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ABSTRACT
There is significant experimental evidence that prediction
markets are efficient mechanisms for aggregating information
and are more accurate in forecasting events than traditional
forecasting methods, such as polls. Interpretation of predic-
tion market prices as probabilities has been extensively stud-
ied in the literature. However there is little research on the
volatility of prediction market prices. Given that volatility is
fundamental in estimating significance of price movements, it
is important to have a better understanding of the volatility
of the contract prices.

This paper presents a model of a prediction market with
binary payoff on a competitive event involving two parties.
In our model, each party has a latent underlying “ability”
process that describes its ability to win and evolves as an
Ito diffusion. We show that, if the prediction market for this
event is efficient and unbiased, the price of the corresponding
contract also follows a diffusion and its instantaneous volatil-
ity is a function of the current contract price and its time
to expiration. In the experimental section, we validate our
model on a set of InTrade prediction markets and show that
our model is consistent with the observed volatility of con-
tract returns. Our model also outperforms existing volatility
models in predicting future contract volatility from historical
price data. To demonstrate the practical value of our model,
we apply it to pricing options on prediction market contracts,
such as those recently introduced by InTrade. Other poten-
tial applications of this model include detection of significant
market moves and improving forecast standard errors.
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J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics
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Economics, Theory
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1. INTRODUCTION
There is significant evidence of efficiency and ex-post pre-

dictive accuracy in certain types of prediction markets, such
as markets for presidential elections [23]. Berg et al. [3] show
that the Iowa Electronic Markets significantly outperform
polls in predicting the results of national elections. More-
over, they found “no obvious biases in the market forecasts
and, on average, considerable accuracy, especially for large,
U.S. election markets”. Leigh and Wolfers [14] provide sta-
tistical evidence that Australian betting markets for the 2004
Australian elections were at least weakly efficient1 and re-
sponded very quickly to major campaign news. Luckner et
al. [15] report that prediction markets for the FIFA World
Cup outperform predictions based on the FIFA world rank-
ing. According to press releases, Hollywood Stock Exchange
prediction market consistently shows 80% accuracy for pre-
dicting Oscar nominations [13].

The success of public prediction markets as information ag-
gregation mechanisms led to internal corporate applications
of prediction markets for forecasting purposes and as decision
support systems [4]. Chen and Plott [7] show that prediction
markets on sales forecasting inside HP performed significantly
better than traditional corporate forecasting methods in most
of the cases. Google has launched internal prediction markets
in April 2005; Cowgill et al. [9] report that at Google there
were a number of biases such as optimism and overpricing of
favorites, however “as market participants gained experience
over the course of our sample period, the biases became less
pronounced”. It is even hypothesized that prediction mar-
kets can be used for analysis and evaluation of governmental
policies [24].

Interpretation of prediction market prices as probabilities
has been extensively studied in the theoretical literature [17,
25]. Nevertheless, little attention so far has been paid to
understanding the volatility of prediction market prices; a
surprising fact, given that volatility is one of the most crucial
concepts in the analysis of markets. Volatility has intrinsic in-
terest to prediction market researchers, not only as a measure
of market dynamics, but also for its numerous practical appli-
cations. Even a simple task of distinguishing“normal”market
moves from major events can significantly benefit from having
a volatility model.

Example 1 Assume that a company has a binary prediction
market contract, asking whether a new product will be ready
for launch by December 31st. On September 1st, the price
contract increases from 0.50 to 0.55, an increase of 10%.

1Future returns cannot be predicted from historical prices

275



The market continues to evolve and on December 15th, the
contract price goes down, from 0.95 to 0.855, a decrease of
10%. Are these price movements an indication of an impor-
tant event? Or are they simply noise?

Given examples like the above, our research question nat-
urally emerges: “If the price of a prediction market contract
is the expectation of the actual probability of the event hap-
pening, what can we say about the volatility of the contract
price?”

To answer this question, we need a model of evolution of
the underlying event. Consider a contract that pays $1 at
time T , if and only if some event A happens. If, the outcome
of the event is predetermined at time t < T , and this informa-
tion is known to informed (marginal [12]) traders, the price
of the contract will not fluctuate in the future. Therefore,
for price changes to occur, the event A must either not be
predetermined at time t < T , or the information about the
event must be revealed gradually to all market players.

We model the uncertainty about the event by introduc-
ing the notion of “abilities” for the event participants. The
“event participants” are the entities that determine whether
the event will happen or not. For instance, in 2008 Presi-
dential elections Barack Obama and John McCain were the
“event participants”. The abilities of the participants are
evolving over time as stochastic processes; therefore their cur-
rent state reveals only partial information about the future.
Furthermore, the larger the time to expiration, the less cer-
tain we are about the final state of the process. At the ex-
piration, the state of the “ability” processes defines what is
the outcome of the event: the party with the highest “ability”
wins.

For our modeling purposes, we assume that abilities evolve
as Ito diffusions, a generalized form of a Brownian motion.
Ito diffusions are general enough to capture a wide range of
behaviors but, at the same time, convenient to work with for
deriving analytic results. As the main theoretical contribu-
tion of our paper, we show that, under certain assumptions,
parameters of the underlying stochastic processes affect the
contract price but, given the contract price, do not affect its
volatility. Moreover, we show that, if we adopt the diffusion
model and the underlying “ability” processes are homoscedas-
tic (i.e., the volatility of the ability process does not change
over time), the instantaneous volatility of the contract price
is fully defined by its current price and the time to expiration.

The rest of the paper is organized as follows. Section 2 gives
a short overview of the volatility concept. Section 3 presents
our model for pricing of bets in “ideal” prediction markets.
Section 4 presents our experimental results obtained for a
collection of InTrade prediction markets. Section 5 discusses
the experimental results and directions for further research
on this topic. Section 6 presents an application of our model
to pricing options on prediction market contracts. Finally,
Section 7 concludes the paper with a short summary of the
theoretical and empirical results.

