there is a choice to be made as to where the data ;;rill 
be obtained, and the diFFcrent order of performing the read and cornpiitation 
steps a t  different nodes can greatly irlfiuence the effort required to perform a 
transacticn. In this chapter we will totol!y avoid this problem bccausc it is very 
hard and ~ ~ c u l d  obscure the solution to the first. Therefore, we assume tliat the 
values of the items in the base set 01 a transaction can be obtained from any 
nqde that has them arid this can bc done in any order. (Also notice that the 
database model we have chosen is not good for studying the sccond problem.) 

We now concentrate on the concurrency problem for partitioned data. It 
turns out that any of t.he update alg~rithms for tlie completely duplicated case 
of chapter 3 can be extended to the partitioned data case. The reason for this is 
that a node does not need to l~ave the value of 2n itcrn, d [ i , x ] ,  in order t o  lock 
the item or vote on an update involving the item. Thus, the algorithms virtually 
remain the same. The main differences are that the item values may not be 
available locally and that the nodes must ignore "perform update" messages that 
involvc itcms that tht:y do not have. 

Alttlough this soirltion is simple, it has disadvantages in some cases. Bct 
bcforc we discuss these problcms and their solution, it will be helpful to iIIustrate 
the idea of using the algoritliins or chapter 3 for partilioried data with the$.4CSA- * 

h and the DVA e!gorithrns. Some of the disadvantages will become evident as 
we discuss these twvo algorithms. 

1.2.1 T11e h.1CLA-11 Algorithm for Partitioned Data. 

If we use the MCLA centralized locking algorithm with hole size limit of 
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h (MCLA-h) (me cbapter 3), an updatc \vilI be processed as foliows. Assume 
that an update A is initially submitted at node x. The first step is lor nodc x to  
request locks for d l  items referenced by A frcn! the r,cr?fra! ncde. Even though 
the central node might not have the value of the items needed by update A, 
it still grants locks using thc MCLA-h protocol. Aftcr a possible delay at the 
central nodc, update A obtains the locks, a sequence number and a hole list. The 
hole list is the list of the currently executing updatcs and is used to speed up 
tllc execution of updatc A. A grant message to nodc s informs the node that 
A is ready for execution bcca~~sc no othcr updates can interfere with the items 
referenced by A. Thus, node ..c scts out to rcad the valucs of thc items in the .  
base 6ct of A (.&(A) ). First node s must obtain set S(i) for all items i in &(A). 
(As mctltioned earlier, this ifi dose with help of a directory.) 

After t h i ~ ,  node s k~lows where it can rcad the values for the items in &(A). 
Reading the valucs might il~volve cornrnunicating with scveral other nodes. At 
any cf thcsc nodes where values of A are read, the read operation must be delayed 
1111 ti1 nli updatcs with scqucncc nurnbcrs lcss than A's scqucncc number (and not 
in A's hole list) arc perbrmed. (Scc chapter 3.) This guara~tees that update A 
obtains a consistent view of the database, even though the valucs for A have 
been rcad at several no:!cs. In othcr words, all and only updates with sequence 
number lcss than A's scqucrice number will be reflected on  the items read by 
tipdate A. After node x obtains all t.hc values necdcd by updatc A, it proceeds 
to cornputc the new valucs for the itcrns in the write set of A, Ws(A). Finally, a 
"perform update'' message, which includes the new valucs, is sent to all nodes. 
Even tliougll a node does not have any item valucs involved in updatc A, it still 
msst receive the "perform updatc" message because the node needs tc k ~ o w  that 
A Iins been performed. Such nodes simply add A's seqiience number to their list 
of performed updates and do nothing more. When tlie central node receives the 
"perform updatc" mcssagc for update A, it releases A's Iocks and deletes A's 
sequence number from the hole list. 

1.2.2 The Distributed Voting Algorithm for Partitioned Data, 

The dist.ributed voting algorithm can also be used for partitioned data, 
Unfortunztely, in order to be able to vote on updates, all nudes must keep the - 
timestamps of all items, even though the nodes might not have the values of 
ail items. This is analogous to the MCLA-h case where the central site must 
keep lock information Tor ali items. Since the timestamp information is more 
voluminous than the locking information, this represents a serious problem for 
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the distributed voting scheme. Furthermore, the timestamp information must 
be kept a t  ail nodes, while the Iocking information in the central locking strategy 
is only kept ~t a single site. 

When a node x receives an update from a use:, it proceeds as follows. First, 
the item values and their timestamps are requested from any iiodes th8.t have 
them. Then the voting protocol is followed in exactly the same fashion as before. - - 
When update A is accepted, the "perform update A" message (i.e., the "accept" 
mcssa.gc) must be sent Sc all nodes because all nodes must modify their times- 
tamps for the items referenced by update A. Nodes that also have the value of 
an item referenced by A, update this value. 

2. MULTIPLE CONTROLLERS. 

There arc two main disndvnntagcs with thc solutions for partitioned data 
we have proposed so far. Roth disadvantages stem from the fact that there is 
a single unified control 8tructl;rc for t!:c complete system. The first problem Is 
that every node mtlst be aware of all updating activity in the system. That is, 
every single node must process every update in ordcr to record the timcstarnp 
or ficquencc number information regarding the update. This processirig must bc 
done regardless of whether the node contains any item values that are involvcd 
in the update. In the completely duplicated database case, it made sense to have 
a single control structure t;ccause all nodes had to process all updates anyway. . 

However, in A partitioned database, this is no longer the case. 

The second main disadvantageof the proposed solutions is that the nodes that 
cnforcc the concurrency control (i.c. the central node in thc centra.lizcd locking 
a.lgorith 111 or the voting noclcs iri tile distributed voting nlgorith~n) must resolve 
conflicts i~volving nli updates. Tile single contro1'strucf;ure residing a t  these nodes 
crcat.es a performance bottleneck because ali updates must pass Chrougi~ t!!c~e 
nodes to obtain the proper authorization. If all transactions rclerence randon: 
items in t.hc database (as we have ossumcd up to now), then there is little we 
can do 6 0  r.void thcse bottlenecks. Howcver, in a partitioned database, we expect 
transactions to have spccid rc!crcnce patterns that will allow us to eliminate the 
bottlenecks by having several indqendent control structures. M7e will illustrate 
this idea through an example. 
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2.1 An Example. 

Suppose that a certain company has a distribu tcd database system with two 
nodes. One of the nodes, node s, is located at onc of the company's two plants. ' . 
The database at node s contains all the data perlaizlng to that installation, 
Similarly, node y contains all the data correspondifig to the second plant. *Ihc 

' 

database is hence partitioned in a very natural way. We also expect thaE most - - 
transactions will deal cxclusivcly with one of the database fragments, In other 
words, transactions that only rcferencc data at one of the nodes will be very 
common. Of course, thcre will always be some transactions that will involve data 
a t  both nodes, but we expect the number of such transactions to be low. 

If we choose a single centralized controller at say nodc x, we will have a very ' 
inefficient system. Similarly, if we seiect a distributed voting schcmc where all 
t,ransaction~ must obtain votcs at botli nodes, KC will run into the same problems. 
A more eficicnt and natural way to solve thc concurrency control problern i11 this 
example is to have two indcpcndcnt controilers, one for each database pa.rt;ition 
or fragment. Tlie controller at node x c2.r; have total control over its fra,grnerlt . 
(i.c., tlie data a t  node 2). Transactions that only reference items nt node x will 
only have to cornmunicatc with this controller. Similarly, the controller a t  nodc 
y has cor~trol over its iterns and it can grant access to thosc items. This way we 
climinnte the bottiencck through the use of two controllers, each proccssing its 
share of the transactions. 

The complication in this scheme occurs whcn proccssing the few transactions 
that reference items in botli fra.gments. Such transactions tnllst coordinate thcir 
updntc with both controllers. Oce way to do this is to first reqnest "locks" for 
the items handied by one controller, and then to requcst the resf; of the "locks". 
This protocol is not as efTicient as simply requesting locks (or control) from a 
single controller, but the fact that only a fcw transactions require this "two !eve!" 
protocol (as we assumed at the beginning of this example) should make theoverall' . ' 

systern perlorrn~nce good. 

- 
2.2 Controllers. 

Returning to the general case, we see that we can have several independent 
controliers. Each controller will be in charge of the concurrency control of a set 
of items, and for convenience wc assume that all the items supervised by the 
same controller have the same storage set S(i). Hence, a controller is in charge 



CH. 11: FARTITIONED DATA AND MULTIPLE CONTROLLERS 

of a fra.gment of the database. 
A controller is not a node. As a matter of fact, one controller may bc 

distributed among several nodcs. A controller is simply onc or more software 
"modules" which exercise control of the data using any one of the previously . . 
studied algorithms. For example, a centralized locking controller for fragment F 
has a single module which grants locks for any update referencing items in F. A 
distributed voting controllei. for fragment F' has j modules on j different nodes. 

. ~ i l e s e  nodes may or may not havc values of items in fragment Fr. An update 
involving any items in F' must get a majority of OK votes from the j modules. 
In order to  vote, each module of the distributed voting controller must keep t h e .  
latest timestamps it has seen for cach itcm in fragment F? If the module does' 
not reside a t  a node where the values for F' are stored, then the module needs 
its own copy of the timestamp values, Controllers that use the other update 
algorithms of chapter 3 can also be designed, . 

2.3 Multiple Controller Model. 

Wc will now extend our rnodel to include the concept of "partitioned" or  
~nultiple controllers. Our model should emphasize the independence of da t a  
storage and thc dntn control. That is, the distribution of the datn in the systerrl 
is different from the distribution of the control. Our rnodcI should allow US to  
havc completely duplicaled databases with a single overall control!er, completely 
duplicatccl databases with multiple controllers, or partitiorled data togettrer with 
parlit,ioned control. We would also like our modd to make ea.cIl controller corn- 
j,lctcly independent frorrl other conlroilcrs. Each coiitroller must have totat con- 

, trol over the items assigned to it, and we can use any algorithm (distributed or  
centralized) to cn force this control. 

T o  cxterid the model, we associate each itern i in the database with a con- 
trollcr C(i). Thus, cach item can be rcprescntcd LJ. the tuple (i, V(i),S(i), C(i)), * 

where i is t.he name of thc item, S(i) is the set of nodcs where values of i arc-  
stored, C(i) is the name of tlie controller in charge of the itcm, and V(i)  is the  
set of values: 

V(i) = {d[i, z] I x E S(i)) .  

We use t.hc integex betwccn 1 and C, to name the controll6rs in the systcn~,  
wbcrc C, is t.nc total number of coritrollcrs. (Notice that C, should bc less than 
or equal to the total nurnbcr of items M.) Each controller J (1 < J (Cm) has 
associated with it an algori tiirn A(J), a set of nodes M ( 3 )  where the modules for 
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the controller reside, and a set of items eontrollcd by it, I(J) .  Algorithm A(J) 
i~ the protocol (e.~., centralized locking algorithm, distributed voting algorithm) 

' 

that  is used by the modules that compose the controller in order to perforrn the  
concurrency control of the items in I (J) .  Each node in M ( J )  has a module of 
controller J. For consistency, we nssurnc that C(i) = J for all iterns i E I (J )  ,- 

(1 ( J ( C,). For simplicity, we have assumed that controllers are in charge of 
fragments. That is, S(i) = S(k) lor all i, k E I(J), where 1 5 J 5 C,. We will . - 
also use the C notation to denote the controller of a fragment. Id other worzs, 
C(F)  is the controller of iragment F. (Notice that C(F) must be equal to C(i) 
for all items i in fragment F.) 

2.4 Processing With Multiple Controllers. 

Now that wc havc cxtcndcd our distributed database model to  inclt~cte more 
than onc controller, we must describe how trarisactions are proccsscd in this . . .  en- 
vironment. In this and the following scction, wc first consider update transnctiorls 
with a known base set. In ~ection 3 we will discufis read-only transactions, while 
in scction 4 we will study some of the problems that arise whcn a transaction 
does riot specify its b a ~ e  set initially. 

Whcn all of the items referenced by an update transaction T have tile same 
controller J (LC., C(dj = J for all itcms i E Bs(T) ), then update T can bc 
processed complcteiy by controllcr J following algorithm A[J).  Sincc controllcr 
3 has complctc authority s\-cr all the i terns referenced by T, no other controllers 
llrive to be contoctcd. Thus, rncssages must be scrit out to sornc or ail o! the  ' 

rnodules in M ( J )  sc !L25 they authrizc (e.g., accept, grant) the update T. Thcii 
update T must be performed at  all nodes t.liat have values of the items referenced 
by T. Since S(i) = S lor all items i E DS(T), update T must be pcrkrrned at all 
ilodcs in S. Each oi  tllcse nodes processes ihc "pcriorm update" rncssagc ior T 
and its sequencing in forrnation (e.g., timestcmps, sequence numbers, hole lists) 
in the usual manner. 

If the items referenced by T have dilTerent controllers, then the update must 
be coordineied with aii the contro1Iei.s iii-v~lved. Let 4, J2,. . . J,, bc thc'coiltrollers 
needed for update T. Notice that the problem of perlorrning T under the control 
of J', 4,. . . Jm is dinerent from the problem of performing an update trnnsacticn 
T' with one controller distributed over m modules. In the laiter case, each ol the 
m niodules shsres control of the same items with the othcr modulcs, and thus 
algorithms that only obtain authorization from a majority of modules can be 
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designed (e.g., the distributed voting algorithm). In the case of rn independent 
controllers, each of the rn controllers must authorize the update because each 
controller has complete control over some of the items involved in the  update. 

2.5 The Update Aigorithm for Partitioned Data With Multiple Controllers. 
* 

Although meny variations arc possible, there are iour basic steps thnt must 
be followed to perform updatc transaction T under the control of controllers 
J1,Jz,. .. 3,: 

STEP 1. Obtain an authorization (cage, locks, rnajority of OK votes) for 
update T from controllers 4, 4,. . . J,. For example, if A(&) is the centralized 
locking algorithm, then wr: request locks (from the single node in M(Jk) ) for 
items i in !3.5(T) such thnt C(i) = Jk. If A(&) is the distributed voting aigorititm, . 

wc obtain values nrld timestamps for iberns i in Bs(T) such that C(i) = Jk, ancI 
Ll.-.. .a,., -I.&..:.. 
blr= l t  , v b  vuurrll. OK vdzs from n xzjority of the modules in M(Jk). After a 
controller authorizes an updatc, in cITect it has "lockcd" all the items that it 
controis referenced by update T. No other updates can reference these itcrns ui~t i l  
updatc T completes. Notice that in the distributed voting algorithn, the entries 
for T in the pending lists at each module act as locks. No conflicting updates 
can rcceivc 01< vote5 at  tllese nodes wliile T has not bcek occeptcd. 

The au thorization step we have just described can bc dorieserinlly, in paralld, 
or  by nodes: 

(a) SERIALLY. Iil step 1, we can request nutllorizotion from cach control- 
ler one at n tinre. If n controllcr rejects a request, we wait and try later. To 
a.void deadlocks, we car1 ordcr the controllers o priori and we only request up- 
date  authorizations in iricrcasing controllcr nrmbcr. (If the base set is initiaiiy 
tlnknowr!, we might not be nblc lo  follow this ordcr. Also, if wc oytirnize the  
transaction processing, we ~xrigilt destroy thc ordering. In both cascs we ca.n the11 
have dea.dlocks, wi~ici~ arc briefly discussed in section 2.6.) 

(b) INPARALLEL. Messages requesting authorization can bc simultaneously 
sertt to  a11 nl controlicrs. If a rejection nlessage is rcccived from arly controller, we 
must try again. With tiiis sf;rat,egy deadlocks can arisc and we need a nlechanism 
for detecth g them. (See section 2.6.) 

(c j  BY 53DES. The set M defined by M(J1) U M(J2) U . . . M ( J , )  contains 
all the nsdec that havc modules involved in T. The update transaction T can 
"visit" each of the nodes in set M, At each node, all the authorization required 
irom that nodc will be obtained. In this way, each node is only visited once, 
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reducing the numbcr of messages transmitted, Deadlocks are also possible with 
this method. 

STEP 2. Obtain data for updnte T. After having clearcd update T with 
controller Jk (where 1 5 k < m), the values of items i in Bs(T) such tha t  
C(i) = Jk can be rend. Any node of thc set S(i) can be sclected as a source of 
data. In some cases, the data values can be read before the update is cleared 
wit11 controller Jk. For example, if A(&) is the distributed voting algorithm, the 
item vnliies and thcir timestamps are read before thc first OK vote is received. 
E:fowevcr, if more current tirncstamps arc cncountercd in the voting process, the  
data read may have to be discard.cd. Notice that the reaciing of the item va.lues 
can also be done serially, in paralicl, or by nodes. The &ssages for doing this 
can be in tcrleaved with the mcssagcs to the controllers for step I. 

STEP 3. Compute update and pcrrorm at  all nodes. Once all controllers l ~ a v e  
been "locked" and the data obtained, the new update valucs can be computed. 
Thc new vah~es for the iterns in the write set of T ( 1-Vs(T) ) must be sent to  a.11 
nocfcfi that hn.7~: copies of i;hc it-,;r,s. Tllzs:: "pc;.fc;.in ugdatd' messagcs can be 
sent. in parallel to  improve response tirncs, A "pcr:orrn update" rncssage must 
n.lso include all the sequencing iniormat-ion issucd by all the c~nt~rollers. Before 
each itcrn va111c is modified, this informat.ion must bc checked. For cxamplc, if 
for some i t a n  i, C(i) = Jk, ,A(&) is islie MCLA-h algorith~n and node s is in S(i), 
then node x will reccive the "pcrform updnte" nlcssage with a sequence nuri-iber 
s arid a hole list issucd by cont;rollcr Jk. Node x will not updnte item i until a!! 
previous "perform update" mcssagcs with scqucnce number issued by con troller 
Jk, less than s, and not in the hole list have been cornpletcly processed a t  11oclc x. 
Similarly, if A(Jk) is tlre distributed voting algorithm, then when node x updalcs 
Itern i, it aiso updates the tirncstanip ol t!ie itcin to be the tirnestnrnp of apdate 
'I' issucd by controlier Jk. 

When asingle nodec has dntnba~efragrnentsF~ andFz controlkxl by separate 
con trolfcrs J1 and. J2 respectively, then node x can get a combined "perform 
update" message involving iterns in f i  and F2. Node x has several options a s  to 
how to handle the  update. One option is to split the mcssage into two messages: 
one for the items in FI and onc f ~ r  the I t em in, F2.. The submessage for Fi 
would contzin all llic sequencing information issucd by controller 4,' and the  - 

other submessage would have the J2 information. Then node s would process 
the :nessages indepcndcnt!y. Thus, the Crngmcnts could be updated a t  different 
times. 

Another option is for node x to process thc "perform update" mcssage as a 
single update message. In this case, node s would first process the JI information 
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and will dclay the update until tlic portion corresponding to the F1 fragment is 
clcarcd. Then node x would process the J2 information. Only when thc complete 
updatc is cleared for both fragments would node s actually updnte the values of 
all the items involved. 

The  first alternative is more efficient but :cquires somewhat more complex 
control in order to split the "perTorm updnte" messages and process them in- 
dependently. The second alternative is simpler for the case where read-only * 

transactions must, be processed because the updates are performed as complete 
units nt each node. (Sec section 3.) 

STEP 4. Inform controllers J1,J2,. . . J;, that update T has completed. After 
update T h a s  bcen performed, all controllcrs must be informed so that  they can 
tcIcase thcir "locks" on the itcms. This step can bc done in conjunction with 
step 3. In other words, the "perforin npdatel' messagcs can also serve RS "release 
locks" messages. When n controller module is told that update T has complcted, 
it  updatcs its state information (c.g., hole list, lock table, pending list, timestamp 
table, skate). 

2.6 Deadlocks. 

The update proccfising slgoritlim for rnultiplc independent controllcrs may 
cause dcadiocks to occur bccausc updatcs compctc for exclusive access to the  
itcrns. 811c way to deal wilh deadlocks is to prevent them by a priori ordering 
the con troliei-s and by only lclockiag" the controllers in that particular order. 
Un for tuna tcly, this is 113 t possible in many cascs, and a dcadIock . detcction and 
recovery mechan iwn becomes necessary. (Sec slcp 1 abovc). The mcch anisms for 
deadlock elimination are wcll known and many papers have been written on the 
subject [GR.A1'77, MENA78]. In this thesis, we will not deal with the deadlock 
Etclt;ectio~i arid ciimination problem because we consider it to be beyond the scope 
of this research. 

- 
2.7 Performance. 

In scct.ion 2.5 we have dcscribcd how updatcs can be processed in a parti- 
tioned distributed database system with nlultiple controllers. The overall system 
pcrlormnr,ce will of course depend ort the particular update algorithms chosen for 
the  controllers. But other factors will probably have a greater influence. These 
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factors nre the reference patterns of the transactions and how well the data  and 
cor~t~rol parbitions fit tbcse patterns. Therefore, it is very important to  partition 
thc  data  and the control in a way that reduces inter-fragment or inter-controller 
transactions. In otllcr words, distributed database coupling [GARC78b] must be 
reduced by properly distributi~ig the data and its control. 

