Human Computation: Papers from the 2011 AAAT Workshop (WS-11-11)

Beat the Machine: Challenging
Workers to Find the Unknown Unknowns

Josh Attenberg
Polytechnic Institute of NYU
Brooklyn, NY
Jjosh@cis.poly.edu

Abstract

We present techniques for gathering data that expose errors
of automatic predictive models. In certain common settings,
traditional methods for evaluating predictive models tend to
miss rare-but-important errors—most importantly, rare cases
for which the model is confident of its prediction (but wrong).
In this paper we present a system that, in a game-like setting,
asks humans to identify cases that will cause the predictive-
model-based system to fail. Such techniques are valuable in
discovering problematic cases that do not reveal themselves
during the normal operation of the system, and may include
cases that are rare but catastrophic. We describe the design
of the system, including design iterations that did not quite
work. In particular, the system incentivizes humans to provide
examples that are difficult for the model to handle, by provid-
ing a reward proportional to the magnitude of the predictive
model’s error. The humans are asked to “Beat the Machine”
and find cases where the automatic model (“the Machine™)
is wrong. Experiments show that the humans using Beat the
Machine identify more errors than traditional techniques for
discovering errors in from predictive models, and indeed, they
identify many more errors where the machine is confident it is
correct. Further, the cases the humans identify seem to be not
simply outliers, but coherent areas missed completely by the
model. Beat the machine identifies the “unknown unknowns.”

Introduction

“There are known knowns. These are things we know
that we know. There are known unknowns. That is to
say, there are things that we know we don’t know. But
there are also unknown unknowns. There are things we
don’t know we don’t know.”

— Donald Rumsfeld

Many businesses and government organizations make de-
cisions based on estimations made by explicit or implicit
models of the world. Being based on models, the decisions
are not perfect. Understanding the imperfections of the mod-
els is important (i) in order to improve the models (where
possible), (ii) in order to prepare to deal with the decision-
making errors, and (iii) in some cases in order to prop-
erly hedge the risks. However, a crucial challenge is that,

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Panagiotis G. Ipeirotis
NYU Stern School of Business
New York, NY
panos @ stern.nyu.edu

Foster Provost
NYU Stern School of Business
New York, NY
Jfprovost@stern.nyu.edu

for complicated decision-making scenarios, we often do not
know where models of the world are imperfect and/or how
the models’ imperfections will impinge on decision making.
We don’t know what we don’t know.

We see the results of such failures of omniscience in grand
catastrophes, from terrorist attacks to unexpected nuclear
disasters, in mid-range failures, like cybersecurity breaches,
and in failures of operational models, such as predictive
models for credit scoring, fraud detection, document clas-
sification, etc.

In this paper we introduce and analyze a crowdsourcing
system designed to help uncover the “unknown unknowns”
for predictive models. The system is designed to apply to
settings where assessing the performance of predictive mod-
els is particularly challenging. Later we will describe in de-
tail the critical aspects of such settings, but first let us intro-
duce a motivating example to make the discussion concrete.

Consider the following task: a firm has built a system
for identifying web pages that contain instances of “hate
speech” (e.g., racist content, antisemitism, and so on), based
on a model that takes web pages as input and produces as
output a “hate score.” The firm would like to use this sys-
tem to help protect advertisers, who (despite the best efforts
of their advertising agents) sometimes see their ads appear-
ing adjacent to such objectionable content. The advertisers
do not want their brands to be associated with such content,
and they definitely do not want to support such content, ex-
plicitly or implicitly, with their ad dollars.

How does this firm assess the strengths and weaknesses
of its system and model? This scenario comprises a constel-
lation of factors that are not uncommon in organizational
decision making, but are quite problematic for conducting
the assessment—particularly because of the problem of un-
known unknowns. Specifically, this paper considers applica-
tions where:

e Every decision-making case can be represented by a de-
scription and a target. We have a (predictive) model that
can give us an estimate or score for the target for any
case. For this paper, we assume for simplicity that the tar-
get is binary, and that the truth would not be in dispute if
known.!