2. VOLATILITY IN FINANCIAL MARKETS
Volatility is a natural measure of risk in financial markets

as it describes the level of uncertainty about future asset re-
turns. Empirical studies of volatility can be traced as far as
Mandelbrot [16] who observed that large absolute changes in
the price of an asset are often followed by other large absolute
changes (not necessarily of the same sign), and small absolute
changes are often followed by small absolute changes. This

famous fact is referred to as volatility clustering or volatil-
ity persistence and is nowadays a “must have” requirement
for any volatility model in the financial literature. It is was
not until two decades later that the first successful model of
volatility forecasting was developed by Engle [11]. The in-
sight of Engle’s ARCH2 model was that, in order to capture
“volatility clustering,” one should model volatility conditional
on previous returns: if the square of the previous return is
large one would expect the square of the current return to be
large as well. (Note that the sign of the return is difficult to
predict.) That gave rise to the famous pair of equations:

rt = htεt, h2
t = α+ βr2

t−1,

where rt represents return, ht volatility and εt are i.i.d. resid-
uals. Engle’s model was later generalized by Bollerslev [6]
(as GARCH3) to allow for lagged volatility in the volatility
equation and more advanced generalizations followed in the
next two decades [2]. The research on volatility modeling was
primarily guided by the observed properties of the empirical
distribution of returns in financial markets such as volatility
clustering, mean reversion, asymmetry and heavy tails [10].

Our approach differs in that we consider a binary prediction
market claim not as an equity but as a derivative: a binary
option on a couple of latent ability processes. The behavior
of a derivative differs in fundamental ways from the behavior
of an equity. First, the price is bounded to be between 0.0
and 1.0, unlike an equity that has prices that fluctuate from 0
to infinity. Second, the contract expires at a given time, and
the price afterwards is either 0.0 or 1.0, unlike a stock that
does not have an expiration date. As we demonstrate later,
our model works better than volatility models for equities.
Furthermore, our experimental results indicate how to use
our model, together with GARCH models in complementary
ways, combining the strengths of the two approaches.

3. MODEL
We now introduce our model of volatility. First we describe

the general idea of modeling prediction markets using evolv-
ing “abilities” and then present the analytic formulations and
results.

3.1 Model Setup
A diffusion model can be most naturally introduced for bets

on competitive events such as presidential elections or the
Super Bowl finals. Consider a prediction market for a simple
event in which two parties (McCain vs. Obama or Patriots
vs. Giants) compete with each other. The prediction market
contract pays $1 if the first party wins at the expiration of
the contract at T , and $0 otherwise.

Assume that each party has some potential to win. Denote
potential of the first party as S1, and potential of the second
party as S2. We consider S1 and S2 to be stochastic processes,
evolving over time, and refer to them as ability processes
S1(t) and S2(t). Adopting a diffusion approach makes our
model similar to a recently published result showing that a
simple diffusion model provides a good fit of the evolution
of the winning probability in the 2004 Presidential elections
market at InTrade.com [8]. However, that paper considers
a very restrictive parametric specification (no drift, constant
volatility) and does not analyze the volatility of prices.

2AutoRegressive Conditional Heteroscedasticity
3Generalized ARCH
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Figure 1: An example of a competition, where the abil-

ities of two parties evolve as Ito Diffusions (top). The

bottom figure shows the price of the corresponding pre-

diction market contract. (See Example 2.)

In our model, we assume that, at the expiration T , the
strongest party always wins. More formally, the probability
of the first party winning, given the abilities S1(T ) and S2(T )
is:

Pr(winner = 1|S1(T ), S2(T )) = I+ (S1(T )− S2(T )) (1)

where I+ is the indicator function for positive numbers.4 (Al-
ternative specifications include smoothing using either logit
or probit functions, however, due to space limitations, we do
not analyze them in this paper.) Assuming that the predic-
tion market is efficient and unbiased, then the price π(t) of
the contract at time t, is:

π(t) = Et [Pr(S1(T ) > S2(T ))] (2)

where Et represents the expectation taken with respect to
all available information at time t. Note that we need only
marginal traders to share this common information set, as
it is the marginal traders who determine the price in a pre-
diction market [12]. Prior study of a political stock market
shows that marginal traders are significantly less biased than
average traders and efficiently react to news [12], thus pro-
viding justification for π(t) = Et [π(T )] if one thinks of Et as
an expectation of a marginal trader.

In this paper, we model S1 and S2 as Ito processes, a gen-
eralized form of a Brownian motion. Specifically, we have:

dSi = ai(Si, t)dt+ bi(Si, t)dWi, i = 1, 2 (3)

where ai(s, t) are drifts and bi(s, t) are volatilities of the un-
derlying ability processes, potentially different for each pro-
cess S1, S2. The processes are driven by two standard Brow-
nian motions Wi that can be correlated with corr(W1,W2) =
ρ12 (|ρ12| < 1).

Example 2 Consider the case of two competing parties, in
Figure 1. Party 1 has an ability S1(t) (red line) with positive
drift µ1 = 0.2 and volatility σ1 = 0.3, and party 2 (blue line)
has an ability S2(t) with a negative drift µ2 = −0.2 and higher
volatility σ2 = 0.6. Assuming no correlation of abilities, the
difference S(t) = S1(t)−S2(t) (green line) is a diffusion with

4Note that a tie is a zero-probability event.

drift µ = 0.4 and volatility σ = 0.67. In the bottom plot, you
can see the price π(t) of the contract, as time evolves.

As shown in the example, the red line (party 1) is for the
most time above the blue line (party 2), which causes the green
line (the difference) to be above 0. As the contract gets close
to expiration, its price gets closer and closer to 1 (i.e., party
1 will win). Close to the end, the blue line catches up, which
causes the prediction market contract to have a big swing from
almost 1 to 0.5, but then swings back up as party 1 finally
finishes at the expiration above party 2.

So far, our model depends on knowing the parameters of the
underlying “ability processes.” We now proceed to show that
we largely do not need to know the details of the underlying
ability processes for our volatility modeling.