Siricc the system performance heavily dcpcnds on factors which arc external 
. to tlrc update algoritllrns, it is hard to obtain performance results for tlic parti- 

tioncd data, n:ultiple con troller case. I-Iowevcr, when we design cach con troller in 
the syslcm, wc can use tlic performance results we Ilirve obtained in this thcsis. 
Tl~us,  we can view each controller and the fragincrlt of data it controls as a fairly 
indcpcndent subsystem. TIlc operatio11 ol cach of these subsystcn~s is virtually 
idcntica! t3 tile operation of the cornpIctely duplicated database, onc controlier 
case we havc studied. So by optimizir~g the update algorithm for each subsystem, 
we can improve the overall yerIorniancc. 

3, ItEAD-ONLY TRANSACTIONS WIT11 PARTITIONED DATA A N D  
MULTIPLE CONTROLLERS. 

Up to this point, we have concentrated on update transactions in the par- 
titioned data and control environrncnt. In the follo~ving scctiorls (3.1 and 3.2) we 
will discuss read-only transactions or queries and hosv they can be handled. 

3.1 Consistent Queries. 

In chapter 9, we discovered that when some algorithms (e.g., the centralized 
locking and the EHis type algorithms) were used for updates, consistent queries 
could be performed at  n single node with Iocnl concurrency control. If all the 
itcrn values referenced by a qucry arc nvailal~le a t  a single node x and all items 
arc contrailed by the sa,me centraiizcd or Eilk controller J ,  then a consistcnt 
qucry c2.n bc pcrformcd a t  node x with local concurrency control only. If the  
disbribclted voting algorithm is used, then the qucry rnlist be clearcd with a - 

majority o l  the modules of the controller J. fio\vever, if the query refcrences 
item values at  different nodcs or items controller by different controllers, then 
some synchronization ir, needed bcforc the query can obtain a consistent vicw of 
the database. This is true even if the centralized or the Ellis type algorithms are  
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used for the controllcrs. The synchronization is needed in order that the same 
set of updatcs be reflected on all the items read. 

Thc synchronization can of coursc be provided by thc gcneral update algo- 
rithm dcscribcd in section 2.5. But in some cases, the algorithm can bc made more 
cficient. The efficiency gains dcpcnd on the update algorithm being employed ' 

by the controliers. Thus, if the distributed voting"a~gorithm is employed by the 
controllcrs for updatcs, we do not expect many gains over using the update algo- - 
ritllrn for qtteries. (Sce cliaptcr 9.) On the other hand, if tllc MCLA-h algorithm . 

is used by all controllers, then WT exPcct the query algorithms to operate more 
efficiently due to  the existence of sequence numbcrs for the updatcs. . . 

In thc rest of section 3.1 we illustrate how an eficicnt qucry algorithm can be 
desigxlcd for the casc of a system wllere all controllcrs use the MCLA-h algorithm. 
This is ar? important and intcrcsting casc bcca~ise of its simplicity and because 
we cxpcct to take advantage of the availilblc sequence nu~nbers. Tlic sequcnce 
numbers will be used to coordinate contiistcnt querics without thc intcrvcntion of 
the ccntra.1 controllcrs. Thus, by avoiding the controllcrs (which arc 1 he potel1 ti3 1 
botllcnecks) and  by obtaining the data directiy from tllc nodcs that 1,nvr it; 
we expect. to havc n rnore cfficicr~t algorithm. Si~nilar query algorithms ca.n be 
dcsigned for somc of the other controller types (or even mixed typcs), but these 
will bc left a.s an cxcrclsc for the reader. In ordcr to clarily the presentation 
for t he I'vlCLA-h case, we first describe the qucry algorithm for the partitioned ' 

data, one controller c,asc. Then in section 3.1.3 wc generalize the algorithm to 
the rnultiple cor~trollcr case. 

3.1.1 Consistent Querics With Partitioned Data and a Single 
MCLA-h Con troller. 

I n  this scction, we describe a query processing aIgoritI~m for tlie case of 
a, pa.rtit.ioncd database whcrc thcrc: is a singlc MCLA-h controllcr, rcsiding in 
a singlc rnodulc a t  t,hc central ~lodc, in charge of updates. The reason wlry a 
query Q cannot simply rend thc data it necds (with local concurrcncy control, 
see chzptcr 9) is that qucry Q might nccd data irom smeral nodes, and each of 
t l w e  nodcs might Iiavc pcrformcd a dill'ercnt set of updates. Thus, the basic 
idca of the  query processing algoritiim is to collcct all the data frcm whatcver 
nodes hzse it-.! and a t  the samc time, makc sure that exactly the same updates 
have been reflected on the data collcctcd. 

Sire now present tlic qucry algorithm. Recall that in the MCLA-h algorithm, 
every node x keeps a set o l  performed updetes done-setix]. (See appendix 1.3 
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Each clcrncnt of this sct is i!:c scqucncc number of on updatc that has bccn per- 
Ebrned a t  nodc s. (This set can bc stored efficiently by combining all continuous 
Iowcr sequence numbers into a single entry. In this chapter we will ignore such 
simpiiiicaiions because they obscure thc presentation.) 

3.1.2 Query Algorithm Ad. 

STEP 1. Consistent; qucry Q arrives at nocle a. Node x analyzes it; an$ 
discovers that data must bc requcstcd from nodes yl, a,. . . yk. Node x copies 
the current done-sct[x] into temporary variable P(x). From that insfa.nt on, node 
x saves a!! "perform update" nlcssagcs rcccivcd .at node x that involve items 
in Bs(Q) (the base set of Q). (In step 4 below, we see why these tnessagcs are  
nceded.) 

STEP 2. Noclc x scrlds out t l ~ c  necessary "rcqucst data" mcssagc6 to  r~odcs 
yl, a, . . . yk. A copy of P(x) is appended to all these messages. Whcn all "request 
data" messages arc answc~cd, node x continues processing at stcp 4 below. 

STEP 3. This step is pcrforrncd by any nodc y; receiving a "rcqucst data." 
rnessagc from node x. Node y; waits until all sequence numbers in IJ(x) (from 
mcssagc) have bccn perlorlncd Iocillly (i.c., until P(z) is a subset of done-set [yi] ). 
Thcn node y; copies done-set[yi] into variablc P(y;) and initiates the rcad opera- 
tion ur;ing local concurrency control. Thus, all updates in P(x) will be reflected 
in the data rcad a t  node yi. (Unfortunately, not only update5 in P(z) will bc 
rcflccted; updates in tile larger cct P(yi) wiII bc reflected too. This is why node 
yi will send P(y;f to  nodc s.) Aftcr thc rcqucstcd valucs are rcad, node yi scnds 
the  vaiucs and a copy of P(yi) back to node x. 

STEP 4. Whcn riode s rcccivcs answers to all of its "request da t~ ' '  nlessagcs; 
it will liave all the ncccssarjl data f ~ r  Q. All updntcs in P(s)  will have bccn "sccn" 
by the items rcad. IIowcver, some of the data may have sccn othcr updates not in 
P(z)). Therefore, node x must make fiure that ali these extra updates arc periormed 
on all the data. The necdcd updatcs arc the updates in P(yl) U F(yz) U . . . P(yk) 
but which a re  nat in P(x). Call this sct of missing update5 8. The np.ja.tes in 8 
11nve cilher been saved by node s (in stcp 1) or have not i c t  arrived a t  node s. 
All the saved updates in 0 arc pcrformcd, and as the rest of the "perform npdatc" 
messages eriive a t  node s, the updates arc performed on the data for query Q. 
When ali update5 in 8 have been pcrformed, the data for Q is consistent and can 
be given to the user. (End of algorithm A1.J 

Notice that if ali the data requested by qucry Q is located at a single node, 
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then the A1 algorithm simplifies to reading the data a t  the node with iocd  
concurrency control. 

3.1.3 Consistent Queries With Partitioned Data and a.Mci'ltiple . 

MCLA-h Controllers. 
- .  

In this section, ~ve  describe a query processing algorithm for the  case of ' 

partitioned database whcrc there arc multiplc MCLA-h controllers. We assume 
th'at each node in the system performs updntcs as completc units (i.e., the second 
alternative of step 3 in section 2.5). That is, if n read is exccutcd a t  a nodc with 
local concurrency control, then exactly the same sct of updates will be reflected 
by all the i tcns  rcad zit thc nodc. (A slightly more complex algorithm can bc 
designed For the case where thc fragments involved in an update may bc actually 
updated within a node a t  dimcrent times. We will not comider this other qumy 
algorithm here.) 

The basic idea for the qucry algorithm is the same as for algorit;ll~n Al:  The 
sarne set of updatcs must be seen by nil items rcad, even if the values read reside 
on diITcrcnt nodes. Thc algorithm for this C ~ S C  is slightly more cornpicx than 
algorithm A 1  bccausc (1) thcre is 110 uniquc scqucnce number ordering lor all 
updatcs, and (2) not all nocles scc all the "perform update" messages. Thus, our 
new algorithm, A2, niust coordinate scqucncc nun-rbcrs issued by diffcrcnt con- 
tvrollers. In addition, several riodes must participate in collectir~g recent "perforrn 
updatc" mcssagcs for the final synchronization. In algorithm A l ,  this step was 
cione by rt single node bccause it could catch all thc relevant rncssages. 

Jn the multiplc controllcr case, a node x kccps a collecticr! r;f pcrf~riiied 
updatc scts instead of a singlc set done-set[$]. Let donc-sel[Ji, x] be t l~c sequence 
numbcrs, issued by controllcr Ji, of t.he updatcs that havc been performed s t  
nodc x. Wc illustrate how these sets are used through an example. 

Suppose that nodc s has tlie vniues for fragments F1, F2, and F3. Each of 
these fragments is controlled by controllcr J1, J2, and J3 rcspcctivcly. Say nodc 
3: rcccives a "pcrform update" rncfisagc for update trarisaction T, and assume 
tha t  uprini.c T involves itcms in fragments Fi, F2, and '3. The "pcrform update" 
mcssage must include thrcc scqucncc numbcrs sl, s2, and t~ and thrcc hole list 11, - 

12, and 13! C E C ~  issued by cor~trollcrs 4, Jz, and J.'. respectively. Before performing 
thc  updaic  T, nodc x checks t!?itt dcnc-sct[&zj includca all sequcncc numbcrs 
l e ~ s  than  11 but not in list II. Similar chLcks arc done wit11 donc-sct[Jz,x] and . 

done-seiiJ.! s]. Arter the three checks (and three possible dclnys), sl is added to 
done-sct[Jl, x ] ,  Q is added to done-set[Jz, x] ,  to done-set[&, zj and the update T 
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is performed. Tllc ndditionfi to the done sets arc done.as a si11g1c atomicopcration, 
and t l ~ e  update T is perforlncd wit11 local concurrcncy control. 

Now consider what happcns in thc above example if node x only has frzgment 
F1 stored. The node will rcceive exactly the,samc "pcrform update" messagc for - 
T as bcforc. The diflercnce is that node x only checks thnt ali sequcnce numbers 
Icss than sl and not in list Zl arc in donc-sctlh, XI. After this check, q is added to  . - 

L 

done-set[h, s] and the part of update T that involvcs fragment f i  is pcrforrned ab 
node s. N&ce that node x may ignore the sequcncirtg information for fragrnents 
F2 and F3 in the rncssagc because these fragments are not stored a t  nodc x. 
IIowcver, if node s discards this information, a qr~cry Q that reads fragment .F1 
at node x and fragrncnt F2 at  sonlc othcr nodc y, will havc no way of knowihg 
tha t  if Q sees T a t  node x, it must also sec update T a t  node y. In other words, 
in ordcr that Q reads consistent datn, all nodcs where Q reads must have either 
all pcrformed updatc T or none shot~ld haw performed T. Tiicidore, wc nced a 
spccial rrlechanism at  node x so that this node can respond to qucry Q 3.s follows: 
"OK, hcrc is the data in Fl you rcqucsted, but i f  you are also reading data from 
fra.gxncnts f i  or F3, 111ake sure that you see the update with sequcnce numbers 
sz (for controller J2) and 65 (for controlicr J3) pcrformed on thesc fragments." 

One sirnplc way to do this is to have nodc x (and all nodcs) have a dortc-set[J;, a;] 
for a11 controllcrs Ji where 1 < i < rn. IVhcn node x starts performing update 
T, it would add sequer~cc eumbcrs Q and s3 to donc-set[Jz, x] and done-set[&, x] 
respcctivcly, cven though nodc x was not performing an updatc on data controilcd 
by J2 and J3. Then nodc s couEd give the response for qucry Q described above. 
(Of coursc, this mechanism may be omittcd if queries follow the qucry algorithm 
and lock all c~ntiolIcr6 involved in the qucry. But this is w!!at wc want to  avoid 
by having a special sirnpli fied query algorithm.) 

Bcfore we describe the qricry a.lgorithm for partitioned data and mt~ltiple 
MCLA-h controllcrs, let 11s stlmmarize 11ow the "perform updatc" message for 
am update T is processed at rludc x. Suppose thnt tllc update rcfcrerlccs data  
contro!icd by controllcra 4, 5,. . . J2. Thcn the "pcrform update" message for 
llpdats T will havc k scqaencc numbers sl (of A), (of Jz), up to sr. (of Jk). The ' 
message also contains k hole lists. Supposc that node s has data controllcd by 4, 
Jz, . . . J I ,  whe-c I < - k. Then node s will chcck sl, a,. . .q (and the corresponding 
hole iisk) agziilst done-set[Jl, x], done-set[Jz, XI,. . . done-set[Ji, z] in the usual 
wa.7. 0nc.e all checks are passed, tohe sequence numbcrs sl, s2, . . . sk  are added to 
done-setjJl, ~ j ,  done-set[Jz, s], . . . done-set[&, x] (as one atomic operation) and T 
is performed with local concurrcncy control. 
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3.1.4 Description of Query Algorithm A2. 

m . I ne query nigorithm works in two phases. In t'r,c fi:st phase, qucry Q visits 
the  necessary nodes rcading data. Then n sccond phase may be necessary where 
Q returns to each node to process some missing updates. Suppose that qucry Q 
must rcad data from fragmcnt F 1ocnted.at nodc y. Also assume that fragment 
F is controlled by controller J .  Bcforc visiting nodc y, query Q visits othcr nodes a 

wllcrc it  finds out that certain updates i~lvolving F must be seen if Q is to see a 
' 

consistent view of the database. Tllur;, ns Q visits nodes to rcad data, it collects 
a set 01 sequence numbers corresponding to updates that must bc'scen by F. , 

This set, which we will call Pi j ) ,  is simply the union of the done-sct[J, x] for all 
nodcs x visit-ed before node y. When qucry Q finally arrives a t  node y (in the 
first phase), it contains a set P(J) of updates t l~a t  must be sccn by F. Therefore, 
before reading fragment F at  node y, qucry Q must ::.zit iiiitii a:; tile updatcs 
described by P(J) are perlorrned. Once this is done, node y reads the item valucs 
in  frag~ncnt F that arc requested by qucry Q. (Notice that Q may see other 

Vf r\ \ 
' additional updatcs for F that were not required by r pj.1 

After hevlng rcad Iragtncnt F nt nodc y, qucry Q conblrlucs its visit. to obllcr 
nodes and it rnay find that there are other updatcs that must have also been 
sccn by I;' for consisterlcy. That is, clonc-sct[J,x] at  some new nodc s may be 
Iargcr than the set that was actually sccn at nodc y. To fix this problem, Q 
will have to visit node y once rnore (in the second phase) in ordcr to obtain the 
updatcs missed on thc first visit whcn the data was read. IIowcvcr, to scc $11 c 
missing updatcs, Q cannot reread the data in F at y because this may still a.d$ 
rnorc updates to thc get of 11ccded updates of other fragments. Thc solution is to 
have nodc y tcmporarily save nll "pcrform iii;date" acfisngcfi (that irivolvc iterns 
rcfcrerlccd by Q) bctwccn thc time Q is first sccn and the timc w11c11 & rclurns 
for tllc sccond phase visit. This way, any updates nlissed by Q on ihc first visit, 
will either LC saved or are still to arrive a t  nodc y. Only the missing updates and 
no othcr updates will be pcrrorincd on the data that was previously rcad by Q . 
al ~loclc y. By following this protocol, we guararltce that all fragments wilt see 
cxact;ly the samc set of uptlatcs. 

!Ye will now present the algorithm in a rnore detailed way, but with fewer - 
comments. 

3.1.5 . Query Algorithm A2. 

STEP 1. Consistent query Q arrives at  node s. Node x analyzes i t  and , 



CH. 11: FALITITIONED DATA AND MULTIPLE CONTROLLERS 

discovers that  the data must be reqi~ested from nodcs yl, 3,. . . y, znd that 
controllers 4, 5,. . . Jk are in cl~arge of all the iterns rcferenccd by Q. (Node 
x itself may be one oi 'he l~odefi yi where data wiii bc rea6.j Siaic vnriabics 
P(Jl), P(J2), . . .P(Jk) arc carried by Q as it visits the nodes. Variable P ( 4 )  will 
represent the updates that must be sccn by the items controlled by 4. Initially, 
P(4) is set to the einpty set, lor 1 < j 5 k. Step 2 below describes the first 
phasc processing that must. bc performed by the nodcs yl, B;. . . y,, while step 
3 dcscribcs the second phasc processing rcquircd when the nodes are visited for 
a second time. Thus, we start step 2 at  node yl. 

STEP 2. Phase One. We are visiting the nodcs yl, a,. . . y,, in order. Sa.y 
we are currently a t  node yi. Assume t11n.t at this node we will read data from 
i rng~ncn t sF~ ,  F2,. . .fie The controller lor each fragz~entF, is C(F,), and of coarse 
C(l;Z) is one of ,II, ,Iz, . . . Jk for 1 < z 5 I 5 k. For each fragment Fz, we perform 
the  following four substcps: 
2 )  Wail until Fz sees all updates in P[C(F,)). That is, query Q waits 11nti1 

P(C(F,)) is a subset of donoset[C(F'), y;). 
29) N'e are reed J to read data i n  Fz. Save a copy oi done-set[C(K), 4 in 

save-set[C(Fz), yi, Q]. At the same timc, start collecting all "pcrfcrm 
messages that arc processed a t  yi in save-message[C(Fz), yi, Q]. 

2C) Update "P" va.riables. For :ors j such that 1 5 j _< k do "P(4)  := 
I'(Ji) U do11 e-set[Jj, yi]l1. 

2D) Rcad data in fragrncnt F' that ifi requested by query Q. 
Notice that steps 2B and 2C arc perforrncd as ar! atomic operation. The 

rend in step 2 0  is exccutcd wikh locnl concurrency control so that only updatcs 
tha t  were registered in step 2C s;c scc;i 5~ Q. Alter phase onc processizg (i.e., . 

step 2j is completed a t  node yn, the second pllafic is started a t  y,,. 
STEP 3. Phase Two. A t  the completion of pbase one, P(Jj) rcprcsenls the 

updates that must and will be seen by the items co~itrolled by controller Jj (for 
1 j j 5 k). T l ~ e  updates in P(,G) will not changc in the second phasc. In the 
sccorld phase, we visit nodcs yl, ~, . . . g,, (in ally ordcr) 'o perform any missed 
npdatc,;. Sa? m e  ~ 1 5  20de y;. Assume that a t  this node we read data from 
fragments i;i! f i ,  . . .& in phase one. Lct C(F2) be the controller of fragment Fz. 
For each fragment Fz (1 5 z 5 I), .urc perform the follo\nring two substeps: 
3A) The sequence numbers in P(C(F'')) but not in savcset[C(I;1), y;, Q] are the 

scquence numbers (issucd by C(F') ) of thc updaates that arc missing for fra-g- 
rnent Fz. Thcse updates arc either in save-mcssagc[C(FZ), yi, Q] or have not 
arrived at  node yi. The missing updates that are in save-message[C(Fz), yi, Q] 
are immediately performed on the data read by Q and no more messages 
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are collected in save-message(C(F'), Q]. 
3B) Query Q waits until the rest of the Inissing updates arrive. As they arrive, 

they are periormcd on the data that was originaiiy read by Q. 
STEP 4. After the second phase completes at  all nodes, query $ can report 

the values obtained to the user. (End of algorithm A2.) 

.. 
3.1.6 Pcrformancc of the Consistent Query Algorithms (A1 and 122). 

, At first sight, algorithms A1 and ~ ' 2  may seem somewhat complex, so it 
is natural to ask the question "Is it not better to rlse the update algorithm of : 

section 2.5 (which locks con trollcr~i) for queries instead of either query algorithm 
Al'or A2?" The answer to this question is not simple because in some cases it 
might indeed be better to use the update algorithm. 

The advantages of the qucry algo~ithrns (A1 and A2) over the update al- 
gorithm ~ 6 c d  for qucrics are that (1) There is no need to visit (i.e., send any 
rnessagcE to) any corltrollers, and (2) Tllcrc is no need to lock t l ~ c  controilers 
for the durztion of the qucrics (and t11us slow ilpdates down). The potential 
disadvantages of the qucry algorithms nrc that (1) Nodc~ where data is read must 
be visi ted twice (This is only true in algorithm A2.) (2) There may be de1a.y~ a s  
we wait for "perlorm update" rncssagcs t.0 arrive, and (3) There is n nced for an 
additional protocol (i.e., the query algorithm itself) that wilt make the system 
marc complex. 