"For our example, the description of the case would be the web
page (its words, links, images, metadata, etc.). The target would be



e We want to understand the inaccuracies of the model—
specifically, the errors that it makes, and especially
whether there are systematic patterns in the errors. For
example, is there a particular sort of hate speech that the
model builders did not consider, and therefore the model
misses it?

e The process that is producing the data does not (necessar-
ily) reveal the target for free. In our example, if we mis-
classify a hate speech page as being OK, we may never
know. (Indeed, we usually never know.) This is in con-
trast to self-revealing processes; for example, in the case
of credit-card fraud detection, we will eventually will be
informed by the customer that there is fraud on her ac-
count. For targeted marketing, we often eventually know
whether the consumer responded to an offer or not.

e Finally, there are important classes or subclasses of cases
that are very rare, but nevertheless very important. The
rarity often is the very reason these cases were overlooked
in the design of the system. In our example, hate speech
on the web itself is quite rare (thankfully). Within hate
speech, different subclasses are more or less rare. Expres-
sions of racial hatred are more common than expressions
of hatred toward dwarves or data miners (both real cases).

These problem characteristics combine to make it ex-
tremely difficult to discover system/model imperfections.
Just running the system, in vitro or in vivo, does not uncover
problems; as we do not observe the true value of the target,
we cannot compare the target to the model’s estimation or to
the system’s decision.

We can invest in acquiring data to help us uncover inac-
curacies. For example, we can task humans to score random
or selected subsets of cases. Unfortunately, this has two ma-
jor drawbacks. First, due to the rarity of the class of inter-
est (e.g., hate speech) it can be very costly to find very few
positive examples, especially via random sampling of pages.
For example, hate speech represents far less that 0.1% of
the population of web pages, with unusual or distinct forms
of hate speech being far rarer still. Thus we would have
to invest in labeling more than 1000 web pages just to get
one hate speech example, and as has been pointed out re-
cently, often you need more than one label per page to get
high-quality labeling (Sheng, Provost, and Ipeirotis 2008;
Raykar et al. 2009).

In practice, we often turn to particular heuristics to iden-
tify cases that can help to find the errors of our model.
There has been a large amount of work studying “active
learning” which attempts to find particularly informative ex-
amples (Settles 2010). A large number of these strategies
(uncertainty sampling, sampling near the separating hyper-
plane, query-by-committee, query-by-bagging, and others)
essentially do the same thing: they choose the cases where
the model is least certain, and invest in human labels for
these. This strategy makes sense, as this is where we would
think to find errors. Additionally, there has been a long his-
tory of understanding that “near misses” are the cases to use
to best improve a model, both for machine learning (Winston
1970) and for human learning (VanLehn 1998).

whether or not it contains hate speech.

Unfortunately, although helpful in understanding and im-
proving modeling, these strategies look exactly where we
don’t want to look. These strategies explicitly deal with
the “known unknowns.” The model is uncertain about these
examples—we “know” that we don’t know the answer for
them (i.e., we have low confidence in the model’s output).
These strategies explicitly eschew, or in some cases proba-
bilistically downweight, the cases that we are certain about,
thereby reducing the chance that we are going to find the
unknown unknowns.

With that substantial preamble, we can now state suc-
cinctly the goal and contributions of this paper. We introduce
a technique and system to use human workers to help find
the unknown unknowns. Our BeatTheMachine (BTM) sys-
tem combines a game-like setup with incentives designed to
elicit cases where the model is confident and wrong. Specif-
ically, BTM rewards workers that discover cases that cause
the system to fail. The reward increases with the magni-
tude of the failure. This setting makes the system to behave
like a game, encouraging steady, accurate participation in
the tasks. We describe our first experiences by the live de-
ployment of this system, in a setting for identifying web
pages with offensive content on the Internet. We show that
this BTM setting discovers cases that are inherently different
than the errors identified by a random sampling process. In
fact, the two types of errors are very different. The BTM pro-
cess identifies “big misses” and potential catastrophic fail-
ures, while traditional model-based example selection iden-
tifies “near misses” that are more appropriate for fine-tuning
the system. The evidence shows that BTM does not just find
individual “oddball” outlier cases, but it finds systematic big
errors. In a sense, the BTM process indeed gives us the op-
portunity to learn our “unknown unknowns” and warn us
about the failures that our current automatic model cannot
(yet) identify by itself.