3.2 Constant Coefficients
First, we present a relatively simple case, where the drifts

and the volatilities of the “ability” processes remain constant
over time. Consider a constant coefficients model: ai(Si, t) ≡
µi, bi(Si, t) ≡ σi. In this case, we can consider the difference
process (S = S1 − S2) which can be written as

dS = µdt+ σdW,

where µ = µ1 − µ2, σ =
√
σ2

1 + σ2
2 − 2ρ12σ1σ2 and W =

1
σ

(σ1W1 − σ2W2) is a standard Brownian motion.
By Markovity of our stochastic processes, the price π(t) of

a prediction market is:

π(t) = P{S(T ) > 0|S(t)},

what is equivalent to

π(t) = P

{
W (T )−W (t) > −S(t) + µ(T − t)

σ

}
(4)

As W is a Brownian motion, W (T )−W (t) is a normal random
variable with mean zero and volatility σ

√
T − t, so

π(t) = N

(
S(t) + µ(T − t)

σ
√
T − t

)
, (5)

where N is the cumulative density function of the standard
normal distribution. While this is a closed-form result, it
depends on the unobserved value S(t) and therefore is not di-
rectly useful.5 We can obtain deeper insight by analyzing the
evolution of the price process. By applying Ito’s formula [19]
to π(t), we get:

dπ(t) =
∂π

∂t
dt+

∂π

∂S
dS +

1

2

∂2π

∂S2
(dS)2. (6)

Now, from Equation 5

∂π

∂t
=

1

2σ(T − t)φ
(
N −1 (π(t))

) (
N −1 (π(t))− 2µ

√
T − t

)
,

∂π

∂S
=

1

σ
√
T − t

φ
(
N −1 (π(t))

)
,

∂2π

∂S2
= − 1

σ3(T − t)φ
(
N −1 (π(t))

)
N −1 (π(t)) ,

5Our derivation is based on the assumption that abilities of
each party are public information at time t. Though it is
reasonable to assume that this information is well-known to
market players, it might not be available to researchers esti-
mating the model (or might be perceived as subjective).
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where φ stands for probability density function of the stan-
dard normal distribution. We can substitute these expres-
sions to the diffusion Equation 6 together with dS = µdt +
σdW and (dS)2 = σ2dt. The terms for the drift cancel6 and
we get:

dπ(t) = 0 dt+
1√
T − t

φ
(
N −1 (π(t))

)
dW.

We can see that the instantaneous volatility of π(t) (call it
Σ(t)) is given by the expression.

Σ(t) =
1√
T − t

φ
(
N −1 (π(t))

)
, (7)

which conditionally depends only on the current price π(t)
and the time to expiration T − t and does not depend on
any parameters of the underlying latent stochastic processes,
given π(t) and T − t.

3.3 General Case for Binary Markets
In this section we relax the assumption that drifts or volatil-

ities of “ability” processes are constant, though we still have
to assume that the coefficients are non-stochastic and that,
if the dependency on the current process state is present, it
is linear. Note that this theorem covers both the case of a
standard Brownian Motion with drift as well as the case of a
log-normal Brownian Motion with drift as the latter can be
written as dS = µSdt + σSdW . It also implicitly covers the
case of a “threshold” bet that pays $1 if S1(T ) > K where K
is a fixed constant - just take µ2 ≡ σ2 ≡ 0.

Theorem 1 (Contract pricing in a simple prediction
market with two competing parties) Consider a complete
probability space (Ω,F , P ) on which we have a two-dimensional
Brownian motion (W1, W2; Ft); 0 ≤ t ≤ T , where each
Wi is a standard Brownian motion, corr(W1(t), W2(t)) =
ρ12, |ρ12| < 1 and Ft is the natural filtration for W1,2. Con-
sider a prediction market for a competitive event such that
underlying ability processes S1 and S2 are Ft-measurable and
satisfy the diffusion equation

dSi = µi(t)(αSi + β)dt+ σi(t)(αSi + β)dWi,

where µi(t) is a continuous function, σi(t) is a continuous
non-negative function, α ≥ 0 and P {αSi + β > 0} = 1. De-
fine the contract price process π(t) as

π(t) = Et [I (S1(T ) > S2(T ))] .

Under conditions described above, π(t) is an Ito’s diffusion
with zero drift and instantaneous volatility:

Σ(t) =
σ(t)√∫ T

t
σ(u)2du

φ
(
N −1 (π(t))

)
,

where

σ(s) =
√
σ2

1(s) + σ2
2(s)− 2ρ12σ1(s)σ2(s).

In other words, dπ(t) = Σ(t)dW where W is some standard
Brownian motion with respect to filtration Ft.

Corollary 1 If the volatilities of the underlying ability pro-
cesses are constant(σi(t) ≡ σi):

Σ(t) =
1√
T − t

φ
(
N −1 (π(t))

)
.

6As they should because of the law of iterated expectations.

Figure 2: Claim Volatility As Function of Its Current

Price and Time (claim expires at T = 1, current time

t = 0)

Theorem 1 extends our previous result that, given the cur-
rent price of the contract and its time to expiration, we can
determine its instantaneous volatility without knowing pa-
rameters of the underlying ability processes such as their
drifts. However, if there are “seasonal” effects in the volatil-
ity of the ability processes, our constant coefficient estimate
(Equation 7) needs to be scaled by the ratio of the current
volatility of the ability processes to the future average volatil-
ity of the ability processes until expiration.

For example, if the current contract price is 0.5, the time
to expiration is 10 time units and we assume no seasonal ef-
fects, then its instantaneous volatility (with respect to the
same time units) should be 1√

10

1√
2π
≈ 0.126. Note that our

formula predicts that, given the contract price, volatility is
proportional to the inverse square root of the time until ex-
piration, while, given the time to expiration, volatility of the
price is a strictly decreasing function of the distance between
the contract price and 0.5 and it goes to zero as the contract
price approaches 0.0 or 1.0. The dependency of the claim
volatility on the contract price and the time to expiration is
shown in Figure 2, which demonstrates the“volatility surface”
as a function of the contract price and the time to expiration.