Clearly, i f  the systern is processing many trsnsactions and the ccn tral con- 
trollers are heavily loaclcd, it would be best to avoid the controllers. If the 
controllers do not have heavy loads, thcn the qucry nlgorit11ms may not bc so 
attractive. For exampic, considcr tlic case where node x has the cerl tral controller 
rnodules for 10 fragmcnts Fl, 35,. . . J;iO. Each of tl~csc fragmcnts is located in 
nodcs yl, B, . . . y~o. To proccss a qucry Q that rcfcrenccs all 10 fragmcnts, we 
could U R ~  the update algorithm. This would involve requesting locks (one message 
to  nodc x) ,  sending read requests to nodcs yl, 2,. . . ylo (10 messages in parallel), 
coliccti~?g tile data (10 more messages), and releasing the locks ( 1 message to 
nodc x).  If instcad we IISC algorithm A%, we would visit nodcs yl, R, . . . ylo 
twice (20 mcasagcs) which would take lorigcr because these visits n~ust bc dorie 

- 
serially. ( S ~ m e  paralielisrn is possiblc in the ficcond phase, but this feature was 
not inciused in algorithm A2.) 

Zlowcver, there arc many cases where the qucry algorithms perform better, 
even if tile controIlers are not heavily ioadcd. For example, if the controllers of 
the previous example are located in 10 different nodes X I ,  q,. . . q o  and if we 
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use the update algorithm for qticry Q, then wc would first need to visit 10 rrodcs. 
rcqlicsting locks, and after the reads, we would have to release thc locks a t  all 
thcsc nodes. It is not clcar what strategy will give the lowest responsc time for Q 
in this case, but thc numbcr of messages and service requests a t  nodcs is clearly 
largcr if we use thc update algorithm. Also noticc that as thc number of nodes 
whcre data must, bc rcad gocs down, the A2 algorithm becomes mow attractive.. 
For  cxa.mple, if Q reads data from two nodes, yi and a, query Q will visit node A - 
a only oncc and node yl twicc. Thc nr:nlbcr of rncssagc transmissiorls needed is . 

only fo i~r  (counting the mcssagcs to siart the processing and the rnessage with 
tire results for the user.) 

Finally notice that disndva~itage "2" (given at lhe beginning of this finbscc- 
tion) of the A l  nnd.A2 qucry algorithnls is not a serious problem. The delays 
waiting for "per!orrn update" mcssagcs should not be significantly greater than 
the delays waiting for locks in the update algorithm. 

3.2 Current Queries. 

Processing currcnt queries in t11c partitioned data ~nultiple controller case 
is simple bccausc no coordination between the diffcrcnt controllcrs (and their 
frag~ncnts) is nccdcd. If a qucry makes siire that the data it reads irorn each 
frngrncnt is current, thcn the collcctiori of all the data obtained will also be 
currcnt. Thcrciorc, a currcnt qucry car1 use the currcnt qucry algoritlims of thc  
orie controller case independently for each fragment and them simply combine 
the  results. obtained. (Sn chapter 9.) 

4 THE OTEICR ASSUMPTIONS. 

In thc  second part oi this thesis (chapters 7 tl~rough 1 I.) we have considered 
the effect.s of the four major assumpI;ions that were made for the performance 
analysis oi chaptcr 4. In cliaptcr 7 wc studicd failures; in chapter 9 we !ooked 
a t  read-mi>- transactions; in chapter 10 we discussed transactions that  do not 
spccify their base set initially; aiid finally in this chapter wc have studicd par- 
titioned datz with m~iltiplc controllers. However, we have not yet studied a 
distributed database system where all four assumptions are eliminated at once. 
For example, in this chapter we have assumed that no failures occur and that 
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transactions specify thcir basc set initially. And in chapter 7 we studied failures 
in the complctcly replicated clsta case. 

In this section wc will attempt to convince the reader that the ideas wc have 
prcscntcd so far can be extended to a gcncrai systcm with nonc of the restrictions 
we bqvc mcntioncd. Such a general systcm is quite complex. Demonstrating in 
detail how our algorithms can be combined and extended to tlie gerieral case, and 
analyzing the performance of such a general systcm is a very hardtask. Here we a - 
will not do tKis; wc will only outline some of the principal idcas. Much research 
is still required in this arca. 

We will organizc sectiorl 4 as follows. In subsection 4.1 we discuss how 
transactions (including queries) that do not fipecify their base set initially can be 
processed in the partitioncd data, one controller case. In subsection 4.2 we study 
transactions (including queries) that do not specify their basc set beforehand in 
a partitioncd data, m~iltiple controller cnvironmcnt. Then, in subscction 4.3, we 
discuss how ti! e pnr ti tiorled data, nlultiple controlIcr algorithms for transactions 
(including qilcrics and transactions that do not specify their base set initially) 
can be made resilient. 

4.1. Trarlsnctions with' Initially Unknown Base Sets in the Partitioned Data, 
One Controllaz Case. 

A s  long as  there is a singlc controller, the fact that the data may bc parti- 
tionrd a114 f r;~nsac.tions do not specify their base set illiiially docs not introduce 
n.ny nrw prt~hlcrns. 

I n  thc algorithms whcrc locks arc used (i.e., MCLA-h and Ellis type) we still 
have thc same threc altcrnntivcs for processing transactions that do not spccify 
tlicir base set. (Scc cl~apter 10.) Tlic only diffcrcnce is that thc "rcad witllout . 

locks" strategy may not be as atlractivc now becausc thc vulnerable rcad without 
locks period may bc longcr. it1 ot'ncr words, if data has to bc read ai severai nodes, 
this will take a longcr t in~c  and the vah~cs rcad will be vulnera.blc to conflicts with 
other updatcs over titis longer pcriod. This incrcascs the probability of rejection 
and I ~ u r t s  the pcrforrnancc of this strategy. - 

Whcn the distributed voting algoritllrn is used, transactions that do nct  
specify their base set a t  their inception can still be performed with partitioned 
data  as dcscribcd in scction 1.2.2. 

Queries that do not spccify their basc sct initially can bc proccssed as usual 
ID, the pzr titioncd dsls m e  cont,ro!!cr environment. For example, algorithm A 1 
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(section 3.1.2) can be uscd when the controlIer is a MCLr\-h one. Tlrc fact tha t  
thc ilodes where the query will read (i.e., yl, B, . . , y, in A l )  are initially unknown 
does rick arect this algorithm. 

4.2 Transactions With Initially Unknown Base Sets in the Partitioned Data, 
Multiple Controller Case. 

The update elgoritlim for the multiple controller casc (section' 2.5) can bc 
used witli a few minor modifications when transactions do not spccify their base 
sets initially. The main difference is that wc wilt be unable to "iock" ail controllers 
in parallel and that deadlocks cannot be avoided by ordering thc controllers. 

In this environment, an update transaction T proceeds as follows. Updatc T 
first dccidcs that it wants to rcad somc itcms in fragment Fi which is contrsllcd 
by controller 3;. If JI works with locks (c.g., A(Ji) = MCLA-h) and update T . 

krlows bcrorchand what itcms in Fi it nccds, then T can request; the locks and 
thcn read. If 4 uses locks but Ji docs not know initially all tllc items it wants to  
read, then T uscs any of the stratcgies discusscd in chapter 10 je.g., read without 
locks). Jf controller J;; docs not use a locking algorithm, then update T sirnp!y 
rea.ds the itcms and then obtains authorization from controllcr Ji. 

' 

After having read Ihc data in fragrncnt. Fi, updatc T decides what; other 
fragment it wishes to read. The process is then repeated in exactly the same 
fashion. (The lock or authorization form con troller Ji is not released un ti1 the ert d 
of the transaction.) Notice that after having rend items in f i ,  update T might 
dccidc to  rca.d some Illore itcms in I;hc same fragmcnl;, Tl~us, T might "visit" 
controller Ji Inore than once. This sllould not represent any serious problem, as 
Ior~g n.s T docs rrot request tllc same iteri.1~ twice or as long as controllers ca.n 
identify such occurrences. 

After having rcad all the data it nccds, update T can perform the update 
and inlorm all controllers involvcd of its completion in the usual fasliion. A s  
was rncntioncd ezrlicr, there is a danger of deadlocks and a special mecl:anisrn 
is nccded to detect tI1c1n and recaver from them. 

The query algorithms for the multiple controllcr casc need some nrinor 
niodifications to deal with unpredictablc reads. Queries in tliis environment must 
now carry with them enough synchronization information to covcr a read of any 
data. For example, in algoritllm A2 (seetior. 3.1.5), wc will need a P(Ji) vari&!e 
in each query ioi all possible controllers Ji, even though somc of these controllcrs 
wiiI not be involved in the query at  all. Other than this, algorithm A2 remains 
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unchanged. 

4.3 Crash Recovery. 

chaptcr 7 we prcscntcd some techniques for making t l ~ c  update algorithms .. - 
rcsiiient. X e  believe that the same techniques (e.g., logs, two pilase comrnit 
protocol) can be exlcndcd to the rnorc gcncral case we are consideritig here. 

IIandling rend-only transactions (queries) in a failure environrncnt is rela- 
tieely sirnplc because these tmnsacticns cannot in any way alter t l ~ e  database. 
One sinlpie way to  process queries is to restart them from scratch whenever a 
failure is dctcctcd. Noticc that queries can bc ir~tcrruptcd and aborted a t  any 
point;, so there is no problcrn with leaving a query unfinished. 

Th;: [act that some transactions do not spccify their base set initially does 
not aTfcct the rccovcry protocols. Even if trailsactions rcad data without locks or  
request locks as they nccd thern, they can still use a two pilase conlrnit protocol 
to actually pcrform the updates and thc transaction can still be cancelled before 
uyda.tcs are committed. 

Data  partitioning wit11 a single controller should not i~itroduce any ncw 
problcnls bccausc the one controllcr can be made rcsilicnt exactly as in thc simple 
case wc havc alrcndy corisidcrcd in chapter 7. Whcn wc havc multiplc controlIers, 
each one must be made resijici; t. Of course, some coordination bctwcen control- 
lers is be required in t!?e h c c  of a failure, but thc sarne basic tcchniqucs that  we 
havc discussed can bc applied to each controllcr. For exatnple, a MCLA-h con- 
troller in a multiple controller system can still at tcn~pt to reclaim its locks after 
a transaction has failcd to rclcasc thcm. Similarly, when the MCLA-h controllcr 
fails, a ma.jority of the nodcs that havc data fragments that were controlled by 
the crnshed controllcr cnn elect a ncw conlrollcr. This new controllcr can collect 
all s tate information avaitclblc a t  thc riodcs that electcd it; and can finish or cancel 
all transact.ions that wcrc o,utllorizcd by lhc old controllcr. 

To  illustrate what wc mean, :vc will now briefly show how tlic two phase 
co:rlrnit protocol for the MCLA-h algorill~m (section 4.1 of cl~aptcr 7)'snd the  
ca.nceiiing protocol for thc sarnc algoritfim [section 4.2 of cl~a.ptcr 7) can bc . 

modified ior the partitioned data, multiplc controllcr casc. In order to avoid the 
serious piobiems that arisc whcn a network is partitioned, wc will require tha t  
R majority of nodcs in S(F) bc aclive and able to communicate with each other 
before zny transactions involving F are processed. 
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4.3.1 The Two Phase Cornmit Protocol for the Partitioned Data  Muii;ipIe 
MCLA-h Controller Case. 

The two phase cornmit protocol for updatc transactions in the partitioned 
da-ta., multiple MCLA-11 controller case is very similar to the protocoI that  was 
used in tIic cornplcte replication environment. Thc main diCfercncc is that the  
nodc that is coordinating the update transaction (called thc master nodc) waits for - - 

' acknow!cdgrncnts to the "intcnd lo perform" rncssagcs from a majority of nodes 
in cadi ~ ( k )  set, kr each fragment F rcfcrcnccd by the transaction. After tlicsc 
acknowlcdgmcnts arrivc, the rnastcr nodc can scnd out the "commit" messages. 

M1c now givc an examplc to show how this works. Suppose that  an i tern .i 
is drrplicatcd a t  nodcs XI and z2, whiic itcm j is rcplicatcd a t  nodcs xz, xs a.nd 
xq. That is, S(i) = {x~ ,  x2) and S(j) = {x2,x3,x~). Suppose that  the MCLA-. 
h controllcr tor item i, C(i), is at nodc x2 asltd that the MCLA-h controlicr for 
ilcm j, C(jj, is located a t  r~odc $4. A transaction T wislics to rcad item i and 
thcn updatc itcm j. As was discussed in section 2, T must visit controllers C(i) 
(at nodc x2) and G(j) (at node x4) and rcqucst locks for thosc items. r2t C(i) 
and nf; C(j), transaction T obtains pairs of scqucnce, version nurnbcrs. These 
~ l u r n b c r ~  arc a.ppcndcd to llic messages gcricratcd by T. After obtaining locks a t  
both controlicrs, T has cxclusivc acccss to t11c two items arid can procecd. 

O~ ice  T has cornputcd the new vnluc for itcm j, the system pcrforrns the up- 
dat;c and releases thc locks using t.he two phasc ccmmit protocol. In this protocol, 
Ihc master (which can be any node) sends out "interld to perform" messages 
informing all nodcs involvcd in T (i.e., XI, z2, XJ, a) that T lins completed. Thc  
111asi;cr only has to wait Tor a r~lajority of acknowlcdgmcnts from each S(i) sct 
invoIvcd. For exampie, i f  the nlaster gcts acknowledgrncnts from nodcs q, x2 and 
xg, t.11cn it can scnd out the "cornmit" messages because a majority of nodcs in 
cqch set S(i), S(j) llavc responded. Tile time when tlic required ncknowledgmcnts 
arc received by t l ~ c  master node is enlied the commit point. When a node recci*.rcs 
a "cornmit," message, it updates itcm j if it has a copy of the item. If thc node has 
a controi'lc- involved in T, t l ~cn  thc commit mc.ssa.gc also causcs GIle locks to be 
released. Notice th8.t no acknowlcdgmcnt is necessary for the commit messa.ge. 

- 
Dilc to railurcs, some liodcs that participatcd in T may not find out about 

T's cornpiciioil (c.g., nodc y). Thesc nodcs will eventually discover that they 
missed this information because the sequence number mechanism. (See cllaptcr 
7.) When a node discovcrs this, it obtains the missing information from other 
nodcs. i f  the information cannot be found, the node attempts to cancel T. (See 
section 4.3.2.) 
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The two phnsc commit protocol guarantees that cithcr no values are storcd 
at all or that  all values produced by T are eventually stored a t  all nodes involved. 
When a node in S(F) acknowlcdgcs receipt of the %tend to perform" message for 
T, it makes a commitment to rcmcmber T (and the values i t  produced) and to do 
everything in its power i;o scc that T completes correctly. The node rcmernbcrs 
T by placing the inforrnntion in the prepare message in n "prepare" list. Wc. 
assume that  tllc information in this list cannot be lost. (Log entries can be made a 

t o  make the prepare list safe. Scc chapter 7.) 
Wllcrr the master node for T rcccivcs n majority of ack~lowledgrnents from 

the nodes in S(F), it knows that the update to F cannot be lost. In t11c case of . 

failures, we know that a t  least onc member or any working majority of nodcs in 
S(F)  will have n record of T and will "speak up" for T. Thus, after receiving a 
majority of ecknowlcdgmcnts from the nodes in cach S set involved in T, t he  
rnastcr node can send out the commit mc~sagcs. Wl~cn a node in S(F) receives 
a "commit" message, it adds T's scquerice end version nttrnbcrs to  its jist of 
performed transactions (\~llich is kept by all nodes); it writcs out a log cntry; 
it  pcrforxs the update on F indicated by T; 2nd fnaily it  removes T f r o ~ r ~  the  
prcpnrc list. 

Due to failures, a transaction may bc unable to get the majority of acknowi- 
edgmcnts nccded for committing. In such a case, thc transaction "timcs ol~i." . 
and the system attempts to cancel tile transaction. This cancelling protocol is 
described in the next section. 

4.3.2 The Canccliing Protocol for the Partitioned Data Multiple M.CLA-h 
Co~itrolicr Case. 

A traiistition will only be cancelled if no data has been committed by thc  
transaction. Thus, tllc first step in the ca~lcclling protocol is to verify that the  
Cu;a.nsaction had rlot rcaciicd the cornrnit point. Notice that if n transactior; T 
has rcnchcd 611c commit point, then a innjority of nodes in cach S(F) ~ict, for 
cacli fragrncnt F rcfercneecl, have n rccord of T. Bencc, if a single frilgincnt .F 
can be round wl~crc n miljorily of nodcs in SiF) have no rccord of T, then T can 
be cancciied. 

To cancci a trrrnsactio~l T we procccd as follows. First, a node w is selected 
to bc thc nlast.cr node for the cancellation. Any node can bc thc master, and  
sevcral s u c h  r~odes may be attcn?pti!!g to cnnce! T concurrently. We assumc tha t  
node w knows that T rcfcrcnccd frag~nentsF~, F2,. . .Fk. (The prof;ocol can easily 
be rnodificd t.0 handie the case where only one fragment is known initially.) Node 
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uj scnds out messages to controllcrs C(l;i), C(f;i), . . . C(Fk) asking thcm if tlicy 
can canccl T. Each controller responds eithcr that T can LC canccllcd or that  it 
does not kriow if T can bc cancelled. Controllers do not take any action on  T at 
this point. FIowcver, if a controllcr says that T can bc canccllcd, it makes sure 
tha t  T can not reach tllc commit point in the future. 

Whcn node w receives answers from all controllers, it decides if T will be 
canccllcd. If a t  least one cor~troiler said that T could bc cancellcd, then T has not 

- 

comrnittcd and is cancelled. Tf all controllcrs say that they do ilot know if T can 
be canccllcd, then T may havc committed and node w attempts to  complctc T. 
(Notice that in this case all controllers found a record of T. Thus, all the update 
values produced by T are kno~vn and T can be completed.) The decision of node 
w is broadcast to a!l controllers, which then carry out the decision. 

When a controller C(F) wishes to know if T can be cancelled (in response 
to nodc w's first message), C(F) scnds out "proposc to canccl T" messages to 
all nodes in S(F). When a node y in S(F) rcccives tlae "propose to canccl T" 
message, it chccks to  see if it has a rccord for T. That is, nodc y checks if it has 
previously receiGed an "intend to perform" or a tlcomrnit" mcssagc for T. If y 
has such a record, it informs thc controller. If y has no record of T, t l~en  it scnds 
R "have sccn proposal to cclnccl T" messc..gc to C(F). With that mcssage, nodc 
y makes a cornmitmcnt not to acknowledge any "intend to perform" rnessagcs 
for T it might rcceive later. Thus, node y remembcrs the "propose to  cancel T" 
messngc unlil it Ilears frorn thc co~~trollcr again. (We assume that node y carinot 
forget its corn~nitmcnt.) 

It C ( F )  rcccives a majority of "havc seen proposal to  cancel T" mcfisagcs, 
tllen C(F)  knows that T has not committed and that T will not commit in the  

' future. Tlius, C(F)  can answer nodc w that T can be canccllcd. On Ihc otilcr 
hand, if C(F)  discovered n record of T among the nodca ifi S(F), then it most 
answer that it does not know if T can bc cancelled because as far as  it  knows, 
T could have cornmittcd. In tliis case, T's record (including its update values) is 
sent to w. 

M'hen con troller C(F) rcccivcs a comrnand horn node w to aclually cancel 
T, it ~ C C F  this using a two phasc commit protocol sirnilrrr to  tllc one used by - 

transactions to commit. This guaranbecs either that T is cancelled a.t all nodcs 
- 

in S(F)  (2s iar as F is concerned) or that T is not cancelled a t  all. A nodc in S(F) 
finally cznccls T by recording a null or dummy update. (Scc chapter 7.) Tha t  
is, T is processed as if T has committed, except that no valucs arc stored in the 
database. Similarly, a command from w to complete T because i t  could not be 
cancelled causes C(F)  to distribute the update values for T to nodes in S(F) and 
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to  commit them using a two phase commit protocol. 

This concludes chapter 11. As we have indicated, some of the ideas presented 
in this chapter require additional research. In tile next (and last) chapter, we 
will identify these areas for further research. 



CHAPTER 12 

CONCLUSIONS 

In t l~is thesis wc have studied the performance of update algorithms Tor 
replicated date in a distributcd database. We started by presenting a sct oi 
updntc algorithms for replicated data. Then we analyzed the pcrforrnance of . 

tllesc algorithms using a siri~pIc performance model. In the second part of the  
th'csis, wc looked a t  the assumptions that were made in the performance analysis. 
Wc studied how these assumptions could be elirilinated and how this affected the 
performance of the update algorithms. 