The Design of “Beat the Machine”

Assessing and improving the quality of an automatic clas-
sification system is challenging in environments with the
characteristics listed above. Traditionally, we would sample
from the output decisions and employ humans to verify the
correctness of the classifications. Using these judgments we
can estimate the error rate. Unfortunately, given our prob-
lem characteristics, this process can be woefully inefficient.
First, if the classification decisions are relatively accurate,
then most of the results will be accurate, and without in-
telligent sampling, humans will encounter errors very infre-
quently. Second, if there is class imbalance, ceteris paribus,
most of the encountered errors would be misclassifications
of examples of the majority class into the minority. If both
of these conditions hold, then it becomes quite difficult to
identify misclassifications of the minority class.

Example 1 Consider the case of identifying pages with hate
speech content. In reality, less than 0.1% of the pages on the
Internet contain such content. If we have a relatively accu-
rate classifier, with 95% error rate on each class, it becomes
very difficult to identify misclassified pages that contain hate
speech. In a random sample, most of the pages are correctly



classified as benign. To find one “false negative” (the severe
error: hate speech passing as benign) we will have to inspect
approximately 20,000 pages (and in the process would find
around 1,000 false positives). [

It is tempting to consider such problems inconsequential.
However, when such a system is used to filter billions of
pages, such “relatively infrequent” errors become frequent
in absolute numbers. Furthermore, even isolated, “outlier”
cases can cause significant damage, for example, to the pub-
lic image of a company that accidentally supports a site con-
taining such content through advertising.

Instead of passively waiting for such errors to “emerge”
we can instead actively seek to find them. In a sense, this is
similar to “white hat” hackers that are hired by companies
to find vulnerabilities and break into their own security sys-
tems. In our case, human workers are asked to submit pages
that will “beat” our classifier.

The selective acquisition of example labels with the in-
tent of building robust performance estimators at minimal
cost is a topic getting recent attention in the research lit-
erature (Sawade, Christoph, Bickel, Steffen, and Scheffer,
Tobias 2010; Bennett and Carvalho 2010). However, while
promising and potentially useful in practice, such acquisi-
tion strategies are focused on minimizing the cost required
to compute a robust estimator for precision or total loss. In
order to construct such an estimator, existing selective ac-
quisition strategies sample from the problem space in accor-
dance to some function of the output score of the model be-
ing considered. However, given a capable model deployed in
a production system, it may take millions of samples from
high-confidence positive predictions to reveal a single ex-
ample that “beats the machine.” Incorporating performance
bounds such as those presented in the referenced research
with our proposed selection strategy is an interesting direc-
tion for future work.

Task Design Iterations

For the purpose of this workshop, let’s now walk through
several design interations, focusing on the ideas, challenges,
and subsequent redesigns.

Initial design: The initial idea was straightforward: Ask
humans to find cases that “beat the machine”—the users
would submit URLSs that they believed would be incorrectly
classified by the current classification model. To spur en-
gagement, a user would receive a nominal payment for just
submitting the URLSs, and then she would receive a signif-
icant bonus payment for every URL that was misclassified.
(In the implementation, the nominal payment was 1 cent per
5 URLs, and the payment per misclassified URL was a max-
imum of 50 cents.) To judge the misclassification, we asked
other (trusted) humans to classify these URLs, and then to
determine whether the URL beat the machine, we compared
the outcome of the trusted human classification with the out-
come of the machine model. To avoid certain issues of gam-
ing, the BTM workers were recruited through Amazon Me-
chanical Turk, and the trusted human judges were recruited
and trained through oDesk for the fully automated system,
and were student interns using a separate system for the ex-

Beat the Machine

Identify pages that contain hate speech
on the web

Submit 1 urls:

Remeber 5000 bonus points = 15,

You can get maximum of 1000 bonus points afer validation.

Figure 1: A screen-shot of the BTM interface on Mechanical
Turk.

perimental evaluation below.) Unfortunately, this simple de-
sign was not as effective as we would have liked, for a vari-
ety of reasons.