Alternatively, we can examine the behavior of price volatil-
ity if we do not force the contract price to be constant but let
the claim evolve “naturally.” Two interesting questions are:

1. What is the expected instantaneous claim volatility at
some future moment of time r?

2. What is the expected average volatility of the claim
from the current moment of time until the future mo-
ment of time r?

The first of these questions is answered by Theorem 2 which
says that our best forecast of the instantaneous volatility in
the future is the current claim volatility weighted by “sea-
sonal” effects if necessary. The second question is answered
by Theorem 3.

Theorem 2 (Instantaneous volatility is a martingale)

In the setting of Theorem 1, Σ(t)
σ(t)

is a martingale i.e.

∀ r ∈ [t, T ] Et

[
Σ(r)

σ(r)

]
=

Σ(t)

σ(t)
.

In particular, if we assume that σi(t) ≡ σi, then Σ(t) is a
martingale.
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Figure 3: Expected contract price conditional on event

happening (’x’) or not (’o’) (t = 0, T = 1)

Theorem 3 (Average expected claim volatility) In the
setting of Theorem 1, take r ∈ (t, T ) and define

Λ =

∫ r
t
σ2(u)du∫ T

t
σ2(u)du

i.e. Λ is the volatility-weighted ratio of the time elapsed to
the total contract duration (in particular, if we assume that
σi(t) ≡ σi, then Λ = r−t

T−t ). Then,

Et
[
(π(r)− π(t))2] =

∫ Λ

0

φ2
(

N −1(π(t))√
1+λ

)
√

1− λ2
dλ (8)

Since
∫ 1

0

φ2
(

N −1(x)√
1+λ

)
√

1−λ2
dλ = x− x2, it also follows naturally

that Et
[
(π(T )− π(t))2

]
= π(t)− π(t)2, which is the volatil-

ity of a Bernoulli trial. This is intuitively expected as, con-
ditional on information set at time t, the price at expiration
π(T ) is a random coin flip, giving 1.0 with probability π(t)
and 0.0 otherwise.

Corollary 2 (“Ex-post expected” price trajectory) In the
setting of Theorem 3,

Et [π(r) |A ] = π(t) +
1

π(t)

∫ Λ

0

φ2
(

N −1(π(t))√
1+λ

)
√

1− λ2
dλ.

Proof: Direct application of Theorem 1 from Pennock et al. [20],
which says that, if the prediction market for event A is unbi-
ased, then

E [π(t) |π(t− 1), A ] = π(t− 1) +
Var{π(t)|π(t− 1)}

π(t− 1)
.

Corollary 2 deserves some clarification. Our model was
built under assumption that the contract price is a martin-
gale i.e. Et [π(r)] = π(t). It follows that the average of all
price trajectories of the claim from point (t, π(t)) is just a
horizontal line. Imagine now that an observer (but not a
trader) has access to Oracle that can say whether the event
will actually happen or not. Naturally, if the oracle says
“yes”, it eliminates all price trajectories converging to zero.
Corollary 2 tells us what one would obtain by averaging all
remaining trajectories that converge to one. We show the
expected price trajectories for several initial price values in
Figure 3. Note that all price trajectories converge either to
1.0 (event happens) or to 0.0 (event does not happen).

Variable Min Max Mean Median S.Dev.

Num.Obs. 1 1427 375.76 237 334.52
Expiration 2 1933 417.68 347 306.35
Daily dev. -0.93 0.942 0 0 0.018869
Returns -0.9975 449 0.0191 0 1.4059

Price 0.001 0.995 0.244 0.075 0.32092

Table 1: Descriptive Statistics for 901 InTrade contracts

(338,563 observations)

4. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

our model on a set of InTrade prediction market contracts.

4.1 Data
Our dataset contained daily observations for a collection

of InTrade prediction market contracts. Intrade is an online
Dublin-based trading exchange web site founded in 2001. The
trading unit on InTrade is a contract with a typical settlement
value of $10, which is measured on a 100 points scale. To be
consistent with our convention that the winning contract pays
$1, we have renormalized all price data to be in [0, 1] range,
so, for example, a 50 points price of InTrade contract is rep-
resented by 0.5 in our dataset. The full dataset we analyzed
included daily closing price and volume data for a collection
of 901 InTrade contracts obtained by periodic crawling of In-
Trade’s web site.7 Table 1 provides the descriptive statistics
for our sample. Note that we use term “price difference” or
“absolute return” to represent price changes between two con-
secutive days

at = pt − pt−1

while just “return” refers to

rt =
pt − pt−1

pt−1

A closer examination of the data reveals several interesting
facts that must be taken into account in our empirical ap-
plication. At first, 288,119 of 338,563 observations that we
have (i.e., > 85% of the whole dataset) had zero price change
since the previous day. Moreover, 287,430 of these observa-
tions had zero daily trading volume, what means that most
of the time price did not change because of the absence of
any trading activity. We presume that absence of activity in
many of InTrade prediction markets can be attributed par-
tially to low liquidity of most of the markets in our sample
and partially to transaction costs for contracts executed on
the exchange. Even if we exclude observations with at = 0
from our dataset, returns exhibit the following “round num-
ber” bias: absolute returns divisible by 5 ticks8 occur much
more frequently than absolute returns of similar magnitude
that are not divisible by 5 ticks. For example, 5 ticks price
difference has occurred 2,228 times in our dataset as opposed
to 624 times for 4 tick difference and 331 times for 6 tick
difference. In fact, more than half of all non-zero price differ-
ences in our dataset are divisible by 5 ticks. The bias can be
easily seen in Figure 4 that plots absolute return sizes against
corresponding frequencies on regular and log scales. Similar
bias was also observed for prices.

7InTrade keeps historical data for each active contract on the
web site, however expired contracts disappear from the web
site after certain amount of time.
8One InTrade tick is equal to 0.1 InTrade points or $0.01 in
our normalization.
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Figure 4: Deviation counts by size in ticks (0.1 InTrade

point); zero deviations excluded.