At the end of a tlicsis like this one, we would like to be ablc to concludc 
that  a ccrtain algorithm was the "beat" among the ones that we studied. And 
it would be even better to concludc that one of the new updatc algorithms we 
prescnted here (e.g., the MCLA aigorithm) was tlic "bcst". Unfortunately, we 
arc unablc to do so. Choosing a "best" algorithm would be like selecting thc best 
programming language or the best data model. With so many factors and issues 
to  be considered, it is simply not possible to choose an absolute best. EIowever, 
from a ccrtain point of view, or for a particular task, one algorithm might indeed 
be superior to another algorithm. In this thesis, we have limited oursrlves to 
such rclative and limited comparisons. 

The most general conclusion we can reach is that the centralized control 
nlgoritl~n:~ can be an attractive alternative to the distributed control algorithms 
in many casss of interest. In rnost of the cascs that wc studied, the ?4CLA 
algorithm performed better than the otl~cr algorithms, but we must keep in mind 
that these results were obtained with a vcry simplc pcrforrnance model. Even 
though the model was simple, we tried to be realistic, and h'cnce we believe that  
in a real distributed database system, the centralized control algorithms wi!! st!!! 
perform wcii. 

The most important result of this thesis is not the conclusion of the pre- 
vious paragraph. Wc bclicve that a more important contribution is that  we 
have analyzed and shed some lighL on some of the issues involved in designing 
update aigorit'hms for distributed databases. We have pinpointed the principal 
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pcrformnnce parameters of distributed databases; we have pr'esented en enalysis 
technique for studying the update algorithms; we have identified' some of the  
potential bottlenecks in the algorithnls and we liavc shown ways to decrease their 
impact (c.g., hole lists). We have studicd thc problems of crash recovcry 'and 
how t11cy affect performance; we have analyzed read only transactio:~~, and wc 

' - 

hnvc outlined how consistent and current queries can be processed cfficicntly;. 
we havc studied partitioned distributed databascs and thc available options far - 

transaction processing in this environment; we have introduced the concept of 
multiple controllers for a partitioned distributed database in order to improve 
performance; and we have analyzed tile dircrent strategies for processing tsans- 
actions that do not specify tlieir base set initially. 

To end this thesis, we will briefly indicate some of the problems that we 
believe require additionaI research. In doing so, we will mention sorne of the  
shortcomings of the work we havc prcficnted here. 

(3.) The perbrmnnce model prcsentcd in ci~nptcr 4 is vcry simple. We bclicve 
that  it  is possible to improve t l ~ c  modcl to reflect sornc additional fcatures of 
d istribu tcd databases. For example, instead of assuming constoan t transmission 
tirnes, we could model thc communications network rnorc accurately. (The model 
wc clloosc for the cornmunicatiolis network dcpcnds on ttlc r,zC,.::crk zrchitec-turc 
we ~elcct.) By doing this, we will be able to study some of the communicat.ion 
problems that were not addrcsscd in this thesis. For example, wc could assess 
whether thc com~nunication facility at a central node becomes a sc r io~~s  bot- 
tlcneck. When improving the perforrnancc model, we must kccp in mind tliat 
increasing the complexity of t l ~ c  rnodcI llad its drawbacks. For cxample, as tllc 
~iurnbcr or parameters in llic model grows, it bccomes harder to comprehend the  
relationship among all tlie variables. Also, having a complex model might make 
the  analysis of the algorithrns cxtrcmciy hard and possibly make the simulations 
the  only reasonable tool for studying the algorithms. 

(b) In this thesis wc concentrated on improving t t ~ c  centralized control algo- 
r i th~ns,  sornewhat ncg'lczting t l ~ c  distributcd voting nlgorit!:m. That is, it might 
bz possible to dcsiii;~! ncw dislribuied voting algoritl~rns that are more efficient 
thkn the DVA algorithm we studicd here. For example, a distributed voting 
a lg~ri t~hn? fhzt broadcasts vote rcqucsts in parallel to ail nodes might be more 
efiicicnt thzn ihc  one w h c ~ c  vates are rcqmstjcd nnr: zt. B time. Also, i t  might be 
possible to modify the DVA algoritl~m so that consistent qucries can be exccuted 
at a single node. (See end of section 3.2 in chapter 9.) Additional research is 
rcquircd in this area. 
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(c) Anothcr arca that needs a great amount of rcsearch is the arca of crash 
rccovery. The crash recovery algoritlims presented in chapters 7 and 11 have 
to  bc specified more formally. Eventually, the correctness of the algorithms will 
have to  be provcd, but this is a hard task. In the near future, it might only be 
possible to do a detailed case analysis to show that all thc single failure conditions 
possible have been considcrcd in tllc crash rcsistant algorithms. In chapters 7 
and 11 we only concentrated on t3c crash rccovery techniques for the MCTA 
algorithm. It is also necessary tostudy crash rccovery in theother updatcai- - 
gorithms. The techniques presented in this thesis will probably be useful for 
the other ~Igorithms, but some specific techniques will be applicable for each 
particular algorithm. Once wc have made several update algorithms resilient, . 

i t  ~vould be vcry interesting to perform a detailed and complete performance 
comparison of the resilient algorithms. 

(d) In this thesis we discovered that knowledge of the i~itendcd system ap- 
plication is necdcd in order to study the performance of a general distributed 
database system like the orlc of chaptcr 11. This knowledge is also needed to 
study update algorithms thnt tnkc ndvantngc of restricted transaction types. 
(Scc chaptcr 8.) Thus, another intcresting research' problem is to  choose sonlc 
rcprcscntative distributed databasc npp'lications and to study thc pciformance of 
the gencrnl updatc algorithms (or the restricted transaction type algorithms) in 
thcse environments. Then, onc could try to charactcrize the applications through 
a srna.11 set of parameters, in order lo unders tand what algorithms perfornl better 
in what classes of applicatians. . 

jc) In this thesis, we avoided many interesting rcsearch issucs in the arca of 
distributed databases. Many of these were mentioned in chaptcr I. Out  of thcse, 
the ones that sccm to  be closely reIated to the update algorithms are distributed 
dircct;ory management, deadlock dctcction and elimination, optimal transaction. 
processing, and creation and elirninatior, of data items. Research in any one of 
these areas would be vcry valuable. 



APPENDIX 1. 

T h i s  appendix g ives a  de ta i l ed  descr ip t ion o f  the MCLA-h 
a lgo r i t hm.  Ue descr ibe the a lgor i thm as a se t  o f  procedures w r i t t e n  
i n  a  v e r y  in fo rma l  A l g o l - l i k e  language. I n  t h i s  language, comments a re  
precedcd b y  'I<<" and term.inated by 'I>>". The ob jec t i ve  o f  t h i s  
appendix i s  t o  present the a lgor i thm i n  a  c lear  and simple fashion.  
Therefore,  wc w i l l  no t  inc lude many modi f icat ions t h a t  can make t h e  
a l g o r i t h m  more e f f i c i e n t .  These niodif icat ions are l e f t  t o  t h e  reader  
as an exerc ise.  

F i r s t  we de f i ne  the  d ~ t a  s t ructures used by the  a lgor i thm: 

h = t h e  l i m i t  o f  t he  hole l i s t  copies (an in teger  constant) .  
c = t h e  node number o f  cen t ra l  node (an in teger  constant).  
number-of-nodes = the  number o f  nodes i n  the network (an i n tege r ) .  

A t  t h e  c e n t r a l  node, c: 
Central-sequence-number = an integer; equal t o  the cur ren t  sequence 

nunber. 
Cen t ra l - ho le - se t  = the  hole l i s t  a t  the cen t ra l  node. I n  t h i s  appendix, 

we c a l l  t h e  ho le  l i s t  a "set"  because i t  i s  implemented as a  s e t .  
Operat ions on se ts  are described below. The elements o f  t h e  
centrc i l -ho le-set  are the  sequence numbers o f  the holes. 

Deferred-set  = a  s e t  o f  the deferred updates a t  the  cen t ra l  node due t o  
i a r g e  ho le  l i s t s .  Each elenent o f  t h i s  se t  i s  an update. 

Locked ( i )  = boolean; t r u e  i f  i t e n  "i" i s  locked. There i s  a  l o c k e d ( i )  
f o r '  each i tem "i" i n  the  database. 

Lock-queue( i )  = a  qucue o f  updates t h a t  are wa i t i ng  f o r  update "ill t o  
become f ree .  Operations on queues are described below. There i s  
a  queue f o r  each i tem i n  the database. 

A t  each node, n, i n  the system: 
Done-set(n) = the  s e t  o f  a l l  t h e  updates t h a t  have been performed 

a t  t h i s  node. Each elenant i n  t h i s  set  i s  the sequence number 
o f  a completed update. 

Wa i t i ng -sc t (n )  = t he  se t  o f  the updates t ha t  have been de fe r red  a t  t h i s  
node because an update w i t h  a lower sequence number i s  miss ing.  
Each eiement o f  t h i s  se t  i s  an update. 

Each update A  has the followSrig f i e l d s :  
B a s e - l i s t ( A )  = a  po in te r  t o  the l i s t  o f  items referenced by  update A. 

Each element o f  t h i s  l i s t  i s  described below. Not ice  t h a t  t he  
b a s e - l i s t ( k )  i s  what we have ca l l ed  the base se t  o f  A. However, 
i n  t h i s  appendix we c a l l  the base se t  a  l i s t  because i t  i s  
implenented as a  l i s t .  The elenents o f  base- l i s t (A)  a re  ordered 
by incr'essing i t e a  number i n  oriler t o  prevent dead:celcs. 

Remain ing- l i s t (A)  = a  po in te r  t o  the l i s t  of items t h a t  must s t i l l  be 
locked by update A .  This f i e l d  i s  i n i t i a l l y  undefined. 

Update-values(./\) = the nelf values f o r  the items being updated by A. 
These values can be s to red  i; any convenient way. 

Request-node(h) = t he  node nunber o f  the node where h or ig ina ted .  
Sequence-nunSer(h) = t he  seqnence nurnber o f  update A. 
Ho le -se t (& )  = :he copy o f  the  hole l i s t  t h a t  i s  used by A.  Each 

e iezent  i n  t h i s  se t  i s  a  sequence number. 

Each c i e ~ t ~ t ,  P, i n  the l i s t  o f  items mentioned above conta ins:  
I t c n ( P )  = t n a  i t c a  refcrenccd. 
L i n k ( ? )  = p a i n t e r  t o  the  ncx t  elencnt o f  the l i s t .  If l i n k ( P )  i s  n u l l ,  

thea there  are no more elements. 



The f o l l o w i n g  f u n c t i o n s  arc  dc f incd f o r  any (FIFO) queue Q: 
Add( X I  Q ) : adds elcinent X t o  the  end o f  queue Q. T h i s  f u n c t i o n  does 

n o t  r e t u r n  a va luc .  
Remove( Q ) : r e t u r n s  t h e  e lencn t  a t  t h e  head o f  queue Q. The e lement  

i s  d e l e t e d  f rom the  queue. 
Is-empty( Q ) : r e t u r n s  t r u e  i f  Q i s  en?ty. 

The f o l l o w i n g  f u n c t i o n s  are  def ined f o r  any s e t  S :  
S i z e (  S  ) : r e t u r n s  t h e  number o f  elements i n  s e t  S. 
I n s e r t (  X I  S ) : adds element X t o  s e t  S .  :.fo va lue  i s  re tu rned .  
D e l e t e (  XI  S ) : removes e lencn t  X from s e t  S.  I f  X i s  n o t  i n  S ,  

t h e  f u n c t i o n  does noth ing.  KO va lue i s  re tu rned  i n  any case. 

F i n a l  ly, t h e  s e t  opc ra to rs  " i s -subse t -o f "  , tfelenent-of" ,  and 
" u n i o n "  a r e  def ined i n  t h e  obvious way. 

We now g i v e  t h e  procedures t h a t  descr ibe t h e  a lgo r i t hm.  Each 
p rocedure  i s  c a l l e d  w i t h  two paraaeters:  t he  update t h e  procedure i s  
g o i n g  t o  work w i t h  and t h e  node where t h e  procedure i s  go ing  t o  be 
e x e c i ~ t e d .  

P rocedure  A r r i v a l - o f - u p d a t e (  update A; node n  ) ;  
b c g i n  << Update A has j u s t  a r r i v e d  a t  node n  f rom a  user .  T h i s  

procedure w i l l  i n i t i a l i z e  h and w i l l  reques t  A's l o c k s  f r o m  
t h e  c e n t r a l  node, c. >> 

request -nodc(A)  := n; r e m a i n i n g - l i s t ( k )  := b a s e - l i s t ( A )  ; 
r e q u e s t - l o c k s (  A, c  ) ;  
end a r r i v a l - o f - u p d a t e ;  

P rocedure  Request- locks( update A; node c ) ;  
b e g i n  << T h i s  procedure shot l id on ly  be executed a t  t h e  c e n t r a l  node c. 

T h i s  procedure w i l l  at tempt t o  i o c k  a11 o f  t h e  r e m a i n i n g  
un lockcd  i t c n s  i n  A. >> 

p t r : =  r e m a i n i n g - l i s t ( A ) ;  
<< p t r  i s  a  l o c a l  v a r i a b l e  which p o i n t s  t o  t h e  l i s t  o f  i t ems  t o  be 

locked.  >> 
w h i l e  ( p t r  n o t  n u l l  ) do 

b e g i n  << At tempt  t o  l o c k  i t c n  i t e n ( p t r ) .  >> 
i t : =  i t e m ( p t r ) ;  << save i n  l o c a l  v a r i a b l e .  >> 
i f  n o t  l o c k c d ( i t )  then 

l o c k e d ( i t ) : =  t r u e  << i t em was f r e e  so l o c k  i t  >> 
e l s e  

b e g i n  << c o u l d  n o t  l o c k  so we c o s t  w s i t  >> 
r e m a i n i n g - l i s t ( A ) : =  p t r ;  << Save our p o s i t i o n  f o r  l a t e r .  >> . 
add( A, l ock -queue( i t )  j ;  
e x i t  t h i s  procedure; 
end; 

p t r : =  : i n k (  p t r  ) ;  
end; <-: snd o f  w h i l c  loop >> 

<< Wc haife now ob ta ined  a l l  l o c k  f o r  A's i tems. >> 
central-sequence-nunbcr:= central-sequence-number + 1; 
scqatncs-ndzSer(  A ):= central-sequence-nunSer; 
h o l a - s s t (  A. ):= cen t ra l -ho le -sc t ;  << Copy t h e  h o l 2  s e t .  >> 
i n s e r t (  sctience-number(A), cen t ra l -ho le -se t  ); 
i f  ~ f ~ e i  h ~ l e - s e t ( A )  ) > h thcn  

insert( A ,  d e f e r r e d - s e t  ) << h o l e  s e t  t o o  b i g ;  d e f e r  A >> 
e l s e  s ~ a n t :  A ,  request-node(A) ) ;  
end r e q u e s t - l o c k s ;  



Procedure Grant( updato A; nodc n ) ;  
bcg in  << The locks f o r  update A have been granted by the c e n t r a l  

node. This procedure w i l l  i n i t i a t e  the update i t s e l f .  >> 
i f  {1,2,3, .  . . , sequence-number(A) - 1 ) is-subset-of 

[ done-sef(n) union hole-set(A) ] then 
beg in  << can proceed w i t h  A >> 
compute ac tua l  update values, store them i n  update-values(A) and 
update tht? l o c a l  copy o f  the database; 
i n s e r t (  sequence-nunber(A), done-set(n) ) ; 
chcck-wai t ing-updates(n) ; 
f o r  i:= 1 step 1 u n t i l  number-of-nodes do 

i f  ( i  no t  n)  then perform-update( A, i ); 
end 

e l s e  
i n s e r t (  A, wa i t ing-se t (n )  ) << must wa i t  f o r  o ther  updates >>; 

end gran t ;  

Procedure Perform-update( update A; node n ); 
beg in  << This  procedurc w i l l  perform update A l o c a l l y ,  >> 
i f  n = c then central-update( A, c ) 
e l s e  

beg in  << t h i s .  i s  a non-central node >> 
i f  {1,2,3, . . . , seqitcncc-nvnber(A) - 1 } is-subset-of 

[ done-set(n) union hole-set(A) ] then 
begin << czn perform A >> 
update l o c a l  database as indicated.by update-values(A); 
i n s e r t (  sequence-nunt~cr(i\), done-set(n) ) ; 
check-waiting-updstes( n ); 

. cnd 
e l s e  

i n s e r t (  A, wa i t ing-sc t (n1  ) << must wa i t  f o r  o ther  updates >>; 
end; 

end perform-update; 



Procedure  Centr-ir l-update( uptiate A; node c  ) ;  
b e g i n  << T h i s  procedure should o n l y  bc executed a t  t h e  c e n t r a l  node c .  

T h i s  procedt i re w511 per form update k a t  t h e  c e n t r a l  node 
and w i l l  r e l e a s e  A's locks.  >> 

u p d a t e  l o c a l  database as i n d i c c t c d  by update-values( A 1; 

<< Next,  we d e l e t e  h o l e  i r  f r ~ n  h o l e  l i s t .  >> 
d e l e t e (  sequence-number(A), cen t ra l -ho le -se t  ) ;  
f o r  B c lemen t -o f  de fe r red -se t  do 

b e g i n  << check i f  h o l e  l i s t  o f  update 6 is now sma l le r  than  h >> 
d e l e t e (  sequence-nunber(A), ho le -se t (6 )  ) ;  
i f  s i z e (  h o l e - s e t ( B )  ) <= h  then 

b c g i n  << ho le -se t (B )  has l e s s  than o r  equal to h elements >> 
d e l e t e (  6, de fe r red -se t  ) ; .. 
g r a n t (  B, request-node(B) ); 
ena ; 

end; 

<< Now r e l e a s e  A's l ocks .  >> 
p t r : =  b a s e - l i s t (  A ) ;  
w h i l e  ( p t r  n o t  n u l l )  do 

b c g i n  << r e l e a s e  l o c k  o f  i te ia i t e n ( p t r )  >> 
i t : =  i t c a ( ~ t r ) ;  l o c k c d ( i t ) : =  f a l s e ;  
i f  n o t  is -empty(  l ock -queue( i t )  ) then 

b c g i n  << r e l e a s e  a  w a i t i n g  update >> 
B:= rr?nove( lock-quet ic ( i  t )  ) ; 
<< How B can con t inue  i t s  l o c k i n g  prccess. >> 
l o c k e c l ( i t ) : =  t r u e ;  
rema in ing -1  i s t (  B 1 := l i n k (  reaa in ing -1  i s t ( B )  1; 
r e q u e s t - l o c k s (  B, c ); 
end; 

-&....- 
p u t  .- ? ink (  p t r  ); 
end; 

end c e n t r a l - u p d s t z ;  

P rocedure  Check-wai t ing-updates( node n  ) ; 
b c g i n  << An upclate has j u s t  been per farced a t  non-cent ra l  node n. 

T h i s  procedure checks i f  any o ther  updates were waiting f o r  
t h e  complet ion o f  t h e  update. >> 

f o r  B element-o f  w a i t i n g - s e t (  n ) do 
b e g i n  
i f  {1,2,3, ..., sequence-number( B ) - 1 ) is -subset -o f  

C done-set (  n  ) un ion ho le -se t (  B ) 1 then 
perform-update( 8, n  ) ;  

end; 
end check-wai t ing-updates;  

<< End o f  KCLA-h a l g o r i t h m  and end o f  Appendix 1. >> 



APPENDIX 2. 

This Appendix gives a detailed description of the modified Ellis 
ring algorithm (MEAP). We describe the algorithm as a set of procedures 
written in a very informal Algol-like language. In this language, 
comments are preceded by ' < < I 1  and terminated by ' I>>". 

First we define the data structures that are used by the procedures: 

For each update A we define the following fields: 
Base-sot(A) = A pointer to the list of items referenced by update A.  

This list is described below. The elements of Base-set(A) 
are ordered by increasing itea number in order to 
prevent deadlocks. 

Remaining-set(A) = A pointer to the list of items that must still be 
locked by update A. Initially is undefined. 

Requcst-node(A) = The node nunber of the node where A originated. 
Forward-itcn(k) = If update k holds forward locks on an item, then 

forward-iten(A) is the item nunber of that item. Notice that at 
most A can hold the locks of one forward item. If forward-item(A) 
is undefined, then k has no forward locks. 

Each element, PI in the list of items mentioned above contains: 
Item( P) = the Stem referenced. 
Update-final(P) = True if this is a final update for this item. 
Link(P) = Pointer to the next element in the list. If link(P) is 

undefined, then there are no more elene~ts. 

For each item i at node n L!C have: 
State(i,n) = Idle, passive or active. 
Lowcst-priority(i,n) = Minimum priority of the set of updates that have 

passive locked item i a t  node n. This value is only defined when 
statc(i ,n) is passive. 

Internal-qucue(i,n) = The Snternal queue for item i at node n. 
External-queue(i,n) = The external queue for item i at node n. 

We also define the following functions: 
Successor(n) : Returns the node number of the node that follows node 

n in the ring. 
Add(A,q) : Adds update A to the end of queue q. This function does not 

return a value. 
Rernove(q) : Returns tt:e update at the head of queue q. The update is 

dcletcd from the queue. 
Is-enpty(q) : Returns true if queue q is enpty. 