The first, and most obvious, problem that we encountered
was the lack of interactivity. The workers could easily sub-
mit URLs that would break the model, but then they had to
wait for other humans to inspect the results, in order to assess
whether they had succeeded. This process would take from a
few minutes to a few hours. The delay made the task opaque
to the players of the BTM game, as they did not know if they
were “playing the game” well or not.

Adding immediate classification feedback: To resolve
(partially) the lack of interactivity, we augmented the system
to classify URLs on the fly, and give immediate feedback
to the humans about the classifier outcome. (For example
“The machine believes that this URL contains hate speech.
Do you believe that this is correct?””) The BTM player could
then decide whether the URL was indeed a misclassification
case and submit it for further consideration. Upon submis-
sion, the user received provisional bonus points that corre-
spond to a cash reward. The bonus points became permanent
and the worker was paid immediately after inspection and
verification of the submitted content by the human judges.

Unfortunately, this design did not provide the proper in-
centives. Players found it much easier to locate pages from
the majority class (e.g., pages without any hate speech con-
tent) that would be misclassified as containing hate speech.
So, instead of locating the desired, severe infrequent errors,
we received the type of errors that we could find more eas-
ily by observing the positive classifications. (Recall that due
to the class imbalance, most of the observed errors would
be good pages being classified as containing hate speech.)
As described above, we are particularly interested in finding
pages that contain hate speech but are incorrectly classified
as benign. (And especially, among these, the “unknown un-
knowns.”) Furthermore, we experienced a significant num-
ber of cheating attempts where users were submitting ran-
dom URLSs and always insisting that the content is different
than the classification decisions, even though the classifier
was correct.

Segmenting the task by class: To deal with these prob-
lems, we split the task into two subtasks: (1) Seek pages in
the minority class that are misclassified in the majority class
(i.e., pages that contain offensive content but are classified as
benign), and (2) seek pages with benign content that would



be classified as offensive. This segmentation simplified the
overall design and made the task easier for participants to
understand. Moreover, it allowed us to quickly reject sub-
missions that were of no interest. For example, if we are
asking for misclassified hate speech pages, we can quickly
reject pages that our classifier unambiguously classifies as
hate speech. (In the original design, users had the incentive
to mark these as “non-hate-speech” hoping that the human
judge would accept their judgments.) Figure 1 shows the
(simple) task interface.

Expanding the incentives: In the final design (for this
paper) we also improved the incentive structure by reward-
ing differently users that discover “big mistakes” (the “un-
known unknowns”) and those that discover the “small mis-
takes” (the “known unknowns”). Instead of giving a constant
bonus to the player for a misclassified URL, we reward mis-
classifications proportionally to the confidence of the classi-
fier. If the model is not very confident of its classification of
a submitted URL, the reward is small. This was a known
unknown. On the other hand, if the model is very confi-
dent in its decision (i.e., a classification confidence close to
100%), but the decision is incorrect, then the BTM system
gives the highest possible bonus to the worker.” If the confi-
dence was lower, say 75%, then the reward was proportion-
ally smaller. We also reward players that provide examples
for which the model was correct but uncertain: if the model
predicted that the page is 60% likely to contain hate speech,
and the page indeed contained hate speech, the user received
a small bonus.

Experimental Studies

To provide a first experimental evaluation of BTM, we asked
two questions:

e Does BTM identify errors efficiently?
e Can we use the discovered errors to improve the models?

For our experiments, we used the BTM system to chal-
lenge two classification systems. One for detecting pages
with hate speech, and one for detecting pages with adult
content. We ran the systems with the configuration details
described in the previous section (1 cent for the base task,
50 cents maximum payment for a URL that generates an er-
ror).

Comparison with stratified random testing: For the
two systems, we compared BTM with the usual quality as-
surance process of examining the output of the classifier to
identify errors. Examining a uniform random sample of the
output is particularly uninformative, as the classifiers are
quite accurate and the distributions are quite unbalanced,
and so the vast majority of cases are correctly classified and
not objectionable. Therefore, standard procedure is to exam-
ine a random sample, stratified by the model’s confidence
score. Specifically, the range of confidence scores [0,1] was
divided into k equal-width bins. A set of N URLs for testing
was sampled randomly, with & from each bin. This strati-

k
fication is used because it generally finds more errors, be-

*In our particular implementation, the highest bonus is worth
1000 points, or 50 cents.

cause it over-samples the URLs for which the models have
low confidence (and are likely to be wrong). However, the
discovered errors are likely to be “known unknowns.”