4.2 Model Test
In this section, we assume that the underlying “ability”

process is homoscedastic, i.e., σi(t) ≡ σi and time t is mea-
sured in days, as we use daily returns. Our model suggests
that volatility should increase as we approach the expiration
of the contract, and that volatility is higher when contract
price is close to 0.5 and lower when it approaches 0.0 or 1.0.
Specifically, our theoretical model predicts that, for each ob-
servation, conditional on price history, we have:

at = htεt, (9)

ht =

√∫ Λ

0

1√
1− λ2

φ2

(
1√

1 + λ
N −1 (pt)

)
dλ, (10)

where ht is the conditional volatility of absolute returns and
Λ = 1

T−t . Residuals εt are independent identically distributed

standard (mean zero, variance one) random variables. 9 While
most of InTrade contracts in our sample have more than two
possible outcomes, we believe the qualitative behavior of con-
tract prices can be well captured by our simple result for
binary model. To test our statement, we take logs of the
absolute value of Equation 9:10

log(|at|) = E [log |εt|] + log(ht) + log |εt| −E [log |εt|] .

For notational convenience, let γ = E [log |εt|] and µt =
log |εt| −E [log |εt|]. In this case, we have:

log(|at|) = γ + log(ht) + µt,

Note that E [µt] = 0 and so we have a regression-like set-
ting even though the residuals are not normally distributed.
Therefore, we can use regressions to check the validity of our
proposed model. We ran two different tests of our model, tak-
ing absolute values of price differences and regressing them
on a constant and log(ht).

• The first test checks for presence of heteroscedasticity
effects of time and price as predicted by our theory. The
null hypothesis here is that the coefficient on log(ht) is
equal to zero and we want to reject it.

• The second test checks that the magnitude of heteroscedas-
ticity effects is consistent with our theory. The null hy-
pothesis here is that coefficient on log(ht) is equal to
one and we do not want to reject it.

9We do not know what is the distribution of εt, however for
small values of Λ it must be close to normal.

10We take logs instead of squares of returns as logs are more
robust to outliers in the data. Similar results can be obtained
with squares of returns.

Obs. Var. Coeff. Std.Err. -95% +95%

log(ht) 0.6298 0.00480 0.6204 0.6392
all constant -3.3833 0.03084 -3.4437 -3.3229

log(ht) 0.8467 0.01986 0.8078 0.8860
(0.05, 0.95) constant -2.4653 0.08598 -2.6338 -2.2967

log(ht) 0.9455 0.02830 0.8900 1.0010
(0.1, 0.9) constant -2.1010 0.11507 -2.3266 -1.8755

Table 2: Testing for presence and magnitude of het-

eroscedasticity. If volatility is not affected by time to ex-

piration and contract price, then the coefficient of log(ht)

should be close to 0.0. Coefficients of log(ht) close to 1.0

indicate that our model captures well the magnitude of

volatility.

Obs. Var. Coeff. Std.Err. -95% +95%

all log(ht) 0.6438 0.013112 0.61810 0.66951
(0.05, 0.95) log(ht) 1.0370 0.039503 0.95957 1.11443
(0.1, 0.9) log(ht) 1.1910 0.049832 1.09341 1.28876

Table 3: Three fixed effect regressions of logs of absolute

returns

Results of the regression are given in the Table 2 and stan-
dard errors are corrected for heteroscedasticity.11 We in-
cluded zero deviations (but not zero volume trading days),
but to avoid taking logs of zero we added a small smoothing
factor (10−4) under the log(|at|). In Table 2 we report the
results of three regressions. The first regression included all
observations, the second regression included all observations
with price in the (0.05, 0.95) range and the last regression in-
cluded all observations with price in the (0.1, 0.9) range. We
report results with excluded marginal observations because
such observations are most seriously affected by the bias de-
picted in Figure 4. Moreover, there is substantial evidence
from the prior research suggesting that people tend to over-
value small probabilities and undervalue near certainties, the
so called “favorite-longshot bias” [22]. This effect may be es-
pecially strong in our sample as it is skewed towards low price
contracts.

As we see from Table 2:

• Presence of heteroscedasticity: The null hypothesis for
the first test is strongly rejected in all three cases, mean-
ing that there are indeed strong heteroscedasticity ef-
fects of the current contract price and the time until
contract expiration. In other words, volatility changes
over time and across prices.

• Magnitude of heteroscedasticity: For the second test,
while in the first two cases the null hypothesis is re-
jected at 95% confidence level, the coefficient on log(ht)
improves (i.e., approaches the predicted value of 1) as
we exclude the marginal observations, which may be af-
fected by the “favorite-longshot bias”. This means that
our model captures nicely the magnitude of the volatil-
ity, especially for contracts with prices in the (0.1, 0.9)
range.

Robustness checks: The results of the pooled regressions
might be affected by potential heterogeneity of the contracts.
While the basic theory suggests that εt are i.i.d. residuals, in

11As one can see from Figure 5, residuals are indeed het-
eroscedastic: when volatility is high, the residual is high as
well.
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Figure 5: Sample means of log of absolute returns con-

ditional on fixed price or time to expiration against pre-

dictions of our model.

practice we may expect correlations in volatility levels for the
same contract, for example, due to different liquidity levels of
contracts in the sample. In order to alleviate these concerns
we also included contract-specific effects to our regression. In
Table 3, we report results of panel data regressions with fixed
effects for contracts. Note that the Breusch and Pagan LM
test rejects absence of effects (χ2(1) = 5448.76, p > χ2 =
0.0000) and the Hausman test does not reject the random
effects model (χ2(1) = 0.97, p > χ2 = 0.3258).

We also noted that, because of potential auto-correlation in
absolute returns, we may underestimate actual standard er-
rors; we tried a random-effects regression with AR(1) distur-
bances (GLS estimator). Indeed, we found significant auto-
correlation in residuals (ρ = 0.526); correcting for autocorre-
lation, though, does not affect the results significantly.