We now give the procedure; thzt describe the algorithm. Each 
procedure is called with two paraneters: the node where the procedure 
is to be executed and the update it is going to work on. 

Procedure Arr ival-of-updste( update A ;  node n ) : 
begin << uo::ate A has just arrivcd at node n from a user. This 

proceclure trill initialize h and will start the locking 
pTocess. >> 

request-coezlk) := n; forward-iten(t1) := ucdefined; 
rema'aing-satjA):= base-sel(k); internal-request(A,n); 
end srrjvai-of-update; 



Procedure Internal-rcqucst( update A;  noda n ); 
begin << This procedure attcnpts to lock all remaining ltems at 

A's originating node n. >> 
ptr:= remaining-sc;(A); << ptr points to list of items to be locked >> 
While " ptr not undefined " do 

begin << Attempt to lock iten iten(ptr) >> 
i .- - item(ptr); << save in local variable >> 
if state(it,n) = idle then ;tate(it,n):= active 
e 1 se 

begin << Could not lock so we nust wait. >> 
remaining-set(A):= ptr; << Save our position for later >> 
add( A ,  internal-queue(it,n) 1; exit this procedure; 
end ; 

plr:= link(ptr); 
end; 

<< We nave now obtained all locks for A at this node. >> 
remaining-sei(A):= base-set(k); external-request( A, successor(n) ); 
end internal-request; 

Procedure Externsl-request( ugdate A; node n 1; 
begin << This procedure attenpts to lock all itens referenced by A 

at node n. Update A did not originate at node n. >> 
if request-node(A) = n then begin 

locks-obtained( A, n ); 
exit this procedure; 
end ; 

ptr := remaining-set([\) ; 
while "ptr not undefined" do 

begin << Attempt to lock item(ptr). >> 
St:= itcm(ptr); 
if state(it,n) = idle then 
begin state(it,n) := passive; 

lowest-priori ty(it,n) := request-node(A); end 
else if state(it,n) = psssive then 

<< Do not change state(it,n) >> 
lowest-priority(it,n):= n in (1o :~es t -p r io r i t y ( i t ,n ) ,  request-node(A)); 

else if state(it,n) = active and request-node(A) < n then 
begin << We miist wait for itea it to become available. >> 
remaining-sct(A):= p t r ;  
if forward-i tcm(A) riot undcfincd then 
release-forward-lock( A ,  n ) ;  << kvoicls deadlocks. >> 

add( A ,  external-queue(it,n) ) ;  exit this procedure; 
end ; 

<< If none of the above cases, then leave state(it,n) as active. >> 
ptr:= link(ptr); 
end ; 

<< We have now obtained a11 locks for A at this node. >> 
renajning-set(k):= base-set(A); external-request( A, successor(n) ); 
end external-request; 



Proceduro Locks-obtained( upd2te A;  node n ) ;  
beg in  << We have obtained lacks a t  a l l  ncdes f o r  a l l  o f  t h e  i tems 

referenced by h and we are back a t  A's o r i g i n a t i n g  node n >>. 
<< F i r s t  we decide what items w i l l  have update-f inal t rue .  >> 
p t r : =  base-set(A);  
Whi le  " p t r  no t  undef inedti do 

beg in  
i f  is-empty( external-queue( i t e n ( p t r ) ,  n  ) ) then 

upda te - f i na l  ( p t r ) : =  t rue e lse  gpdate- f ina l (p t r )  := fa lse ;  
-&I.- .- :?nk (p t r ) ;  
end; 

Compute ac tua l  update values, s to re  then i n  A, and update the  
l o c a l  copy o f  the  database; .I 

perform-update( A, successor(n) ) ; <<hi t i a t e s  updates a t  o ther  nodes. >> 
end locks-obtained; 

Procedure Perform-update( update A ;  node n ) ;  
beg in  << This  procedure pcr forns update A a t  node n. >> 
i f  request-node(h) = n t5en begin 

f i n i s h (  A, n  ) ;  e x i t  t h i s  procedure; 
end; 

Update l o c a l  database as ind icated by A; 
<< Now ra lease  locks i f  necessary. >> 
p t r : =  base-set(h);  
Whi le  " p t r  no t  undefinedit do 

begin 
i f  u p d a t e - f i n a l ( p t r )  = t rue aad 

s i a i e ( i t e n ( p t r ) ,  n) = passive and 
l o w e s t - p r i o r i  t y ( i  tem(ptr ), n) >= request-node(A) then 

releasc*internal-requcst(iten(ptr),n); 
<< Last  procedure releases any requests i n  the i n t e r n a l  queue 

and se t s  t he  s t a t e  t o  i d l e .  >> 
p t r : =  l i n k ( p t r ) ;  
end ; 

perform-updats( A, successor(n) ); << Go on t o  next  node. >> 
end perfo~rn-update; 

Proccdure F i n i s h (  update A;  node n ) ;  
beg in  << Update A has a r r i ved  a t  A's o r i g i na t i ng  node n a f t e r  

being performed a t  a l l  nodes. We must there fo re  re lease  
a l l  o f  A's locks a t  node n and must s t a r t  up any o ther  
updates wa i t i ng  f o r  these items. >> 

p t r  := base-set( A )  ; 
whi  l c  " p t r  no t  undefined" do 

begin << Check i t c n ( p t r ) .  >> 
it:= i t e n ( p t r ) ;  
i T  is-empty( external-queue(i t ,n) ) then 

release-internal-request(it,n) 
e l s e  relesse-external-request(it, n, update- f ina l (p t r )  ); 
p t r  := 1  i n k ( p t r ) ;  
end; 

s top ;  << Update A has been completed. >> 
end f i n i s h :  



Procedure  Release-internal-request( i tern i ; node n  ); 
b e g i n  << T h i s  procedure re leases any locks on i t e n  i a t  node n and 

i f  t h e r e  i s  an update w a i t i n g  on i, it  i s  s t a r t e d  up. >> 
s t a t e ( i t , n ) : =  i d l e ;  
i f  n o t  is -empty(  i n t c r n a l - q u e u e ( i , n )  then 

b e g i n  
B:= remove( i n te rna l -qucue( i ,n )  ) ;  
<< Update B can now l o c k  i t e a  i and can cont inue. >> 
s t a t c ( i , n ) : =  a c t i v e ;  reaa in ing-set (B) :=  l i n k (  remaining-set(B) ); 
i n t e r n a l - r e q u e s t (  8, n  ); << Lock r e s t  o f  i tems. >> 
end; 

end r e l e a s e - i n t e r n a l - r e q u e s t ;  
.. 

Procedure Release-externa l - request (  i t e n  i; nodc n; 
boolean update-f  i n a l  ) ; 

b e g i n  << T h i s  procedure re leases the update w a i t i n g  f o r  i t e m  i a t  
nodc n. We assunc t h a t  external-queue( i ,n)  i s  n o t  empty. >> 

B:= remove( ex te rna l -qucue( i ,n )  ); << Queue should  now be empty. >> 
s t a t a ( i  ,n )  := passive;  l o v r e s t - p r i o r i t y ( i , n )  := request-node(B); 
i f  u p d a t e - f  i n a l  then fo rward - i  tem(B) := undef ined 
e l s e  f o r w a r d - i  tcn(B) :=  i ; 
<< Now update B can con t inue  i t s  l o c k i n g  process. >> 
r e n a i n i n g - s e t ( B ) : =  l i n k (  r e ~ a i n i n g - s e t ( G )  ) ;  
e x t e r n a l - r e q u e s t (  B, n  ) ;  << Lock remaining items. >> 
end re7ease-externa l - request ;  

Procedure Release*forward- lock( update A ;  nodc n  ) ;  
b e g i n  << T h i s  procedure re leases the f o r w r d  l o c k  h e l d  by update 4. >> 
<< Forward- i tem(A)  shoulci n o t  be undcf:'ned. >> 
f o r  k:= ( n  + 1) s tep  1 u n t i l  number-of-nodes do 

r e l e a s e - a n - i  t e n (  forward-? tea(A), k ) ; 
i f  f o rward - i t en i (A )  > i t e n (  remaining-set(A) ) then 

re lease-an- i tem(  fo rward - i  teri(A), n  ) ;  
<< Rcna in inc -se t (A )  p o i n t s  t o  t h c  the  i t em t h a t  A w i l l  w a i t  on a t  

nocle n. >> 
end re lease- fo rward - lock ;  

Procedure Release-an- i tem( i t e n  i; node n  ) ;  
b e g i n  << T h i s  procedure w i l l  re lease i t e n  i a t  node n. Update A 

has " i n h e r i t e d "  these locks  from an update w i t h  h i s h e r  
p r i o r i t y .  >> 

<< A s s e r t :  s t a t e ( i , n )  = pass ive and 
l o w e s t - p r i o r i t y j  i ,n) > rectuest+ncsde(A). 

Q i res t i on  f o r  t h e  reader :  Why should t h e  above a s s e r t i o n  be t r u e ?  >> 
r e l e a s e - i n t e r n a l - r e q u e s t (  i, n ) ;  
end re lease-an- i tem;  

<< End o f  thc n o d i f i e d  E l l i s  r i n g  a lgo r i t hm ( w i t h  sequentis! n ~ d s t e s )  
and and o f  Appendix 2. >> 



APPENDIX 3 .  

begin Nprogram" 

require 84{) { ) "  deliniters; 
define crlf = (('15&'12)); 
define cr = (('15)); 
define f = .{comment);. 

S This SAIL program computes the average response time o f  an update 
in the MCCA centralized locking algorithm. For an explanation of this 
program, see chapter 4. 

external integer !skip! ;  
integer bk; string rep; 
integer j; 
real tenp,N,M,hr,Bs,Is,Id,T,lanbda,EYtEY2,EZ,EZ2; 
real Pw, locktine,restime,oldrestime,lnc,Lnc,Lc; 
real rate,Xc,Xc2,roo,Wz,Xnc,Xnc2,Wnc,Rnc,Rc; 

procedure So7veSysten; 
begin Mcoapute'' 
rate+ (?*N  + 1) + Pw*N; 
Xc* N * 2 a Is * EY; 
\ P  ht- X t  i I ~ A E Y ;  
Xc* Xc + N * (Is*EY + IdkEZ); 
Xc* Xc + Pw * N * Is *(  EY - 1 ) ;  
Xc+ Xc / rate; 
Xc2+ N * 4 x IsxIs * EY2; 
Xc2- Xc2 + IdxId x EY2; 
Xc2+ Xc2 + N * ( IskIskEY2 + is*Id*(EY + EY2) + Id*Id*EZ7 - ). * 
Xc2- Xc2 + Pw * N * 4*Is*ls*( EY2/3 - EY/2 + 1.0/6.0 ); 
Xc2- Xc2 / rate; - 
roo- lambda * rate * Xc; 
Wc* ( ( lambda * rate /2 ) a Bc2 ) / (  1 - roo );' 
rate+ N + 1; 
Xnc- ( IclaEY + N m Id*EZ )/rate; 
Xnc2+ ( IdkIdaEY2 + N x IdaIdxEZ2 )/rate; 
roo* lambda * rate * Xnc; 
Wnc- ( ( lanlbda * rate /2 ) a Xnc2 ) / (  1 - roo ); 
Rnc* 2 x Wnc + Wc + 2*Is*EY + Id*(EY + EZ) + 2rT; 
Rc* 3 * Wc + 3 * Is a EY + Id*( EY + EZ ); 
restirnew ( (N - 1)xRnc + Rc )/N + Pwx(locktime/Z + Wc + Is*(EY-1)); 
end "compute"; 

procedure conflict!analysis; 
begin "con~iict!analysis" 
Lnc* T + Wnc + IdkEY + T + \!c + Is*EY + IdaEZ; 
LC* Wc + Id*EY + Wc + Is*EY + IdaEZ; 
lociCtilt~.c ( (N-l)* Lnc + LC ) / K ;  
Pw* ( E Y  a EY / 11 ) k N * lanbdc * locktine; 
end "c~~fi~cf!analysisn; 



while trilc clo 
bcgin "main" 
print("number of nodes N = la); rep-intty; temp-realscan(rep,bk j ;  
if !skip! = cr then N- teinp else print(N,crlf); 
print(I1nunber of i tens M = " ) ;  rep-Sntty; temp+-realscan(rep,bk) ; 
if !skip! = cr then 1.16 tenp else print(H,crlf); 
print("interarriva1 tine Ar = I#); repcintty; tenp+realscan(rap,bk); 
if !skip! = cr thcn Ar-temp else print(Ar,crlf); 
print("nean base set Bs = " ) ;  repcintty; temp-realscan(rep,bk); 
if !skip! = cr then Bsctenp elsa print(as,crlf); 
print("I0 slice Is = " ) ;  repcintiy; temp+-realscan(rep,bk); 
if !skip! = cr then Is-temp else print(Is,crlf); 
print("I0 data I d  = " ) ; rep-intty; temp+realscan(rep, bk) ; 
if !skip! = cr then Id-temp else print(Id,crlf); 
print("transnission tine T = " ) ;  repeintty; temp-realscan(rep,bk); 
if !skfp! = cr then T+ temp else print(T,crlf); 

Pw* 0 ;  j- 0 ;  locktime- 0; oldrestirne* 0 ;  
SolvcSystea; 5 Result is restine, Wc, Wnc; 
do begin 

j+ j + 1; 
conflict!analysis; 5 Result is Pw, locktine; 
olcl;estirnc* rest i n@;  
SolvcSystem; S Result is rasti~e, Wc, Wnc; 
end 

until ( j > 5 ) or ((rcstirx - oldrestinc)/restine < .81 ); 
print(cr1f ,"==> mean response tine = ", restime, 

" iterations = ", j, crlf, crlf); 
end l'rnain" 

end "program" 



APPENDIX 4 .  

begin "program" 

require " { )  { ) "  delimiters; 
define crlf = {(*15&'12jj; 
define cr = (('15)); 
define 5 = {comment); 

S This SAIL program computes the average response time of  an update 
in the distributed voting algorithm (DVA). For an explanation o f  this 
program, sea chapter 4. a 

external integer !skip!; 
i n 4 - m m m r  k t - I  .,.,,,,, string rep; 
boolean odd; 
integer i, j, k, h, g,  1, skips; 
integer N ,  M, Kh3, count; 
real temp, sun, restine, oldrestine, rentime, P, PC, Pcl, Pc2, Psc; 
real Ar, 5s. Is, Id, T, lambda, limit, Rt, EY, EY2, EZ, EZ2; 
real X, X2, roo, rate, P1, P2, exec!tine; 

real array pt, q[B:ll, 0:20]; 
real array W, delay, rateRRIT, rateRV[D:20]; 

b rateRRIT[i] is "arrival rate of RRIT[f 3" (in chapter 4) divided 
by lambda. Similarly, ratcRV[i] is "arrival rate o f  RV[i]" 
divided by lambda ; 

integer procedure modulo(value integer x,y) ; 
begin 
while x < O do x* x + y; 
return( x mod y ) ;  
end; 



procedure SolvcSystem; 
begin "SolveSystemV 
for i- 6 step 1 until N-1 do 

begin 5 compute w a i t  times w [ i ]  at each node; 
rate* N + rateRRIT[i] + rateRV[i]; 
X* rateRRIT[i]x( Is + Id )* EY; 
X- X + rateRV[i]k Is * EY; 
X+ X + N*( Is + Id )*EZ; 
X* X/rate; 
X2- rateRRIT[i]*(Is + Id)a(Is + Id)*EY2; 
X2- X2 + r a  teRV[ i ]*Is*Xs*EYZ; 
X2- X2 + N*(Is + Id)b(Is + 1d )~EZz ;  
X2- XZ/rate; 
rooc lambda* rate * X; 
W L  i I* ( ( lanbda*rate/2)+X2)/(1 - roo) ; 
end ; 

resti,ne+ 0; 
for i+ O step 1 until N-1 do 

bcgin 5 cornaute response tines; 
sum* 3*W[ i ] ; 
for j* 1 step 1 until KAJ - 1 do 

sun* sun + w[modulo(i+j, N)]; 
temp6 sun + (Is + Id)*EY + MAJ*( Is*EY t T ) + 

(Is + Id)*EZ + delay[i]; 
restirne* restine + ten>; 
end ; 

restine- restirne/N; . 

end "SolveSystem"; 

procedure spocial!case; 
begin "special!caseu 
j* modulo(i + MA3 - 1, N); 5 Update S originated at node j ; 
sum*O ; 
for kc O step 1 until N-1 do 

sum* sun T ( W[k] + IskEY + T); 
Psc* (Pcl + Pc2)k lambda * sun; 
if j geq i then 
bcgin 5 delay only; 
dclay[i]- dclay[i ] + Psc*(sun/P + W [ j  J + IsaEY); 
rateRV[ j 1- rateRV[ j] + Psc; 
end 

el sc 
begin 5 dr case ; 
delay[i]- delay[i] + PSCP( \![<I + (IS + Id)*EY + sun+ Rt); 
ratcRRITC i 1- ratcRRIT[i + Psc; 
for k- 8 step 1 until N - 1  do 

rateRVt k]b rate7V[k] + Psc; 
end; 

end " s ~ ~ c ~ z l  !casen1; 



proccduro computo!pt!q; 
begin "conpute!pL!q" 
for i* 0 step 1 until N-1 do 

begin 
rateRRIT[i ]+ 1; rateRV[i I+ MAJ; delay[i]+ 3; 
end; 

for j+ O step 1 until N-1 do 
for i t  O step 1 until MA3 - 1 do 

begin b Consider updates with i OK votes at node j ; 
pt[i , j]+ (MAJ - i - l)*(IsxEY c T) + T + W[ j] + (Is + Id)*EZ; 
if i+l = MAJ then pt[i, j]+ pt[i, j] - T; 
for kc j+l step 1 iintil j + (MAJ- i - 1) do 

pt[i, j]+ pt[i, j] + W[modulo( k, N )  1; 
q[i,jJ+ pt[i,j]*lambda; a 

end; 
end "conpute! pt!qM ; 

procedure old!ts; 
begin "oid!ts" 
5 compute delays and extra loads caused by old timestamps; 
for i t  O step 1 until N-1 do 

begin 
?+ PC * ( W[i] + (N-l)9:( tl[i] + (Is + Id)*EY ) )*  lambda; 
tenp* U[i] + (Is +Id)*EY + W[i] + IskEY + Rt; 
delay[i]* delayCi] + Pxtemp; 
rateRRIT[i]+ rateRRIT[i] + P; 
rateRV[i]- rateRV[i] + P; 
temp* temp + T; 
for j+ 1 step 1 until N - KAJ do 

begin 
P+ Pc*[CN - KAJ + 1) - j)x(Virnodulo(i+j-1,N)I + IskEY + T)*lambda; 
tcrnp* temp + W[noclulo(i+j, t4)] + IskEY + T; 
delay[i ]+ delay[i] + Pktenp; 
rateRRIT[i]+ rateRRIT[i] + P; 
for k+ i step 1 until i+j do 

rateRV[modulo(k,N)]+ rateRV[nodulo(k,N)] + P; 
end; 

end; 
end "old!tsU; 



procedurc conflicts; 
bcgin HconflicLs" 
for i+ O step 1 until 14-1 do 

bcgin "conflicts main looph 
$ compute effect o f  conflict at first voting at node i; 
temp* W[ i ] + (Is + Id)*EY + W[ i f + IskEY + Rt; 
for h- O step 1 until NAJ-1 do 

begin 
.$ undate at i conflicfs with cpdate from node j = i - h  mod N; . 
j+ nodulo(i - h, N); 
Pl+ Pcl * q[h,i]; P2- Pc2 * q[h,i]; 
if j geq i then 
bcgin $ update is delayed at node i; 
delay[i 1- clelay[i] + P*(tenp + pt[h,i]/Z); 
rateRRIT[i J- rateRRIT[i] + P; 
rate!?!':; ]+ rateRV[i ] + P; 
delay[i ]+ delsy[i ] + P2*( K[i] + k*EY + pt[h,l]/Z ); 
rateRV[i 1- rateRV[i ] + P2; 
end 

else 
bcgin 5 update gets DR... then proceeds to get more DRs; 
rentinec pt[h,i]/Z; kc i; exec!tine* temp - 2t; skips+ 0;  
rateRRIT[i ]+ rateREIT[i] + P1; 
ratcRV[i ]+ rateRV[i] + P1; 
while rcatime > O do 

begin 
k* moclulo(k + 1, ! 3 ) ;  skips* skips + 1; 
excc!tinc* exec!tinc + T + KEk] + Is*EY; 
rateRV[kJ- rateRV[k] + P1; 
rentine* remtime - ( T  + Wik] + IsxEY); 
end; 

dclay[i ]+ delayci] + P l x (  cxec!tine + T + Rt ); 
clclay[i 1- dclay[i] + P2*( exec! time - W[i] - (Is + Id)*EY ); 

- for 1- (i+l.iAJ-l)+l step 1 until (i+FIAJ-l)+skips do 
rateRV[nodulo(l, C)]- ratc3V[~odulo(l ,N)] + P2; 

end; 
end; 



$ now compute effects of conflicts a t  nodes j+l, j+2,  etc. ; 
temp- W[i] + (Is + 1d)aEY + WCi] + Is*EY; 
if odd then limit+ MAJ -i else limit+ MAJ - 2; 
for g- 1 step 1 until limit do 

begin 
j- modulo( i + g , t i ) ;  
5 request from node i conflicts with pending request at node j. 