For the adult classifier, the human workers identified er-
rors in 16% of the inspected cases (much higher than the
natural error rate of the classifier). In contrast, using BTM,
more than 25% of the submitted cases generated an error (a
56% increase). The corresponding statistics for hate speech
were even better: workers identified errors only in 9% of the
inspections for stratified random sampling, but they identi-
fied errors in 27% of the URLs with BTM. These results
indicate that the BTM process is indeed more efficient than
the standard evaluation procedure in identifying problem-
atic cases. It should be noted that we could increase the “ef-
ficiency” of the non-BTM procedure by simply sampling
more from the low-confidence cases. However, this would
directly reduce the number of “unknown unknowns” discov-
ered. At the extreme, the largest number of errors would be
found by sampling only in the low-confidence region. All
the errors found would then be known unknowns. So, let’s
now consider the effect of BTM on the severity of the errors
found.

Comparing the severity of errors: Figure 2(a) and 2(b)
show the distribution of errors for hate speech and adult con-
tent, respectively. A consistent behavior is observed for both
categories: BTM identifies a significantly larger number of
severe misses—the unknown unknowns. Within the errors
identified by BTM, 25% were cases of high severity; the
model was confident that it was making the correct decision
(classifying the content as benign, with 100% confidence),
but in reality the decision was incorrect. So, not only does
BTM identify a larger number problematic cases than the
stratified testing, but also a significant number of these cases
were unknown unknowns: cases that would be missed and
without a very unpleasant event (possibly a catastrophe), we
never would know that we missed them. In contrast, and by
now as expected, most of the identified errors for the strati-
fied random sampling were near misses that occur near the
decision boundary.

Learning from identified errors: The next, natural ques-
tion is whether the identified erroneous decisions could be
used to improve the decision models. This actually is a very
complicated problem, and a thorough treatment is beyond
the scope of this short paper. For example, oversampling
cases where a model makes big mistakes can be catastrophic
for learning (think simply about oversampling outliers in a
linear regression). On the other hand, techniques like boost-
ing (Freund and Schapire 1999) have gotten tremendous ad-
vantage by overweighting cases where the current model is
incorrect.

Nevertheless, we can offer some initial insights. We can
examine whether the cases found by BTM seem to be iso-
lated outliers, or whether they seem to be regularities that
can be modeled. To this end we ran the following exper-
iment: We attempted to learn a model that would classify
positive and negative examples from amongst the BTM-



80.00%

70.00%

60.00%

50.00%

40.00%

HBTM

30.00% M Random

20.00%

Percent of Identified Errors

10.00% -

0.00% -

0-249 250-499 500-749 750-1000

Magnitude of Identified Classification Error
(0: no error, 1000: maximum)

(a) Hate Speech

80.00%

70.00%

60.00%

50.00%

40.00%

HBTM

10,
30.00% B Random

Percentof Identified Errors

20.00%

10.00% -

0.00% -

0-249 250-499 500-749 750-1000
Magnitude of Identified Classification Error
(0: no error, 1000: maximum)

(b) Adult Content

Figure 2: Distributions of the magnitude of the identified
errors by BTM and by random sampling for two ad safety
tasks

identified cases.? Internal consistency in the identified errors
would suggest that these cases are not outliers, but rather
constitute parts of the space where the model fails systemat-
ically (potentially without being aware of the failures).
Figure 3 shows the results of this process. The “btm only”
line shows the quality of the model built and tested using
the error cases identified by the BTM process. The ““student
only” line shows the quality of the model built and tested
using examples gathered through stratified random sam-
pling (the pages selected through random sampling were in-
spected by students, hence the name). Both the btm-only and
student-only lines show quality measurements computed via
cross-validation. The results show that the quality of the
models is fairly high, illustrating that there is consistency
and internal coherence in these sets pages. The fact that the
BTM model can reach high levels of accuracy indicates that

3That is, false negatives and false positives from model being
considered, respectively

1 T T T T

student only
- == blmanly
PPt bim on student
0ot o H
. student on bim
ke
Is
osfb 7 ]
I
!
St J
<L
0.6 H 4
0.5 -
04 I L L L I I L
0 =0 100 150 200 250 300 350 400

instances selected

Figure 3: Learning curves generated by the models using
cross-validation (BTM and student lines), and then use as
test case for BTM the errors identified by random sampling
(BTM on students), and vice versa (students on BTM).