Furthermore, we have replicated all results using the in-
stantaneous volatility from Equation 7 instead of the average
daily volatility from Equation 10. As most of the observations
in our sample are relatively far from the expiration date, in-
stantaneous volatilities were close to daily averages and the
regression results were not significantly different.

As instantaneous volatility expression provides particularly
nice separation of time and price effects, we also suggest run-
ning a simple visual test in addition to regression based test-
ing. As we have plenty of observations, we can use data
to estimate sample means of the log(|at|) conditional on the
fixed price or the fixed time to expiration. We can then plot
the means against predictions of our model and see if the
qualitative behavior is similar. Results that we obtained are
presented in Figure 5. Solid lines shown on the picture are
plots of log

(
φ(N −1(pt−1))

)
and −0.5 log (T − t) shifted by a

constant so that they match the data means.

4.3 Volatility Forecasting
So far, in our experimental results we were ignoring po-

tential heteroscedasticity of the latent ability processes and,
therefore, potential“volatility clustering”for the contract prices.
One can argue that, if volatility clustering is significant, one
might be able to forecast claim volatility better by using his-
torical data than by using our theoretical results.

So, we compared our model against models of volatility
which use historic volatility to predict future volatility. In
our test, we compared three models: GARCH(1,1) [6], our
model assuming homoscedasticity of the “ability” processes,
and GARCH(1,1) applied to the standardized residuals re-
turned by our model.12 Note, that our model does not require

12The standardized residual is the return rt normalized by

any historic data, while other two models require estimating
parameters of the GARCH process from historical price data.

We performed the comparison on a subsample of 51 In-
Trade contracts where each contract represents the Demo-
cratic Party Nominee winning Electoral College Votes of a
particular state13 in the 2008 U.S. Presidential Election, as
they contained enough volume and long enough history for
training the GARCH models. As we are more interested in
forecasting volatility rather than in simply explaining it, we
separated observations for each contract into two equal parts:
the first part was used to learn parameters of the GARCH
processes (on a per contract basis) and the second part was
used for evaluation of forecasting accuracy. We have com-
pared all three models in terms of total log-likelihood on the
testing part of the sample as this is a natural fit criterion for
GARCH models.

In 26 out of 51 cases, Model 3 (GARCH on the standard-
ized residuals from our model) provided the best forecasts
and in 17 out of the 25 remaining cases our model outper-
formed regular GARCH. Overall, the results support the hy-
pothesis that even with significant volatility clustering in the
data, our model is generally better in forecasting volatility
than the approaches based purely on historical data. More-
over, our model seems to capture effects of time and price on
claim volatility that are orthogonal to the heteroscedasticity
captured by GARCH. Orthogonality of these two different
sources of heteroscedasticity implies that we can significantly
improve forecasts of future contract volatility by first normal-
izing the data using our model and then running GARCH on
the standardized residuals, rather than running it directly on
the return data.

5. LIMITATIONS
Overall, our experiments show that realized volatility of

prediction markets is consistent with what our diffusion-based
theory would predict. While match between theory and data
is definitely not perfect, the model does provide very good
predictions of market volatility without requiring one to know
anything about the market except for the current price and
time to expiration. Why is the model fit not ideal? There
are at least three different reasons for that.

The first reason is that our model ignores market micro-
structure as well as possible behavioral biases such as“favorite-
longshot” and rounding biases. No market (especially predic-
tion market) is ideally liquid - the bid-ask queue always has
finite depth and there are usually transaction costs. Even
marginal traders are not fully rational as well. It is an in-
teresting research question to examine whether the volatility
model can be extended to capture the effects of the structure
of the bid-ask queue and/or some standard behavioral biases.

The second reason is that our idea of two underlying “abil-
ity” processes being driven by Brownian motions might not
represent the real stochastic process driving the event proba-
bility. One puts significant restrictions on the contract price
dynamics by assuming that they are driven by Brownian mo-
tions. Ito diffusions result in sample paths that are continuous
and short-term price changes that are almost normally dis-
tributed. However, in our sample we sometimes observe price
jumps that are completely improbable if we assume normal

our prediction of the return volatility which is ht
pt

where ht is

given by Equation 10.
13More precisely, one of the fifty states and Washington D.C.
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Figure 6: Option prices as a function of the time to
option expiration and the strike price. The current
underlying contract price is 0.5.

distribution of returns. For example, the contract for Michi-
gan to hold new democratic primaries in 2008 had a 59 cents
price drop on March 19th, a move that, according to our esti-
mates, constitutes almost 15 standard deviations. One might
want to extend our model to cover cases when the underlying
ability processes, in addition to a Brownian motion compo-
nent, have a Poisson jump component capturing the sudden
arrival of new significant information to the market.

The last reason is that we price claims as if traders are
risk-neutral. As prediction market bets are somewhat sim-
ilar to binary options, it is tempting to say that we just
borrow risk-neutral pricing approach from the option pric-
ing literature. However, the traditional argument to support
risk-neutral pricing of options, i.e., Delta hedging in the un-
derlying instrument does not work for prediction markets as
the underlying instrument either does not physically exist
or cannot be traded. Nevertheless, we can suggest at least
three alternative arguments in defense of risk-neutral pric-
ing. At first, in some prediction markets traders may indeed
behave as risk-neutral either because the market uses “play
money” instead of real ones [21] or because trader’s participa-
tion is limited. Next, there is theoretical evidence that, under
certain conditions, prediction market prices may be close to
the mean population beliefs even if the traders are not risk-
neutral [25], so risk-neutral pricing might be a valid approach
even in the presence of certain risk-aversion. Finally, as we
already described in the beginning of the paper, there is sig-
nificant experimental evidence that prediction market prices
are unbiased estimates of the actual event probability. Note
that this last argument is our main justification in this pa-
per. Without trying to answer the question of “why is it so?”,
we just adopted risk-neutral pricing to see where the theory
leads us. The results we have obtained in the experimental
part of this paper, might be seen as a joint test of market
efficiency, non-bias assumptions, as well as of our volatility
model.