The conflicting request originated at node j; 
Pl+ Pcl * q[O,  j]; P2+ Pc2 * q[O, j]; 
temp- tenp + T + M E ' !  + WCj]; S Temp i s  exec. time up to node 
rateRRIT[i]+ rateRRIT[i] + PI; 
for k- i step 1 until i + g do 

rateRV[ modulo(k,N)]+ rateRV[modulo(k,N)] + PI; 
if j geq i then 
begin 5 update is delayed ; 
deiay[i]b delay[i] + Pl*(tenp + T + Rt + pt[0,j]/2); 
delay[i]+ delayCi] + PE*(V[j] + IsxEY + pt[B,j]/Z); 
rateRV[j]- rateRV[j] + P2; 
end 

else 
begin 5 Update is DR ; 
rentirne- pt[D,j]/2; k+ j; exec!time+ temp; skips* 8 ;  
while rentime > O do 

begin 
kc nodulo(k + 1, N) ;  skips- skips + 1; 
exec! time+ excc! tine + T + I skEY + W[k]; 
ratcRV[k]+ rateRV[k] + PI;  
rentirna+ remtine - (T + IsGY + Wfk]); 
end; 

delay[i]* delay[i] + Pla(exec!tinc + T + Rt); 
deiay[i]+ dclayCi] + P?*(Exec!tinc - tenp + W[j] - W[k]); 
for l+  (i+IIAJ-l)+l step 1 until (i+KAJ-l)+skips do 

rateRV[modulo(l ,N)]- rateRV[modulo(l,N)] + P2; 
end; 

end; 
if not odd then spccial!case; 
end "conflicts main loop" 

end "conf 1 icts"; 



while truc do 
bcgin "main" 
print("nunber of nodes N = " ) ;  rep-intty; kc intscan(rep,bk); 
if !skip! = cr then N- k else print(N,crlf); 
print("number of items I4 = " ) ;  rep-intty; k- intscan(rep,bk); 
if !skip! = cr then M- k elsc print(M,crlf); 
print("interarriva1 time At = " ) ;  rep-intty; tenp+realscan(rep,bk); 
if !skip! = cr then Ar+tc!np else print(Ar,crlf); 
print("ncan base set Bs = " ) ;  rep-intty; temp-realscan(rep,bk) ; 
if !skip! = cr then Bs-teap else print(Bs,crlf); 
print("I0 slice Is = " ) ;  rep-intty; tenp*realscan(rep,bk) ; 
if !skip! = cr iileri is-temp else print(Is,crlf); 
print('II0 data Id = " ) ;  rep-intty; tenp*realscan(rep,bk); 
if !skip! = cr thcn Id*tonp clse print(Id,crlf); 
print("transnission time T = " ) ;  rep-intty; temp-realscan(rep, bk); 
if !skip! = cr thcn T+ tcmp elsc print(T,crlf); 
print(I1retry tinc Rt = 'I); rep-intty; tenp+realscan(rep, bk) ; 
if !skip! = cr then Rtctenp else print(Rt, crlf); 

lambda-11Ar; EY+1/(1-exp(-1IBs)); 
EY2- EY * EY * (1 + exp( -l/Es ) ) ;  
EZ* (EY + 1.3)iZ.O; 
EZ2+ EY2/3.0 + EYl2.0 + 1.8/6.0; 
PC+ EY a EZ / K; 
Pcl* EZ * EY I M ;  Pc2- EZx(EY - EZ)/M; 
k* n/2; ' 

if k*2 = n thcn oad- false else odd- true; 
MAJ* ( ni2.0 + 1.0 ) ;  
for i- 0 step 1 until n-1 do 

bcgin 
ratcRRIT[i]+ 1; rateRV[i 1- RkJ; delay[i ]+ 0; 
end; 

SolveSysten; 
count- 0; 
do begin 

conpute!pt!q; 
old! ts; 
conflicts; 
count- count + 1; oldrestime* restime; 
SolveSystern; 
end 

until (count > 5) or ((restime - oldrestime)/restime < .81 ); 

print(crlf,"==> mcan response tine = ', restime, 
iterations = @I, count, crlf, crlf); 

end "main"; 
end "progran" 



APPENDIX 5. 

beg in  "program" 

r e q u i r e  ' I {)  { )" de l im i  te rs ;  
d e f i n e  c r l f  = {( '15&'12)); 
d e f i n e  c r  = ( ( '35)) ;  
d e f i n e  $ = {comment); 

5 T h i s  SAIL program computes the average response t ime o f  an update 
i n  t h e  MCLA cent ra l i zed  lock ing algorithm. This program i s  a 
mod i f i ed  vers ion o f  the program i n  appendix 3. 
The correspondance between the program var iables and the names 
used i n  the  chapter 5 i s  as fol lows: L i s  E[L], LC i s  E[Lc], 
Lnc i s  E[Lnc], Lgc i s  E[LIC], Lcgc i s  E[Lc)C], Lncgc I s  E[LncjC], 
EY i s  E[Y j, EY2 i s  E[Y*Y], EYgc i s  E[YIC], EY2gc i s  E[Y*YIC], 
EZ i s  E[Z], EZ2 i s  E[Z*Z], EZgc i s  ECZIC], EYrem i s  E[REMIC], 
EY2ren i s  E[REM*REMIC], Pw i s  P(W), PN! f s  P(Vl),  Pw2 i s  P(W2), 
P2w i s  P(2nd wa i t ) ,  and PC i s  P(C); 

e x t e r n a l  i n t e g e r  !sk ip !  ; 
i n t e g c r  bk;  s t r i n g  rep; 
i n t e g e r  j; 
r e a l  tenp,N,iCI,Ar,Bs,Is,Id,T,lanbda,EY,EY2,EZ,EZ2; 
r e a l  Pw, L,restime,oldrestirne,Lnc, LC; 
r e a l  r z t e , X c , X c 2 , r o o , W c , X n c , X n c 2 , k ~ n c , R ~ ;  
r e a l  EYgc, EYEgc, EZ~JC, Lrhc, Lncgc, Lcgc;; 
r e a l  PC, P2w, Pwl, Pw2, EYren, EY2ren; 



proceduro SolvcSystam; 
begin 'lcomputell 
rate* (2*N + 1) + Pw*N; 
Xc* N * 2 * IS * EY; 
Xc* Xc + IdrEY; 
Xc* Xc + N * (Is*EY + IdrEZ); 
Xc* Xc + Pw * N * 2 * Is *( EYrem + PEw*(EYren-1)/2 ); 
Xc* Xc / rate; 
XcZ* N * 4 * Is*ls * EY2; 
Xc2* Xc2 + Id*Id * EY2; 
Xc2t Xc2 + N * ( Is*Is*EY2 + Is*Id*(EY + EY2) + IdxIdrEZ2 ); 
XcZ* Xc2 + Pw k N * 4*Is*Is* 

(EY2ren + P2w*(EYZren/3 - EYrcnl2 + 1.O/G.8) ); 
XcZ* Xc2 / rate; 
roo* lambda * rate * Xc; 
i f  roo geq 1 then 

begin 
print(crlf, "*k***** SYSTEM IS UNSTABLE *******I1) ; 
roo* lambda* 8; 
end; 

Wc* ( ( lambda * rate /2 ) * Xc2 ) / (  1 - roo ); 
rate+ N + 1; 
Xnc* ( Id*EY + N * IdkEZ )/rate; 
Xnc2+ ( Id*Id*EY2 + N * Id*Id*EZZ )/rate; 
roo* lanbda * rate * Xnc; 
i f  roo gcq 1 then 

begin 
print(crlf, ll*m***** SYSTEM IS UNSTk8LE *******"); 
roo* l?rnhda+ 8; 
end; 

Wnc+ ( ( lambda * rate /2 ) * Xnc2 ) / (  1 - roo ); 
Rnc+ 2 * Wnc + Wc + 2*Is*EY + Id*(EY + EZ) + 2*T; 
Rc- 3 * Wc + 3 r Is e EY + Ida( E Y +  EZ ) ;  
restine- ( (N - 1)nRnc + Rc )/N + Pw*(Lgc/Z + Wc + Isx(EYgc-1)) 

+ Pw2*Lgc + Pw*PEwx(Lgc/P + Wc + Is*(EYrem - 1)); 
end nconpute"; 

procedure conflict!analysis; 
begin 'lconflict!analysisl' 
Lnc* T + Wnc + IdkEY + T + Wc + Is*EY + Id*EZ; 
LC- Wc + IdkEY + Wc + Is*EY + IdkEZ; 
L+ ( (R-l)*Lnc + LC ) I N ;  
Lncgc- T + Wnc + IdrEYgc + T + Kc + IskEYgc + IdaEZgc; 
Lcgc* Vc + Id*EYgc + Wc + IskEYgc + IdxEZgc; 
Lgc+ ( (N-1)* Lncgc + Lcgc ) /N ;  
Lgc- Lgc + ( (Lgc/2)*N*lar;1bda*EY/?l)*Lgc; 
Pwl* PC * N * lambda * L; 
Pw2+ Pca (?gc/2 + Wc + Is$:(EYgc-l))nN*lanbda*Pwl; 
PZw* (EYren*EY/M)aNalambda*L; 
Pw* Pwl + Pw2; 
end "confi ict!ana.lysisIt ; 



while true do 
begin "r~ain" 
print("nunSer of nodes 'N = " ) ;  reptintty; tesp+realscan(rep,bk); 
-if !skip! = cr then N- tenp else print(N,crlf); 
print("nunber of items M = ") ;  rcpcintty; tenp+realscan(rep,bk); 
if !skip! = cr then i.l+ temp else print(N,crlf); 
print("interarriva1 tine f\r = " ) ;  rcpcintty; tenp+realscan(rep, bk); 
if !skip! = cr then Arctenp else print(Ar,crlf); 
print ("mean base set Bs = It); rep-intty; ten~+realscan(rep,bk); 
if !skip! = cr then Bsctenp else prSof(Bs,crlf); 
print("I0 slice Is = ".); repcintty; te~p+realscan(rep, bk); 
if !skip! = cr then Isctenp else print(Is,crlf); 
print("I0 data Id = lo); repcintty; tenp+realscan(rep,bk); 
if !skip! = c r  then Idctcnp else print(Id,crlf); 
print("transnission time T = " ) ;  repcintty; tenp+realscan(rep,bk); 
if !skip! = cr then T* tenp else print(T,crlf); 

lanbda+l/Ar; EY+1/(1-exp(-l/Es)); 
EY2+ EY * EY * (1 + exp( -1/Bs ) ) ;  
EZ* ( EY + 1.0 )/2.0; 
EZ2+ EY2/3 + EY/2 + 1.016.0; 
EYgct 2 x. exp(-118s.) * EY + 1; 
EY2gc- b*exp(-l/Bs)*EY*( exp(-I/Bs)*EY + 1) + 1; 
EZgc* ( EYgc + 1.0 ) /2.0; 
EYren- ( EYgc - 1.0 )/2.0; 
EY2rent EY2yc/3.8 - EYgc/2.0 + 1.016.0; 
PC- EY * EY / M; 

Pw- Pwl- Pw2+ P2wh 0; j- 9; L- Lgc+ 0 ;  oIdrestine+ 8 ;  
SolveSysten; ' 5 Result is restine, Wc, Wnc; 
do begin 

print(ci-lf ,restin@); 
j- j + 1; 
conflict!analysis; 5 Result is Pw, L, Lgc; 
oldrcstine* restinc; 
SolveSysten; .S Result is restins, Wc, Wnc; 
end 

until ( j > 5 ) or ((restine - oldrestine)/restime < .81 ); 
print(crlf,I1==> mcan response tine = 'I, restine, 

" iterations = I f ,  j, crlf, crlfj; 
end "ma i n u  

end "program" 



APPENDIX 6 .  

begin "program" 

require " { )  { ) "  delimiters; 
define crlf = { ( ' 15& '12 ) ) ;  
define cr = (('15)); 
define 5 = {comment); 

5 This SAIL program computes the average response time of an update 
in the distributed voting algorithm (OVA). This program is s modified 
version of the program in appendix 4. In this program, 
EY is E[Y], EY2 is E[Y*Y], EYgc is ECYIC], EY2gc is E[Y*Y[C], 
EZ is ECZ], EZ2 is E[Z*Z], EZgc is E[ZIC]. Variable ptgc[i,jJ is 
defined as pt[i,j] given that the update involved has conf3icted. 
rateRRIT[i ] is "arrival rate of R8IT[i]" in chapter 4 divided by lambda. 
Similarly, rateRV[i] is "arrival rate of RV[i]" in chapter 4 divided by 
lambda. However, here we initialize rateRRIT[i] and rateRV[i] to 
8 .  The components of these arrival rates not due to conflicts 
are handled in procedure Solvesystem; 

external integer !skip!; 
integer bk; string rep; 
boolean odd; 
integer i, j, k, h, g, 1, skips; 
integer N. M, MAJ, count; 
real tcnp, sun, restime, oldrestinc, rerntime, P, PC, Pcl, Pc2, Psc; 
real Ar, Bs, Is, Id, T, lambda, limit, Rt, EY, EY2, EZ, EZZ; 
real X, X2, roo, rate, P1, P2, exec!tirne; 
real EYgc, EYZgc, EZyc, sumgc; 

real array pt, ptgc, q[O: l l ,  0:20]; 
real array W, delay, rateRRIT, rateRVi0:EOl; 

integer procedure modu1o(value integer x,y); 
begin 
whjle x < 0 do x+ x + y; 
return( x nod y ); 
end; 



procedure SolveSystem; 
bcgin "SolveSys tem" 
for i- 0 step 1 until N-1 do 

begin 5 compute wait times w[i] at each node; 
rate* N + ( 1 + rateRRIT[i J ) + ( NAJ + rateRV[ i 3 ) ; 
X+ rrlteRRIT[i]*( Is + Id )r EYgc + la(Is + Id)*EY; 
X* X + rateRV[i]r Is * EYgc + KhJ* Is * EY; 
X* X + N*( Is + Id )*EZ; 
X* X/rate; 
X2+ ratcRRITCi ]*(Is + Id)*(Is + 1d)aEYZgc + lx.(Is+Id)*(Is+Id)+EYE; 
X24- X2 + rateRV[i]*Is*Is*EY2gc + MAJxIs*Is*EYE; 
X2+ X2 + N*(Is + Id)*(Is + 1d)aEZZ; 
X2- XZ/rate; 
roo- 1 anbda*ra teaX; 
if roo geq 1 then 
beg i r: 
pr i nt(cr 1 f, "x**k**x  SYSTEM U:iSTAELE ****a**'') ; 
roo- lambda- 0; 
end; 

W[ i ]* ((Ianbda*rate/2)aX2)/(1 - roo) ; 
end; 

restirnew 6; 
for i- 8 step 1 until N - 1  do 

begin 5 compute response tines; 
sun* 3*W[ i ] ; 
for j* 1 step 1 until NAJ - 1 do 

sum* sua + W[modulo(i+j, N)]; 
temp- sum + (Is + Id)*EY + MAJ*( Is*EY + T ) + 

(Is + 1d)kEZ + delay[i J; 
restine- restime + temp; 
end; 

restime* restime/N; 
end "SolveSystemU; 

hrocedure special!case; 
bcgin "spccial!caseU 
jt modulo(i + t?GZ - 1, N); b Update 0 originated at node j ; 
sum* sungc- 0 ;  
for k- O step 1 until N-1 do 

begin 
sum* sum + ( W[k] + IsxEY + T); 
sumgc- sumgc + ( W[k] + 1s~EYgc i T); 

cnd ; 
Psc* (Pcl + Pc2)x lambda * sun; 
if j gcq i then 

. , . begin S delay only; 
delay[ i !+ delayri J + Pscr(sungcf2 + W[ j] + IseEYgc); 
rate;Vi 21- rsteRV[jJ + Psc; 
en ti 

else 
begSn 5 dr case ; 
delay:? j- delay[i] + PSCI( W[i] + (IS + Id)*EYgc + sumgc + Rt) ; 
rateZ2IiCf 2- rateRRIT[i] + Ysc; 
C lor k- C s tep  1 until N-1 do 

rats?V[kJ- rateRV[k] + Psc; 
ens; 

end "s~aziallcase"; 



proceduro computo!pt!q; 
bcgin "compute! pt ! q" 
for i- O step 1 until N-1 do 

begin 
rateRRIT[i]+ 0 ;  rateRV[i]+ 0; delay[i]+ 8; 
e ~ d  ; 

for j+ B step 1 until N-1 do 
for i* 8 step 1 until MA3 - 1 do 

begin 5 Consider updates with i OK votes at node j ; 
pt[i, j 1- (MAJ - i - l)*(IsrEY + T )  + T + W[j! + (Is + 1Z):kEZ; 
ptgc[i, j]+ /MA3 - i-l)*(Is*EYgc + T) + T + W[j] + (Is + Id)*EZgc; 
if i+l = MA3 then 

begin pt[i, j]* pt[i,j] - T; ptgc[i, j]+ ptgc[i, J]  - T; end; 
for k+ j+l step 1 until j + (MAJ- i - 1) do 

begin 
pt[i, j]+ pt[i, j] + V[modulo( k, N) 1; 
ptgc[i, j]- ptgc[i, j ] + W[nodulo( k, N) 1; 

end; 
q[i, j]+ pt[i, jj*lambda; 
end; 

end "compute! pt! q1I ; 

procedure old! ts; 
begin "old! ts" 
5 coapuie delays and extra loads caused by old timestamps; 
for i+ 8 step 1 until N-1 do 

bcgin 
P- PC * ( W[i] + [El-I)*( W[i] + (Is + Id)*EY ) )*  lambda; 
tenp* W[i ] + (Is +Id)*EYgc + B[i ] + IsaEYgc + Rt; 
delay[i 1- delay[i ] + ?*temp; 
rateRRIT[ i I+ rateRRIT[i ] + P;  
rateRV[i]* rateRV[i ] + P; 
temp* tenp + T; 
for j+ 1 step 1 until N - KAJ d9 

begin 
P+ Pca((N - MAJ  + 1) - j)r(\l[nodulo(i+j-1,N)I + IsxEY + T)*lambda; 
temp* temp + W[nodulo(i+j, 14) ] + Is*EYgc + T; 
delay[i 1- delay[i ] + Pktenp; 
rateRRIT[i 1- ratcRRIT[i] + P; 
for k- i step 1 until i+j do 

rateRV[modulo(k,N)]- ratcRV[nodulo(k,N)] + P; 
end; 

end ; 
end "old!tsU; 



procedure conf 1 icts; 
begin "con fl icts" 
for i- O step 1 until N-1 do 

begin "conflicts main loopn 
5 compute effect of conflict at first voting at node 1; 
temp- WCi] + (Is + 1d)~EYgc + W[i] + IskEYgc + Rt; 
for h- O step 1 until MAJ-1 do 

begin 
5 update at i conflicts with update from node j = i - h  mod N; 
j- nodulo(i - h, N); 
Pl- Pcl * q[h,i]; P2+ Pc2 * q[h,i]; 
if j geq i then 
begin $.update is delayed at node i ;  
delay[i I* delay[i] + P*(teap + ptgc[h,l]/Z); 
rateRRIT[i 1- rateRRIT[ i ] + P; 
rateRVCi j+ ratcRV[i] + P; 
delay[i]+ delay[ij + P2*( WCij + Is*EYgc + ptgc[h,i]/Z ); 
rateRV[i]- rateRV[i] + P2; 
end 

else 
begin 5 update gets DR... then proceeds to get more DRs; 
rentina* ptgc[h,i]/2; k- i; exec!tine+- temp - Rt; skips* 8 ;  
rateRRIT[i]+ rateRRIT[i] + P1; 
rateRV[i j- rateRV[i] + P1; 
while rerntine > 0 do 

bcgin 
k- nodulo(k + I, N) ;  skips* skips + I ;  
excc! timc* exec! tine + T + W[k ] + Is*EYgc; 
ratcRV[k]- ratcRV[k] + P1; 
rerntine- remtirnc - (T + K[kj t IskEYgc); 
end; 

delay[i]+ delay[i] + Dl*( excc!time + T + Rt ); 
delay[i]+ delay[i] + P2x (  exec!tine - W [ S ]  - (Is + 1d)rEYgc ); 
for 1+ ($+MAS-1)+1 step 1 until (i+flAJ-l!+skips do 

rateRi~[modulo(l,N)l~ rateRV[nodulo(l,N)] + P2; 
end; 

end; 



f now computo effects o f  conflicts at nodes j+l, j+2, etc. ; 
teml * W[l] 9 (Is + 1d)xEYgc + W[i] + Isx.EYgc; 
if odd then limit+ MA3 -1 else limit- MAJ - 2; 
for g- 1 stcp 1 until limit do 

begin 
j- modulo( i + g , N ) ;  
d request from node i conflicts with pending request at node j. 

