Experimental Results
Abstract

Training
e 72-node 4-level topic hierarchy from InvisibleWeb/Yahoo! (54 leaf nodes).
e Newsgroups assigned by hand to hierarchy nodes.
e 54,000 articles (1,000 articles per leaf) used to train RIPPER.
e 27,000 articles used to construct estimations of the confusion matrices.
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The contents of many valuable web-accessible databases are only
accessible through search interfaces and are hence invisible fto
traditional web 'crawlers.” Studies have estimated the size of this
"hidden web" to be 500 billion pages, while the size of the ""crawlable"
web is only an estimated two billion pages. Recently, commercial web
sites have started to manually organize web-accessible databases into
Yahoo!-like hierarchical classification schemes.

Data Sets
e 419,000 newsgroup articles used to build 500 Controlled Databases.
e 130 real Web Databases pre-classified from InvisibleWeb.

QProber: Categorizing Hidden-Web Resources
http://gprober.cs.columbia.edu/

Alternatives for Comparison

e DS: Random sampling of documents via query probes
o Callan et al., SIGMOD’99
o Different task: Gather vocabulary statistics
o We adapted it for database classification

e TQ: Title-based Probing
o Yu et al., WISE 2000
o Query probes are simply the category names

We have developed QProber, a system that automates the classification of
sites with hidden, but searchable, content. In fact our system works with
any web-accessible document database, as long as its contents are
searchable through a web-accessible form.

All Query Probes for Categories
“AIDS,” “Cancer,” “Dentistry,” “Diabetes,” and “Heart.”
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Aids IF Word ~ hiv Word ~ infection . \
Aids IF Word ~ aids Word ~ hiv .

Aids IF Word ~ aids Word ~ hiv .

Aids IF Word ~ aids Word ~ sexual .

Aids IF Word ~ hiv .

Aids IF Word ~ aids .

Cancer IF Word ~ cancer Word ~ chemo .

Cancer IF Word ~ cancer Word ~ orac Word ~ david .

Cancer IF Word ~ cancer Word ~ prostate .

OProber automates this classification process by using a small number of

query probes. The query probes are generated once, during the training Controlled Databases

phase. To classify a database, QProber uses these probes and sends them
adaptively to the database in question. During the classification phase
OProber does not retrieve or inspect any documents or pages from the
database, but rather just exploits the number of matches that each query
probe generates.

Cancer IF Word ~ cancer Word ~ roda .
Cancer IF Word ~ physicians Word ~ roda .
Cancer IF Word ~ orac .

Cancer IF Word ~ radiation .

Cancer IF Word ~ pharma Word ~ death .
Cancer IF Word ~ soy .

Cancer IF Word ~ psa.

Cancer IF Word ~ 1p .

Dentistry IF Word ~ dentist Word ~ tooth .
Dentistry IF Word ~ dental .

Feature selection helps.
Confusion-matrix adjustment helps.

F measure above 0.8 - for most <7c¢, Ts>
combinations.

Results degrade gracefully with hierarchy depth.

Relatively small number of probes needed for
most <Tc, Ts> combinations tried.

Dentistry IF Word ~ teeth Word ~ dentist .

Dentistry IF Word ~ tooth Word ~ crown . | e Also, probes are short: 1.5 words on average;
Dentistry IF Word ~ teeth . 4 words maximum.
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" The training phase starts with a predefined topic\
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