6. APPLICATION: PRICING OPTIONS ON
PREDICTION MARKET CONTRACTS

This section presents an application of our model for pricing
options on prediction market contracts. Options are popular
financial instruments with numerous applications such as risk
hedging or speculation on volatility. A classic “vanilla” call
option on a security provides the right but not the obligation
to buy a specified quantity of the security at a set strike price

Figure 7: Risk-neutral densities for future contract
prices. Rows correspond to π(t) = 0.25, 0.5, 0.75 and
columns correspond to λ = 0.25, 0.5, 0.75.

at a certain expiration date.14 A major breakthrough in op-
tion pricing was achieved by Fischer Black and Myron Scholes
who obtained a closed form solution for pricing options, now
known as the Black-Scholes formula [5, 18].

In this section, we consider binary options on prediction
market claims, like those recently introduced by InTrade.
Such binary option will pay $1 if on option’s expiration date
T ′, the underlying contract price is larger than the strike price
(K). The underlying contract expires at time T , with T ′ ≤ T .

For example, InTrade’s option X.15OCT.OBAMA. > 74.0
pays 100 points ($1 in our normalization) if on October 15,
2008 (T ′), the price of the 2008.PRES.OBAMA contract is
higher than 74 points (K). The expiration date for the un-
derlying contract is on November 9, 2008 (T ).

As we already assume risk-neutrality, it is easy to define
the option price:

c(t) = P{π(T ′) > K|π(t)}. (11)

We know the evolution process for the underlying contract,
so we only need to calculate its expectation. The result is
stated by the following theorem.

Theorem 4 (Pricing options on prediction market con-
tracts in a simple prediction market with two compet-
ing parties) In the setting of Theorem 1, take T ′ ∈ (t, T )
and consider a binary option on the contract π(s) with payoff

c(t) = P{π(T ′) > K|π(t)}.

Define λ =
∫ T ′
t σ2(u)du∫ T
t σ2(u)du

i.e. λ is the volatility-weighted ratio

of the time to the option expiration to the time to the contract
expiration. (In particular, if we assume that σi(t) ≡ σi, then

λ = T ′−t
T−t .) Then the option price is given by:

c(t) = N

(√
1

λ
N −1(π(t))−

√
1

λ
− 1N −1(K)

)
. (12)

Several interesting observations can be made from Equa-
tion 12. At first, the option price is strictly increasing in the

14In this section, we consider European style options only. An
American style option will give owner the right to exercise it
on or before the expiration date.
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current contract price and strictly decreasing in the strike
price. Moreover, as time to the option expiration converges
to time to the contract expiration (λ → 1), the option price
converges to the current contract price (c(t)→ π(t)). Finally,
if the current contract price is 0.5 and the option expires
halfway to the contract expiration (as weighted by volatili-
ties of the “ability” processes), then the option price is equal
to the strike price ct = K. To give the reader better intuition
of how the option price behaves with varying parameters λ
and K we include a plot of option prices for a fixed value of
the current price (π(t) = 0.5) in Figure 6.

One can also take derivative of the option price with respect
to the strike price to retrieve the risk-neutral density of the
contract price at time T ′. The result is

f(p) =
φ
(√

1
λ
N −1(π(t))−

√
1
λ
− 1N −1(p)

)
φ (N −1(p))

√
1

λ
− 1.

(13)
We plotted the result for different values of the current price
and λ in Figure 7.

7. IMPLICATIONS AND CONCLUSIONS
Although volatility is one of the most widely studied con-

cepts in financial markets, little attention, so far, has been
given to understanding volatility of prediction markets. This
paper is the first attempt to provide a theoretical model of
prediction market volatility. In doing so, we assume unbiased
and efficient prediction market and assume that the event
being predicted is driven by a pair of latent diffusion pro-
cesses.15 Combination of both assumptions generates some
interesting theoretical results, like the instantaneous volatil-
ity of a contract on a binary event depending only on the
current contract price and the time to expiration.

The volatility results we obtained bear certain similarity
to the family of ARCH models [11]. The main difference is
that ARCH models represent conditional volatility of returns
in stock market as a function of previous returns (the well-
known effect of volatility clustering), while our model suggests
that conditional volatility of absolute returns in prediction
market is a function of the current price and the time to ex-
piration. The second difference is that, while ARCH models
are usually empirical and rely on past data, our model of con-
ditional heteroscedasticity can be derived theoretically from
a stochastic model of latent ability processes.

While our theory is based on a model of an “ideal” mar-
ket, our experimental results for a collection of 901 real In-
Trade prediction markets show that volatility patterns of real
prediction markets are consistent with what our model pre-
dicts, especially if we exclude marginal (very high or very
low priced) observations from the dataset. Our results for a
sample 51 of InTrade contracts on 2008 Presidential Elections
demonstrate that our model is better in forecasting volatility
than GARCH applied to historical price data, although the
best performance is obtained by combining both models. Fur-
ther practical applications of our results may include detec-
tion of significant market moves, improving forecast standard
errors in prediction markets, pricing conditional prediction
markets and pricing options on prediction markets.

Despite the limitations (outlined in Section 5), we hope
that this study provides solid foundation on which future
work on prediction market volatility can build.

15Our results can be extended to events with more than two
participants. Refer to Appendix of [1] for details.
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APPENDIX
Proof of Theorem 1
Define the function f(S) =

∫ S
x0

1
αx+β

dx, where x0 is some fixed

value. Let Yi(t) = f(Si(t)) be a new stochastic process. Note
that f is strictly increasing on the domain of S, so we have that

283



P {Y1(T ) > Y2(T )} = P {S1(T ) > S2(T )} i.e. instead of original
processes we can consider transformed ones. After applying Ito’s
formula in integral representation we obtain

Yi(T ) = Yi(t) +

∫ T

t

(
µi(u)−

α

2
σ2
i (u)

)
du+

∫ T

t
σi(u)dWi(u).

So Y1(T ) > Y2(T ) if and only if

X(t) =

∫ T

t
σ1(u)dW1(u)−

∫ T

t
σ2(u)dW2(u)

is greater than Y (t) =

Y2(t)− Y1(t) +

∫ T

t

(
µ2(t)− µ1(t) +

α

2

(
σ2

2(t)− σ2
1(t)

))
dt.