BTM indeed identifies systematic errors, and not just dis-
parate outliers. The comparatively lower quality of the ran-
dom sampling model also illustrates that these pages are in-
herently more difficult to learn from; this is consistent with
our discussion above that the discovery via stratified random
sampling (DVSRS) focuses on the ambiguous cases (those
that the current model is uncertain about), while BTM dis-
covers incorrectly classified areas of the space that have been
systematically ignored.

We also can examine whether the two approaches
(DVSRS and BTM) identify sets of similar examples, or
whether each of them identifies something completely dif-
ferent. For that, we tested the performance of BTM using
the examples from DVSRS (“student”) and vice versa. The
results indicate that there is little cross-consistency between
the models. What we discover using BTM has little effec-
tiveness on the error cases identified through DVSRS, and
vice versa. This finding indicates that BTM reveals errors in
parts of the space unexplored by DVSRS.

BTM and DVSRS seem to be different processes, capable
of identifying different types of errors. Each of these has
its place in the evaluation and improvement of automatic
models. DVSRS identifies cases where the model already
knows that it is not confident. The BTM process, through
its game-like structure and probing nature, encourages the
discovery of unknown problems in the model. The fact that
humans can easily find challenging cases for the automatic
models, when being themselves confronted with this chal-
lenge, also indicates that human expertise and curiosity can
improve even very accurate automatic models.

Current and Future Research

We discussed and explored the design of the Beat the Ma-
chine process for directly integrating humans into testing au-
tomatic decision models for vulnerabilities. Our results sug-



gest that BTM is especially good in identifying cases where
the model fails, while being confident that it is correct. It is
naturally interesting to examine how to best use knowledge
of such vulnerabilities to improve the automatic decisions
models.

Vulnerability testing is common in areas of computer se-
curity, where “white hat” hackers with the appropriate ex-
pertise try to expose vulnerabilities in the security infras-
tructure of a firm. In our setting, we see that even lay users
can easily find unknown holes in automatic decision models
that test very well in “standard” tests, and show high clas-
sification performance when measured with the traditional,
usual metrics (accuracy, AUC, etc). Thus, builders of auto-
matic decision models should take extra care when using
these traditional metrics for evaluations.

In our live deployment, untrained humans, with the ap-
propriate incentives, were able to “beat the machine” seem-
ingly easily, and discover a large number of vulnerabili-
ties. This is, of course, useful by itself: the “unknown un-
knowns” become “known unknowns” and we can prepare
to deal with these cases. But the key question for future re-
search is also: how can we best incorporate such knowledge
so that both “unknown unknowns” and “known unknowns”
become “known knowns.”

Acknowledgements

The authors thank George A. Kellner and NEC for faculty
fellowships, and AdSafe Media for expertise, support, and
data. The models used in this paper are not necessarily mod-
els used in production by any company. This work was par-
tially supported by the National Science Foundation under
Grant No. IIS0643846.

References

Bennett, P. N., and Carvalho, V. R. 2010. Online stratified
sampling: evaluating classifiers at web-scale. In CIKM’10.
Freund, Y., and Schapire, R. E. 1999. A short introduction
to boosting.

Raykar, V.; Yu, S.; Zhao, L.; Jerebko, A.; Florin, C.; Valadez,
G.; Bogoni, L.; and Moy, L. 2009. Supervised Learning
from Multiple Experts: Whom to trust when everyone lies a
bit. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, 889—-896. ACM.

Sawade, Christoph; Bickel, Steffen; and Scheffer, Tobias.
2010. Active Risk Estimation. In /CML.

Settles, B. 2010. Active learning literature survey.

Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In KDD ’08.

VanLehn, K. 1998. Analogy events: How examples are used
during problem solving. Cognitive Science 22(3):347-388.
Winston, P. 1970. Learning structural descriptions from
examples.