The conflicting request originated at node j; 
PI- Pcl * q[0, j]; P2- Pc2 * qi0, j]; 
temp* temp + T + IsxEYgc + Vi j]; S Temp is exec. tine up t o  node j; 
rateRRIT[i]- rateRRIT[i] + P!; 
for k+ i step 1 until i + g do 

rateRV[ modulo(k,N)]- ratcRV[nodulo(k,N)] + P1; 
if j geq i then 

begin 5 update is delayed ; 
delay[i]* delay[i] + Pl*(ternp + T + Rt + ptgc[O,j]42); 
delay[ i)- delay[i] + PE*(W[ j] + Is*EYgc + ptgc[G, j ] /2 )  ; 
rateRV[j]+ rateRV[j] + P2; 
end 

else 
begin 5 Update is DR ; 
rentime* ptgc[0, j]/2; k- j; exec!time- temp; skips+ 8; 
while remtine > 0 do 

begin 
kc nodulo(k + 1, N); skips- skips + 1; 
exec!tine* exec!tine + T + Is*EYgc + W[k]; 
rateRV[k]* rateRV[k] + P1; 
tentine* rentine - (7 + IssEYgc + W[k]); 
end ; 

delay[i]- delayii] + Pls:(cxec!tirna + T + Rt); 
delay[i]+ delay[i] + PZ*(Excc!time - temp . W[j] - W[k]); 
for l+ (i+MAJ-1)+1 stcp 1 until (i+MAJ-l)+skSps do 

raieRV[nodulo(l ,N)]+ rateRV[nodulo(l,N)] + P2; 
end; 

end ; 
if not odd then special!case; 
end "conflicts main loop" 

end "conf 1 icts"; 



while true do 
begin "main" 
print(llnunber of nodes N = " ) ;  rep-intiy; kc intscan(rep,bk); 
if !skip! = cr then N- k else print(N,crlf.); 
print(tlnurnber of itens M = " ) ;  repcintty; k- intscan(rep,bk); 
if !skip! = cr then M- k else print(M,crlf); 
print("intcrarriva1 tine Ar = It); rep-intty; temp-realscan(rep,bk); 
if !skip! = cr then Arctemp else print(Ar,crlf); 
print( "mean base set Bs = " )  ; rep-intty; tempcrealscan(rep,bk) ; 
if !skip! = cr then Bscternp else print(Bs,crlf); 
print("I0 slice Is = " ) ;  repwintty; ternpcreaSscan(rep,bk); 
if !skip! = cr then Istten? else print(Is,crlf); 
print(I1I0 data Id = " ) ;  rep-intty; temp*realscan(rep,bk); 
if !skip! = cr then Id-temp else print(Id,crlf); 
print( "transmission tine T = " )  ; repcintty; iernp+realscan(rep, bk) ; 
if !skip! = cr then T- temp else print(T,crlf); 
print("retry tjse Rt = " ) ;  rep-intty; tenp+realscan(rep,bk); 
if !skip! = cr then Rt-temp else print(Rt, crlf); 

lambda-11Ar; EY*1/(1-exp(-l/Es)); 
EY2- EY a EY * (1 + exp( -1/6s ) ) ;  
EZ- (EY + 1.8)lZ.O; 
EZ2- EY2/3.0 + EY/2.0 + 1.816.5; 
EYgc- 2 a' ex?(-1IBs) * EY + 1; 
EY2gc- 6*e>:p(-l/Bs)*EYa( exp(-l/Bs)*EY + 1) + 1; 
EZgc- ( EYgc + 1.0 )/2.0; 
PC+ Pcl- EY*EZ/M; 
Pc2t EZ*(EY - EZ)/M; 
k+ nl2; 
if kk2 = n then odd* false else odd- true; 
MAJc ( n/i.0 + 1.0 ) ;  
for i- 0 sten 1 until n-1 do 

begin 
rateRRIT[i jt 8; rateRVt i J- 0;  delay[i]t 0; 
end; 

SolveSystem; 
count- 0 ;  
do begin 

print(crlf, restirbe); 
compute!pt!q; 
old! ts; 
conflicts; 
count- count + 1; oldresti~ec restine; 
SolveSysten; 
end 

until (count > 5) or ((restine - oldrestine)/restime < .B1 ); 

print(crif, "==> mean response time = It, restime, 
" iterations = ", count, crlf, cr!f;; 

end "caSr;"; 
end "prograz" 



APPENDIX 7. 

In this appendix we compare two alternatives lor handling hole lists when. 
they exceed the limit h. The first aiternative is to delay l~pdates at the central 
node until their hole lists shrink to a size less than or equal to  the hoie size limit h. 
This alternative is uscd in the MCLA-h algorithm and we. will &a!! it Cvhe "delay 
o.t central node" strategy. The second alternative is to truncate the hole list at 
the  central node and to send t se  update "grant" message immcdiatelyto the 
update's originating node. At  that node the update may be delayed until updates 
tha t  were truncated from the hole list are performed. We will call this second 
alternative the "truncating" strategy. 

Consider an update A which originated at  node x azd whose locks have just 
been granted a t  the central node. Suppse that the hole list a t  the central node 
at that  i ~ ~ s t a n t  contains updates Bl,i32,B3,. . .BP (Assume that j > h or  else 
there would be no delays.) Let £1, t2, t 3 , .  . . tj  be the times when the "perfo:rn 
updatc" messages. for updates B1, Bz, B3, . . . Bj arrive a t  node x. The performance 
of the .truncating alternative depends very m ~ c h  on how well the centrai node 
can predict or gucss the values ti, i2, tJ, . , . tj.  As we will see later, if the central 
node can indeed know the values, then the truncating strategy will bc superior 
to  the delay a t  central node stmtegy. If the central node cannot predict these 
values, then the tru~cating altiernative may not be so attrackive. 

There are many heuristics that the central node could use to guess the iiirncs 
tl, tl, tJ, . . . t j ,  but it  is almost impossible for us to evaluate these heuristics.be- 
cause thcy depend on the actual types of updates that are being performed. For 
example, the central node could prcdict an update's remaining exccutior, t ime 
based on how long the update has bccn running. Or maybe the number of locks 
granted to en update Bi is an indication of the update's execution time and could 
thus bc uscd for predicting the timt: t i .  

Since it is so hard for us to know thecentral node's ability to gucss ti, t2, t3, . . . tj, 
in this appendix we will simply consider two cases: In one case, the central node 
has perfect future knowledge and can exactly prcdict the times tl, &, t3,. . . tj, 
while in the other case, tl~c ccntral node has no idea what these vaiues could be. 
Any real system (using a decent heuristic) will be somewhere between these two 
cxtrcrites, and hopciully, the results we obtain for the two special cases wiil be 
usefuI in choosing a strategy. 

In the following discussion we use the same model that was used to study 
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the  performance of the update algorithms in chapter 4. In particular, we assume 
tha t  the network transmission time is n constant T. 

A7.1 Assumptions. 

To simplify the analysis, we will make some assumptions. We wili assume 
tha t  all the "perform update" messages for a given update arrive at all nodes 

.m 

et the same t i ~ c .  In our original model, the "perform update" message to  the  
update's originatifig node arrives 7' seconds before the othcr messages because 
the  originating node is the one that is sending the "perform update" messages. 
Our  assumptim is equivalent to saying that a mcssage that a node sends to itself 
will also tekc T seconds to arrive. This small modification to the original model 
sllouId not alter our results significantly. In the introductiorl to this appendix, wr 
rnentioned that ti was the timc whcn the "pcrlorm update" message for upd?teBt 
arrircd a t  node x. The assumption that we have made implies that the "pcrlortn 
update" message for Bj arrives at  aIL nodes at time ti. 

The next assumption wc makc is that all nodes will !ook a t  a "perform 
update" message for update Bi at a high CPU priority as soon as the message 
arrivcs and will rclcase any othcr updates tllat wcrc waiting for Ri. In a non 
ccrltral node, an update C could bc waiting for Bi bccauscBi had n lower sequence 
number and Bi was not in C's hole list. If update C is not waiting for any other 
~ipdatcs  to be performed, then it will immediately be relcascd, that is, C will be 
added to  the queue or updates that are to be performed. We assume that the 
CPU timc nccded l o  look at  the "pcrform updnte" message for Bi is negligible 
and hcncc update C will be queued for service a t  time ti. 

The cenlral node also looks at  a "perlorin update" message [or ~lpda t e  Bi a s  
soon as  it arrives and releases any waiting updates that can proceed. If update C 
is dclayed a t  the central node because its hole list is too large, and the removal 
of Bi from the list .--gses it to shrink to size h, then the grant mcssage for C will 
be sent i~nmedinteiy (e.g., a t  time ti). 

Our last. assumption deals with the time that an update remains on the hole 
list at  the cent.ral node. Let Xi be the time that update Bi remains on the hole - 

list a t  the central node. Time Xi is the diffcrencc between the time whcn the  
- 

"perforin update" mesdage for Bi arrives a t  the nodes and tlie time whcn all locks . 

for Bi werc obtained. We will assume that Xi is an exponentially distributed 
 ando om variable. To justify this, we note that the main cornponcnt in Xi is 
in computing the update values for Bi at  Bi18 originating node. The service 
time lor computing these values is approximately exponential. (See chapter 4.) 
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The  waiting time a t  that node will be roughly exponential because the nodc is 
approximately a M/hi/l system. Of course, the distribution of Xi is not exactly 
exponential because there is a constant 2T factor due to the two transmissions 
needed before Bi is removed from the hole list. However, we still clloose to  use 
tho exponential distribution because (a) it is a simple distribution and (b) i t  is 
our  best guess. 

Wc also assume that random variables Xi for 1 5 i 5 j are identically 
distributed and independent. We will let 0 be the mean of the exponential dis- 
tribution of Xi. The value of O can be estimated from the analysis of chapter 4. IT 
Bi orighated at a norn central node, thcn Bi on thc average remains on the hole - - 
list for T + W, +Id E[Y] + T seconds (where W,, is the average I0 wait. time 
at Ei's originating node , Id is the time to read one item from the database and 
E[Y] is thc average number of items in the base set of an update). If.Bi originates 
at. the  central node, then on the average Bi remains for K+I,E[Y] +T seconds 
(where is the average I0 wait time at  the central node). Therefore we choose 
8 to be the weighted average 

For  example, using the typical values of chapter 6 (i.e., six nodes, intcrarrival 
time A, of 6 seconds, Jd = 0.025 sec., T = 0.1 scc., etc.), we find that 0 = 0.37 
scconds. 

Thc analysis in chaptcr 4 assumed that the value of h was large enough so 
that  no updates were unnecessarily delayed. However, the value of 0 we have 
obtained is valid for any h (as long as the system is stable) because none of the  
quantities of equation (1) depend on h. The wait times and only depend 
on the  I0 load a t  the nodes and thesz loads are independcnt'of h. Notice that  the  
value obtained for fl by dividing (for large h) from figure 6.26 by NX is larger 
than the above because in thc simulation, an update Bi remains on the hole list 
until after Bi releases its locks a t  the central node. Here we are assuming tha t  
Bi disappears from the hole list as soon as tllc "perform update" message for Eli 
arrives at the central node. 

A7.2 The Delay a t  Central Node Alternative. 

In this section we will compute an update's delay wllen the delay at central 
node strategy is used. Update A, which originated a t  nodc s, obtains its locks nt  
the  central node a t  time fc. A t  that instant, updates i31,Sz,B3,. . .Bj(j > h) are  
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in tile hole list, Update A must wait at f!i@ central node uatii its holc list shririks 
in sizc and then a grant message can be sent to node x. Thus, on the average, 
update A's computations will bc started at node x at time 7 d c  : 

where fidC is the averzge delay until j-h of the "perform update" messages for 
the updates Ell, B3,. . . Bj arrive at the central node. We will now compute 
Sd c* 

A s  stated earlier, exporlcntially distributed random variable Xi is the time 
that Bi rernairrs on the holc list. A t  time to, update Bi has already been on the 
liole list for some time, h t  hccz9,)se of t!:c ncrnorylcss property of Ihc exponential 
distribution, the remaining time for updnteBi given that it has rcmained until to 
is also expnciltialiy distributed with mean 0. In other words, random variables 
Yi = ti - to (1 - < i 5 j ), which are the remaining times for updates Bi on the 
hole list are izdependent identically distributed with an exponential distribution 
with mean 0 , i.e., 

This implies that 
Pr[Y < y] = 1 - ~ X P  (-Y/O), 
PrIY > Y] = exP (-Y/O)* 

Let random variable Z be the delay until any j - h of the j updates are 
removed from the hole list. Let the number of updates that do not fit in update 
A's hole list be m, that is, 

m=j-h (5) 

We want the probability distribution function of Z so we can compute E[Z] = rSdc. 

The probability that Z is greater than z is given by 

m-l 

Pr[Z > z] = Pr[exnctly i updates were removed in z sec.]. (5) - 
i=O - 

Notice that the evcnts on the right are matunlly exclusive and they represent 
the o n 1 ~  wa3-s in which z seconds could have gone by without rn or more updates 
having been removed from the hole list. The probability of each of these events 
is the probability that exactly i updates are removed, times the number of ways 
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iu which we can choose ihe i updates that finish out of the j totai updates. 
Therefore, 

. . 

Using equation (4) and the fact that the cumulative probability distributio~i J'ziz) -' 

is 1 --Pr[Z > z ] ,  we get 

The expected value of Z is given by 

where 

By integrating by parts in the above equation, one can show that 

so substituting the value of Fz(z) found in equation (8), we find that 

Exchanging the integral and thc sum and substituting cxp(z/0)-1 by itsbinomial - 
expansion [I<hWT73, sec. 1.2.6, eq. 131, 

nr- 1 w i 

EiZ1= c) (L) ($)(-i)~kexp (-: j dr. (12) 
i =O k=O 
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Again, exchanging the integral with the sum, wc gr t 

Evaluating the integral, a 

m-l 
i 2 (i) (-'Ik' 

k=O 
k j-k' 

i=O 

(Notice thet k - j < 0.) Using [KMIT73, sec 1.2.6, prob. 481, we simplify this 
t 0 

Since 

then 

e 
E[Z] = -* 

j - a  
i=O 

Equation (17) can also be written as 

- %-.L ,.,ere Hi is the we!] known sum of the first d harmonic numbers: 

Eqilai.ions (2) and (18) allow us to compute yd,, the time when the grant - 

message [or update A will arrive at nodes when the delay at central node strategy 
is used: 
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A7.3 The Truncating Alternative With No Future Ihowledge. 

In this section we will compute an update's delay when the central node 
truncates m holes in update A's hole list at  random. Update A obtains its locks at . 

the central node a t  time t&. The grant message for A is immediately sent (at t ime * 

fo )  and T seconds later it arrives at  node x. Since some holes were eliminated, 
A will be delayed a t  x unless thc updates that were truncated happen to have - 
finished during the T seconds it took the grant message to reach x. 

Let  B1, Bz, Ba, . . .El, bc the updates that were truncated, and let exponen- 
tially distributed random variables Xi, X2, Xj, . . . X, be the times that these 
updates remain on the hole list. If random variables Yr, Y2, Y3,. . . Y, are the 
remaining times of the updates on t11c hole list a t  time to, then these random 
variables are clso exponential, independent and identically distributed with mean 
8. Hence equations (3) and (4) apply for random variable Yi. 

Update A will have to  wait at  node s for all the truncated updatcs to 
complete. Let random variable U be the delay (starting a t  time to) until t he  
m updatcs arc rcmovcd from the hole list (i.e., the delay until their "perform 
update" mcssages arrive). If U < T then update A will only be delayed for t he  
T scconds needed to  transmit the "grant" message from the central node to node 
s. On the other hand, if U > T, then A will be delayed U seconds. In other 
words, update A's computations will be darted at  node s on the average at time 
'Yt r: 

7 t r  = t0 +E[V], 

where random variable V is defined by 

V = mnx(T,U), 

To compute E[V], wc first find the cumulative probability distribution func- 
tion of V, FVQ. Random variabie U can be less than a value x only if all oi i h e  
rn updates have been removed from the hole list in less than x seconds. That is, 

Using equation (4), we get 
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Equation 24 can now be used to find the cumulative probability distribution 
function of V, Fv(x). From equation (22), we observe that 

Next, we find E[V] as 

E[v] = Jw --PV(X)~ 
0 

Using the binomial expansion 01 [ I -  exp(-x/%)Jm and interchanging the integral 
with the sum, we get 

Evaluating the integral, we find that 

Using (KNUT73, sec. 1.2.7, prob. 131, we simplify this to 

(where H, is given in equation (19) ). This can also be written as 

Equations (21) and (31) giw us 7[,, the average time when processing of 
updfite A can start at nodes when the truncating strategy is used and the updates 

289 
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in the hole list are truncated at mndom: 

m 1 - [I- exp(-~/Oj] 
r!r=~o$T+OC n, t a 

'--I 

If T/B is small, equation (32) can be simplified further. If 

lor k 2 2 
k 

is negligible as compared to T/O, then exp(-7'10) can be approximated by i-T/B 
and equaticn (32) becomes 

7 t r  = f~ + 0%. (33) 

A7.4 Comparison. 

Equations (20) and (32) can bc used to compare the performance of the delay 
a t  central node with the truncating strategy when the central node has no future 
knowledge. 

Rcfore substituting actual values for the parameters, we can observe some 
gcncral trends in the equation for rdc and 7f, , Ihe times when update A's com- 
putations can be started at node x [or tllc delay at central node and the truncating 
a1 tcrnativcs respectively. 

(a) As the transmission time T approaches 0, 7 t r  appmachcs + O H , .  In 
this case,yd, 5 rf, because 5 Hm and j 2 rn. Therefore, for small 
trsns~nission tirncs (i.e.,exp(-T/B) << l), the dclay at central node strategy i~ 
superior. 

(b) For j = m,rdc = I$ + T f O1sm. Thcreforc, ri, will always be smaller 
lllatl ydc because of the factor [I - ~X~(-T/O)]~ in equation (32). (If (?'/t7jkitc; for 
k 2 2 i s  negligible as cornpared to T/O , we can use equation (32) for ~ t , ,  and we 
find that 7t, is srnaller than 7dc by T seconds for j = m.) However, as j increases 
whik rn is held constant, 9, remains at its same value while .ydc starts decreasing - 
because of the fG-, factor. As j increases, 7dc approachcs to + T because 
approachcs ll; for large j. Thus, lor some value of j, 7dc will become smaller 
than 7tr. This can be interpreted as folIows: As the number of updates we can 
choose from in order to truncate the rn l~gdntes that do not fit in A increases, 
the  delay at central node alternative bccornm more and more attractive. 



(c) If j is hdd constant, then we see that both and .yt, decrease as m is 
decreased. A t  m = j we SBW that 7tr < 7do but this inequality may be rcverscd 
for fiorne smaller value 01 rn. In particular, for m = 1, 3, = to + T + O/j ar~d 
7tr = T -/- 9 exp(-T/O). If j 2 exp(T/O) (which is usually the case), wc See 

. . 
that Yde < 7tr at m = 1. In other words, (if j 2 exp(Tj6)) as the fraction of 
the updates in the hole list that do not f t in A's hoie list decreases, the delay a t  
centra! node strategy performs better. - 

Table A7.1 shows the values of .yd, and 7tr for the typical paramcter values 
used in chapter 6. In  this case, the network transmission time T is 0.1 seconds 
and the mean of the hole remaining time distribution is d = 0.37 seconds (see 
section A7.1). For convenience we assume that = 0. Notice that in this case 
the approximation of equation (33) can bc used, Also notice thai only when 
j = rn (i.c., hole size limit h is 0) docs the truncating alternative perform bctter. 
In all other cases, ^r'dc is smallcr and the delay at central node strategy is more 
efficient. 

The results for this case arc also shown in figure A7.1. In that figure, we plot 
7dc and  7fr as a function of j, the number of updates in the hole iist, for various 
values of h, the hole list size limit. Rccali that h = j - rn. In this figure we see 
Chat as h increases, tile delay at central node strategy bccomes more and more 
nttrnctivc over the truncating strategy with no future: knowlcdgc. In chapter 6, 
we stated thzt a value for h of 4 or 5 would be e gcsd choice, For this value of 
It, the delay at central node st.rntegy is definitely superior. 

A7.5 The Truncating Alternative With Perfect Future Kno~vledgc. 

I n  this section we will compute an update's delay when the truncating 
stratcgy is used and t;hc centixl  ode kzows the tiines il, b, tJ, . . . tj. Recall that 
ti is the time whcn the "perform update" message for updntc Bi arrives a t  all 
nodes (1 5 i 5 j). 

If the central node truncates updateBi from update A's holc!ist, then update 
A's corr?pu taiions at nodes will be delayed at lcast until time ti. ThercTorc, since 
the central ncde rnust truncate rn updates, it. should choose the ones with the 
smallest vahe  of t. If the central node docs this, thcn updatc A will be able 
to proceed at nodc s as soon as the first rn "perform update'' messages arrive. 
However, if this occurs before the "grant" message for A with the truncated hole 
list arrives at nodc x, thcn A's processing will start when the "grant" message . 
arrives end noi beicrc. In other words, update A's compstc f i~~s  will be started 

- 

a t  node x on the average a t  time ytp: 
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TABLE A 7 . 1  

COMPARISON OF T H E  TRUNCATING WITH NO KNOWLEDGE STRATEGY 
TO TtlE DELAY A T  CENTRAL NODE STRATEGY FOR THE T Y P I C A L  

PARftt-iETER VALUES. 