By properties of Brownian motion, X(t) is a normal variable with
mean zero and variance

σ2
t,T =

∫ T

t
σ(u)2du,

where

σ(t) =
√
σ2

1(t) + σ2
2(t)− 2ρ12σ1(t)σ2(t).

It follows that π(t) = N
(
Y (t)
σt,T

)
. By applying Ito’s formula to

π(t), we can calculate its drift and volatility. Note, however, that
the drift must be zero by the law of iterated expectations. The
volatility term is just

∂π

∂Y1
σ1(t)dW1 +

∂π

∂Y2
σ2(t)dW2 =

σ(t)

σt,T
φ
(
N −1 (π(t))

)
dW,

where

W (t) =
σ1(t)W1(t)− σ2(t)W2(t)

σ(t)

is a standard Brownian motion. That proves the Theorem. To
prove the Corollary just note that if σ(u) ≡ c on [t, T ], then σt,T =

c
√

(T − t).

Proof of Theorem 2
We will use notation from the proof of Theorem 1, in particular,
definitions of σ(t) and σt,T . Let V (t) = Σ(t)

σt,T
σ(t)

= φ
(
N −1(π(t))

)
.

This can be written as V (t) = U(π(t)), where U(x) = φ
(
N −1(x)

)
.

Note that U ′(x) = −N −1(x) and U ′′(x) = − 1
U(x)

. We are now

ready to apply Ito’s formula in integral form which gives us:

V (s) = V (t)−
∫ s

t
N −1(π(u))dπ(u)−

∫ s

t

(dπ(u))2

2U(π(u))
. (14)

Note, that
∫ s
t N −1(π(u))dπ(u) is an Ito integral and its integrand

is square integrable (follows from the construction of the “ability”
processes), so its expectation is zero. The second integral is∫ s

t

(dπ(u))2

2U(π(u))
=

∫ s

t

U2(π(u))σ2(u)du

2σ2
u,TU(π(u))

=

∫ s

t

σ2(u)V (u)du

2σ2
u,T

.

After applying conditional expectation to Equation 14 we get

Et [V (s)] = V (t)−
1

2

∫ s

t

σ2(u)

σ2
u,T

Et [V (u)] du,

here we used Fubini’s theorem to put the expectation operator
under the integral. Now, if we define f(u) = Et [V (u)], we have an
integral equation

f(s) = f(t)−
1

2

∫ s

t

σ2(u)

σ2
u,T

f(u)du.

After taking the derivative of both sides with respect to s and
rearranging terms we get:

∂

∂s
(log f(s)) =

1

2

∂

∂s

(
log
(
σ2
s,T

))
.

Using the fact that ∂
∂s

log
(
σ2
s,T

)
= −σ

2(s)

σ2
s,T

, one can see that all

solutions of this equation are of the form f(s) = Cσs,T . But then,

Et [Σ(s)] =
σ(s)

σs,T
Et [V (s)] =

σ(s)f(s)

σs,T
≡ Cσ(s).

Proof of Theorem 3
We will use notation from the proof of Theorem 1, in particular,
definitions of σ(t) and σt,T . First, note that

Et(π(r)− π(t))2 = Et

(∫ r

t
Σ(u)dW

)2

=

∫ r

t
Et
[
Σ(u)2

]
du,

(15)
where the last step is obtained by applying Ito’s isometry [19].
Now, the easiest proof is obtained by noting that the evolution
process of the prediction market contract

dπ(t) =
σ(t)

σt,T
φ
(
N −1 (π(t))

)
dW,

does not depend on parameters of the “ability” processes except for
σ. As we will obtain the same result with any valid values of µ, α
and β, we can as well take the simplest possible set: µ ≡ 0, α ≡ 0,
β ≡ 1. With these settings Y (t) = Y1(t)−Y2(t) is just a Brownian

motion and π(u) = N
(
Y (u)
σu,T

)
and Σ(u) =

σ(u)
σu,T

φ
(
Y (u)
σu,T

)
. By

using normality of increments of a standard Brownian motion:

Et
[
Σ(u)2

]
=

∫ ∞
−∞

1

σt,u
φ

(
δ

σt,u

)[
σ(u)

σu,T
φ

(
Y (t) + δ

σu,T

)]2

dδ.

Simple algebraic calculations give φ
(

δ
σt,u

)
φ2
(
Y (t)+δ
σu,T

)
=

φ

δ
√

2σ2
t,u + σ2

u,T

σt,uσu,T
+ C

φ2

 Y (t)√
2σ2
t,u + σ2

u,T

 .

Only the first term depends on δ, so after integration:

Et
[
Σ(u)2

]
=

σ2(u)/σ2
t,T√

1− λ(u)
√

1 + λ(u)
φ2

(
N −1 (π(t))√

1 + λ(u)

)
,

where λ(u) =
σ2
t,u

σ2
t,T

. Note that d(λ(u)) =
σ(u)2

σ2
t,T

. If we substitute

this expression to Equation 15 and change the variable as u 7−→ λ
we immediately obtain Equation 3.

Proof of Theorem 4
We will use notation from the proof of Theorem 1. One can
note that the evolution process of the prediction market contract
dπ(t) = Σ(t)dW does not depend on parameters of the “ability”
processes, so we will obtain the same result with any valid values of
µ, α and β. Take µ ≡ 0, α ≡ 0, β ≡ 1. With these settings Y (t) =

Y1(t)− Y2(t) is just a Brownian motion and π(t) = N
(
Y (t)
σt,T

)
, so

P{π(T ′) > K|π(t)} can be written as

P

{
N

(
Y (T ′)

σT ′,T

)
> K

∣∣∣∣N (
Y (t)

σt,T

)
= π(t)

}
.

The resulting formula can be obtained by simple algebraic manip-
ulations and the fact that Y (T ′) − Y (t) is normally distributed
with mean zero and standard deviation σt,T ′ .
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