T = 0.1 sec., 8 =  0.37ssc., t o = @ ,  
N = 6, Ar = Gsec., Id = Is = 0.025 sec., M = 1000 items, Bs = 5 i tems. 

The t o p  e n t r y  i n  each box i s  X v ,  the time when update A's computations 
a r e  s t a r t e d  a t  node x when the t runca t ing  w i t h  no knowledge s t ra tegy  i s  
usecl, w h i l e  t he  bottom e n t r y  i n  each box i s  7&, the t ime when A's 
computat ions a re  s t a r t e d  when the delay a t  cen t ra l  node s t ra tegy  i s  used. 
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delay 
(set) t 

Figure A7.1 

j, rrunber of  apdates ix? ;er.tral 
node hole l ist  

Figure A7.1. Conpazison of the trcncating wi t !  
no knowledge t o  the delay a t  central node strategies .  
N=6 ,  Ar=6 sec. ,  .Y=1000, Bs=5, Is=Id=O.O25 sec. ,  - ~-0.1 sec.  
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where random variable V is defined by 

(35) V = max(T, U). 

and random variable U is the delay from time to to the time when the "perform 
update'' messagcs for the rn truncated updates have arrived. Notice that random 
variable U is exactly the same as random variable Z of section A7.2. Thns, 

The cumuletim dlst,rlbctlon hnction of V, Fv(x), is the same as Fv(x) if 
x > T and is 0 otherwise. So using eq::zticn (26), we find the average vaiue of 
V to be 

Except for the lower integration bound, thc integral is the same as the one in 
equation (11). Following the same steps we folIowed with that integral, we get 

m-1 
(-1) k~ cxp ((k - j)T/O) . 

j-k 
i=O k=O 

(38) 

Unfortunately, the extra factor exp ((k - j)T/O) docs not allow us to simplify 
this cquat.ion as was done with equation (14). Hcnce, wc will have to evaluate 
7tp with this equation, 

- 

A7;6 Comparison. 

In this subsection we will compare thc perf~rmance of the truncating alter- 
native with perfect. E~krrre knowledge with the delay at ccntral node alternative. 
We can make the fallowing general observations regarding 7ip, the tirile when 



updatc A's computations are started at  node s when the truncating alternative 
with perfect knowledge is used. 

(a) If T is very small (i.e., exp(-T/O) - I), then 7tp = 7 d e  and both the  
truncating strztegy with perfect knowledge and the delay a t  central node strategy 
arc equivalent (see equation (38)). If T is not small, then 3, will be smaller than 
7 d s  bccanse of the cxp(-T/O) lactor in the sum of equation (38). (Compare this 
cquation to equation (14).) a 

(b) As j increases for a fixed m, both rrp and 7d, approach to + T. 7tp 
approaches I$ + T because in equation (38), k < m and the limit as  j goes to 
infinity of exp ((k - j)T/O) is 0. In  other words, as the number of updates we can 
choose from in order to truncate the rn updates that do not f t in A increases, . 

the dclay in both stretcgies becomes the same and is equal to T seconds. 
(c) If the hole list size limit h is 0 ( i .~ . ,  j = m), then the truncating alternative 

with perfect knowledge should perform exactly like the truncating alternative 
with no knowledge because ;j' iipdates must be truncated in either case. This 
can be shown to be true by making rn = j in equation (38). for tun at el^, in this 
special case, this equation can be simplified as follows: With rn = j ,  7tp becomes 

Exchanging%he summations and rearranging, we get 

"-' (- 1) 4 exp (- (j - k) T/O) j-' 
ElVl = T + C j - k  

k=O i=k 

Using iKNUT73, sec. 1.2.6, eq. 231 we fiild that 

(-I)+~o cxp (-(j - k)T/O) 
j-k . 
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Finally, by changing the summation index variable k to j - n, where n goes 
from 1 to  j ,  we see that eqcation (42) is the same as equation (29j with m = j. 
Therefore, in this case, ytp = 71, and both truncating alternatives are equivalent. 
If ( T / o ) ~ / ~  for k 2 2 is negligible as compared to T/O, then yip and 7i, are  
approximately to + 6% whcn m = j. IIcnce, either truncating strategy will save 
about T seconds in average response-time as compared to  the delay at central 
node strategy. 

Table A7.2 shows the values of rfp and 7 d c  for the typical parameter values 
of chapter 6, assuming that = 0, Thc network transmission time is T = 0.1 
seconds and the average hole remaining time is 0 = 0.37 seconds. Reca!l tha t  
in this case, T/D = 0.27 and ( ~ / 0 ) ~ / k  Tor k 2 2 will be almost negligib!e com- 
pared to TJB. Also notice that the difference in average ?esponse time of the  
two strategies is always less than or cquol to T, with thc truncating with perfect 
knowledge strategy always being superior, as expected. In figure A7.2 wc plot 
thc valaes oi 7tp and 7dc as a function of j ,  the number of updzkes in the hole 
list, for various values of h, the hole list size limit. 

A7.7 Conclusion. 

If the central node has perfect future knowledge as to when updates will 
finish, then the truncating alternative is always superior. However, the saving 
a s  compared to the delay a t  ccittral nodc strategy never seem to Sc more than T 
seconds in average response time, (In the cases wc tested, tlie savings are aiways 
less than or equal to  T seconds.) 

If thc ccntral nodc has no idea whcn updates will finish, then the d c l ~ y  at 
central nodc alternative performs better than the truncating alternative in most 
cases of interest (c.g., h # 0). The equations we have obtained could be used to 
vary the strategy dynamically as each update is granted locks. Depending on  
the value of j (the number of updates in the hole list a t  the central node) and 
of m (the number of updates that must be truncated), tlic alternative with the  - 
lowest pi-edictcd response time could be chosen. 

.If the ceniral node can only predict the termination of updates with a limited 
,ability, then the stratcgy wc choose wili depend on the accuracy of these guesses. 
The best. way to decide on n particular strategy in this case would be 5c perkrm 
actual tests in the real distributed database system. 
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TABLE A7.2 

COMPARISO~ OF THE TRUNCATING WITH PERFECT FUTURE KNOWLEDGE STRATEGY -. - 
TO THE DELAY AT CENTRAL NODE STRATEGY FOR THE TYPICAL 

PARAMETER VALUES. 

T = 0 . 1  sec., 8 = 0 . 3 7 s e c . ,  t 0 = 0 ,  
N = 6 ,  Ar = 6 s ~ ~ .  , I d  = I s  = 0.825 sec., M = 1000 items, Bs = 5 i t e n s .  

The t op  e n t r y  i n  each box i s . % ? ,  the time when update A's computations 
a r e  s t a r t e d  a t  node x when the t runcat ing w i th  per fec t  knowledge s t r a t e g y  
i s  used, wh i l e  the bottom en t ry  i n  each box i s  7 d e ,  the t ime when A's 
computat ions a re  s t a r t e d  when the delay a t  centra l  node s t ra tegy  i s  used. 
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Figure A7.2 

j. =umber of u-dates in central 
node hole l i s t  

Figwc A7.2. Co~prrsion of the -eating with 
-xrfect future knosrle25e and t!!e telay a t  central 
node sc-ategics. N = 6 ,  Ar=6 sec., >!=1000, Bs=j, 
Is=Id=0.025 sec., P0 .1  sec. 
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A7.8 A Final Note. 

111 this analysis we studied the delay until update A's computations could 
be skarted a t  node x. The analysis did not take into account the following effect: . . 
In the truncating alternative, update A is released at nodc x when the "perfcxn 
update" message of the last truncated hole list update B arrives a t  x. This means 
that  it  is more likely that A will wait longer for service a t  node s because we a - 
know that another request for service (mainly B's request) immediately preceded 
A's request. In the delay a t  central node strategy, this does not occur because B's ' 

"perform update" message arrives T seconds before A's "grant" mcssagc. Thus, 
. update A's delay will be slightly larger than what we hnve predicted when a 

truncating strategy is used. Unfortunately, it seems hard to study these effects 
without using simulations. Finally, notice that since A and B have no items 
in common! a "smart" scheduler at node s could schedule the two requests "in 
parallel", thus eliminating the problem we have just described. (Exercise for the  
reader: Why do A and B hnve no items in common?) 

@nd of Appendix 7.) 
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In this appendix, ~ v e  analyze the "read without locks and then request locks" 
strategy for the MCLA-h algorithm. We use the performance model and analysis - ' 
techniques that were used in chapter 4 to analyze the MCLA-h algorithm. In 
particular, we assume that all databases are completely duplicated a t  each node' 
and that all transactions are updates. We also assume negligible CPU times. The 
analysis in this appendix is simplified and rather pessimistic. 

When the "read without locks" strategy is used, an update first reads data . 

at  its originating node and then requests locks at the central node. If there are 
no rejection at  all, then the fact that the read and compute step was perforrncd 
before the locks were requested instead of after (as in the original MCLA-h al- 
gorithm) does not affect the pcrformance. Thus, if we assume that no rejections 
O C C U P ~ C ~ ,  the performance of our "read without locks" algorithm will bc kl~e same 
as the periormance of the MCLA-h algorithm. [See appendix 5.) 

Our strategy to estirnatc the avcrage response time of updates will be as 
follows. First we assume that no conflicts occurred, and we obtain ttic average 
rcsponsc time from our previous analysis. Based on these results, we compute 
the average time during which an updatc is vulnerabic to confiicts, and is hcnce 
vulncrabie to rejection. Based on this value, wc find the probability that an 
update is rejected. We assume that rcjected updalcs place the some load on  the 
system as updatcs that are not rejected. This is a pcssimistic assumption because 
in reality, updates can be aborted as soon as n conflict is detected. Furthcrrnore; 
rcjccted updatcs arc not performed at all nodes so they never makc these I0  
requests. EIowcver, to simplify the analysis, we assume that rcjccted updates 

.-. pr&duce llle same service requests as accepted updates. But we should keep in 
mind. bhiil, ' , I !  rcspon.se time in a real system will be smaller than the response 
time wc obtain from this analysis. 

Considering the rejected updates is'equivalent to having an increase in the 
arriv J rate of updates to each nodc. Thus, we can repeat the MCJA-h analysis 
with an incrcascd arrival rate to obtain a better approximation. After tbis, we 
can recorzpu t c  the update vuIncrabIe period and thc probability of rejcction to - 

rcpeat the MCLA-11 analysis. We rcfinc the rcsults in this iterative fashion until 
- 

there is no change in average response time or until we detect that the strategy 
does not con-ccrge. 

Aitcr each lMCLA-h analysis, we cen compute the vulnerable pcriod and .the 
probability of rejection as fcll~;;.a. Tile vulnerable period of an updatc A starts 
when A arrives at  its originating nodc and ends when A obtains all locks a t  the 
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central node. Thus; the average vulncrablc period, F, is 

- 
wilere W,, and arc the average I0 wait timcs at a non-central and central 
node, rcspcctively, T is the transmission time, IdEII'] is the average time to read 
the data and 2I,E[YJ is thc average I0 time to obtain the !ocks a t  the central - 

node. Thc vu!nerable period of updates originating at the central node is slightly 
different but we igr~orc this hcre. . 

If we assume that all updates are performed at nlI nodes at the same time 
(see appendix 7), we can state that any "perform update" messages that arrive 
during the vulnerable pcriod may cause a conflict with A. The number of such 
messages that arrive is 

n, = number of completions = N A G  

where N is the number of nodcs, and h'A is the ratc of update complrtio~ls (which 
is also the original arrival ratc 01 updatcs in a stnhle systan.) 

Probability Pr(C) is the probability that two updatcs conflict and is given 
by equation (23) of chapter 4. Hcncc, the probability that A does not conflict 
with one of the update: lhat completed in the vulnerable period is 1 -Pr(C). 
The probability that A docs not conflict with any 01 the updates is (1 -Pr(C)) 
to the power n,., and the probability of rejection of A is 

This implies that the ratc of rejections is (arrival rate of updates) tirnrs 1'-.'I?). 
This ratc is added to the arrival rntc of updatcs to give the total arrival ~ a t c  ior 
the next iteration of the MCLA-h analysis. The expected response of updatcs 
will bc (1 + Pr(R)) timcs the average response time of a simple update that is 
not rejected (assuming only one rejection per update transaction.) 

We now we give a complete listing of tlie program that performs the analysis 
we have described. Notice that the program for the MCLA-h analysis (appendix - 
5) is part o! the new program. 



beg in  "programn 

r e q u i r e  " { I  ( I n  de l im i te rs ;  
d e f i n e  c r l f  = {( '15&'12));  
d e f i n e  c r  = ( ( ' 1 5 ) ) ;  
d e f i n e  S = (comment); 

b T h i s  program computes the average response t i n e  o f  an update 
i n  t h e  MCLA cen t ra l i zed  lock ing a lgor i thm when the base s e t  i s  read  
w i t h o u t  locks  i n i t i a l l y .  This program i s  based on the program o f  
append'ix 5. The new var iab les are "origLa;n" ( tho  o r i g i n a l  
va lue  o f  lambda), "nurnComp" ( the  number o f  updates t h a t  complete i n  t h e  

a 

v u l n e r a l ~ l e  per iod) ,  "oldLam" ( the  l a s t  value o f  lambda), 'PrN ( t h e  
p r o b a b i l i t y  o f  r e j ec t i on ) ,  and " j 2 "  (a counter); 

e x t e r n a l  i n tege r  !sk ip!  ; 
i n t e g e r  bk; s t r i n g  rep; 
i n t e g e r  j, j2; 
r e a l  tcmp,N,M,Ar,Bs,Is,Id,T,lambda,EY,EY2,EZ,EZ2; 
r e a l  Pw,L,restimo,oldrestime,Lnc,Lc; 
r e a l  rate,Xc,XcZ,roo,Clc,Xnc,XncZ,Wnc,Rnc,Rc; 
r e a l  EYgc, EYZgc, EZgc, Lgc, Lncgc, Lcgc;; 
r e a l  PC, P2w, Pwl, Pw2, EYrem, EYZrem; 
r e a l  or ig tam, oIdLam, numComp, P r ;  

r e a l  procedure power(rea7 x, y); 
beg in  
r e a l  temp; 
i f  x = 0 thcn re tu rn (0 .0 ) ;  temp - y*?og(x);  
i f  temp < -20 then return(O.O) e lse re tu rn (  exp(tenp) ); 
end; 



proccdurc SolveSystem; 
hcgin "computc" 
rate+- (2*N + 1) + Pw*N; 
Xc+- N * 2 k Is * EY; 
Xc* Xc + IdxEY; 
Xc* Xc + N * (Is*EY + IdxEZ); 
Xc* Xc + Pw * N * 2 * Is *( EYrem + PEw*(EYren-1)/2 ); 
Xc* Xc / rate; 
Xc2+ N * 4 * Is*Is * EY2; 
Xc2+- Xc2 + IdkId * EY2; 
XcZc Xc2 + N * ( Is*Is*EY2 + Is*Id*(iY + EY2) + Id*IdkEZ2 ); 
Xc2c Xc2 + Pw * N * 4rIsj:Isr 

(EY2rcn + PZw*lEYZrem/3 - EYrem/2 + 1.0/6.0) ); 
XcZ* Xc2 / rate; 
roo+- lambda * rate * Xc; 
if roo geq i then 

begin 
print (cr l f , "******* SYSTEM IS UNSTABLE * * * * * * k l ' )  ; 
roo* lambda* 0 ;  
end ; 

Wc+- ( ( lambda * rate /2 ) * Xc2 ) / (  1 - roo ) ;  
rate* N + 1; 
Xnc+- ( Id*EY + tJ * ItlkEZ )/rate; 
XncZ* ( Id*Id*EY2 + N * Id*Id*EZ2 )/rate; 
roo- lambda * rate * Xnc; 
if roo gcq 1 then 

begin 
pr int(cr1 f ,  "******* SYSTEM IS UNSTABLE ****k*h"; 
roo+- lambda* 0 ;  
end; 

Wnc+- ( ( lambda * rate /2 ) * Xnc2 ) / (  1 - roo ) ;  
Rnc+- 2 * Wnc + Wc + 2*Is*EY + Id*(EY + EZ) + 2*T; 
Rc* 3 Wc + 3 * Is * EY + Id*( EY + EZ ); 
restirne#- ( (N - l)*Rnc + Rc )/N + Pw*(Lgc/Z + Wc + Is*(EYgc-1)) 

+ PwZ*Lgc + Pw*PZw+(Lgc/Z + Wc .t Is*(EYrem - 1)); 
end "compute" ; 

procedure conflict!analysis; 
begin "conf 1 ict!analysisU 
Lnc* T + Wnc + Id*EY + T T Wc + Is*EY + Id*EZ; 
LC+ Wc + Id*EY + Wc + Is*EY + Id*EZ; 
L* ( (N-l)*Lnc + LC )/N; 
Lncgc* T + Wnc + Icl*EYgc t 7 + Wc t IsnEYgc + IdkEZgc; 
I.cgc* Uc + IdkEYgc + k'c + IsxEYgc + Id*EZgc; 
Lgc* ( (N-!)* Lncgc + Lcgc )IN; 
Lgc* Lgc + ( (Lgc/Z)*N*lanbda*EY/M)kLgc; 
P w l *  PC * N * iambda * L; 

. Pw24- ?c*(igc/Z + Wc + Is*(EYgc-l))*Nklanbda*Pwl; 
P2wb (EYron*EY/H)*W*lambdatL; 
Pw- Pw! + Pw2;  
end "confiict!analysis"; 



while true do 
begin "ma i nu 
S Read in parameters; . 
print ("number o f  nodes N = " )  ; rcpcintty; temp+realscan(rep, bk) ; 
i f  !skip! = cr then N+ temp else printfN,crlf); . 

print("number o f  items M = ") ;  repcintty; ternpcre;lscan(rep,bk); 
d f    ski^! = c r  then Me temp else print(f1,crlf); 
print("interarrfva1 time Ar = It); rcpcintty; temp*realscan(rep,bk); 
i f  !skip! = cr then Arctemp else print(Ar,crlf); 
print("mean base set Bs = " ) ;  repcintty; temp+realscan(rep,bk); , 

if !skip! = cr then Bsctenp else print(Bs,crlf); 
print("l0 slice Is = " ) ;  repcintty; tenp*realscan(rep, bk); 
if !skip! = cr then Isctemp else print(Is,crlf); 
print(llIO data Id = It); repcintty; temp+realscan(rep, bk); .. 

if !skip! = cr then Id.-temp else print(Id,crlf); 
print("transmission time 7 = I!); repcintty; temp+realscan(rep,bk); 
'if !skip! = cr then T+ temp else print(T,crlf); 

lambda+l/Ar; EY+l/(l-exp(-l/Bs)); 
EY2c EY * EY * (1 + exp( -1/Bs ) ) ;  
EZ* ( EY + 1.0 )/2.0; 
EZ2+ EY2/3 + EY/2 + 1.0/6.0; 
EYgc.- 2 * exp(-l/Bs) 3 EY + 1; 
EYZgcc 6*exp(-l/Bs)*EY*( exp(-l/Bs)*EY + 1) + 1; 
EZgcc ( EYgc + 1.0 ) /2.0; 
EYrem* ( EYgc - 1.0 )/2.0; 
EYZrerne EYZgc/3.0 - EYgcl2.0 + 1.0/6.8; 
PC.- EY * EY / 11; 
j24- 0;  or igLamc lambda; print(crlf, "lambda= l', lambda); 
do begin 

15 This is the original MCLk-h analysis; 
Pw* Pwle Pw2* P2~1.- 0; je 0 ;  LC Lgc* 0; oldrestirnee 8; 
SolveSystem; % Result is restine, Wc, Wnc; 
do begin 

. print(crlf,restime); 
j* j + 1; 
coriflict!analysis; S Result is Pw, L, Lgc; 
01drestirnc.- restime; 
SolveSystem; b Result is restime, Wc, Wnc; 
end 

until ( j > 5 ) or ((restime - oldrestime)/restime < .01 1 ;  
print(crlf,"==> mean response tine = 'I, restime, 

" ite-ations = 11, j ) ;  . 

print(crlf," Wnc = ",Wnc," Wc = ", Wc): 
print(crlf,ll EY = ", EY," EZ = ", EZ, crlf, crif); 
15 End o f  the original IICLA-h analysis; 

% Now we compute the probability of rejection; 
52.- j2 + 1; 01dLam.- lambda; 
numConp6 N$:origLam*(Wnc + Id*EY + T + Wc + 2*Is*EY) ; 
Pr.- 1 - power( (1-PC), numConp ) ;  
larbda- origLan*( 1 + Pr ); 
p;int(crif, " new res time i s  ", restime*(l + Pr), 

'I new lambda is ", lambda); 
end 

untii (jZ > 5) or ((lambda - oldLa~)/lambda < 0.001 ) ;  
print(crlf, "Et4D11, crlf); 

encf "main" 
end "proyr.amU 
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