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ABSTRACT
Many text databases on the web are “hidden” behind search
interfaces, and their documents are only accessible through
querying. Search engines typically ignore the contents of
such search-only databases. Recently, Yahoo-like directories
have started to manually organize these databases into cate-
gories that users can browse to find these valuable resources.
We propose a novel strategy to automate the classification of
search-only text databases. Our technique starts by training
a rule-based document classifier, and then uses the classi-
fier’s rules to generate probing queries. The queries are sent
to the text databases, which are then classified based on the
number of matches that they produce for each query. We
report some initial exploratory experiments that show that
our approach is promising to automatically characterize the
contents of text databases accessible on the web.

1. INTRODUCTION
Text databases abound on the Internet. Sometimes users
can browse through their documents by following hyperlinks.
In many other cases, text databases are “hidden” behind
search interfaces, and their documents are only available
through querying. For those databases, web search engines
cannot crawl inside, and they just index the “front pages”,
ignoring the contents of possibly rich sources of informa-
tion. One example of such a search-only text database is
the archive of a newspaper. Many newspapers do not of-
fer a browsing interface for past issues, but they do offer
search capabilities to retrieve old articles. This is the case,
for example, for The New York Times newspaper.

One way of facilitating the access to this kind of searchable
databases is to build metasearchers. A metasearcher sends
user queries to many search engines, retrieves and merges
the results and then returns the combined results back to
the user (see [6, 12, 17, 16, 5, 11]). Alternatively, users can
browse Yahoo-like directories to locate databases of interest
and then submit queries to these databases. Some sites have
started in the last few years to provide such services. For ex-
ample, InvisibleWeb1 and SearchEngine Guide2 classify var-
ious search engines into a hierarchical classification scheme.
A user can then locate relevant text databases and submit
queries only to them to obtain more accurate and focused
results than when searching a more general text database.

1http://www.invisibleweb.com/
2http://www.searchengineguide.com/

Other services (e.g., Copernic3) combine the metasearching
approach with “browsing.” Users can select a specific cate-
gory (e.g., Recipes, Newspapers, etc.) and the metasearcher
then sends the user queries to the searchable databases pre-
viously classified in the given category.

Unfortunately, existing approaches for text database classi-
fication involve manual intervention of a human expert and
do not scale. In this paper we will describe a way of au-
tomating this classification process by issuing query probes
to the text databases. More specifically, in Section 2 we
define what it means to classify a text database. Then, in
Section 3 we focus on the design of our query probing clas-
sification strategy. Finally, in Section 4 we present some
initial experiments over web databases.

Related Work
Query probing has been used in [15] for automatic extrac-
tion of information from web-based databases. Manually
constructed query probes have been used in [4] for the clas-
sification of text databases. Query probes were used in [7]
to rank databases by similarity to a given query. This algo-
rithm assumes that the query interface can handle differently
normal queries and query probes. Reference [1] probes text
databases with queries to determine an approximation of
their vocabulary and associated statistics. This technique
requires retrieving the documents in the query results for
further analysis. Finally, guided query probing has been
used in [13] to determine sources of heterogeneity in the
algorithms used to index and search locally at each text
database.

2. TEXT­DATABASE CLASSIFICATION
In this section we will describe two basic approaches for clas-
sifying text databases. One approach classifies a database
into one category when the database contains a substantial
number of documents in this category. The other approach
classifies a database into one category when the majority of
its documents are in this category.

Example 1. Consider two databases D1, D2 with 1,000
and 10,000,000 documents, respectively, and a topic category
“Health.” Suppose that D1 contains 900 documents about
health while D2 contains 200,000 such documents. Our deci-
sion whether to classify D1 and D2 in the “Health” category

3http://www.copernic.com/



will ultimately depend on how users will take advantage of
our classification and the databases. Some users might pre-
fer a “focus-oriented” classification (i.e., might be looking
for text databases having mostly documents about health and
little else). Such users might not want to process documents
outside of their topic of interest, and might then prefer that
database D1 be classified in the “Health” category (90% of its
documents are on health). In contrast, D2 should not be clas-
sified in that category. Although D2 has a large number of
document on health, these documents represent only a small
fraction of the database (i.e., 2%). Hence, it is likely that our
“focus-oriented” users would be exposed to non-health docu-
ments while exploring D2. Alternatively, other users might
be looking for text databases having a sufficiently large num-
ber of documents on health. It might be unimportant for such
users what else is at each database. These users might then
prefer D2 to be classified in the “Health” category because
of its large number of documents on health (i.e., 200,000).
D1 (with 900 documents on health) might or might not be
classified in that category, depending on what we consider a
“sufficiently large” number of documents.

Consider a set of categories C1, . . . , Ck and a text database
D that we want to classify in one or more of these categories.
Each of D’s documents has been classified in one of the
categories C1, . . . , Ck that we use to classify D. Given this
classification of the documents in D we can compute a vector
C = (n1, . . . , nk), which indicates the number of documents
ni in category Ci, for i = 1, . . . , k. Vector C is a good
summary of the contents of database D and we will use it to
classify the database, as we describe next. As illustrated in
Example 1 above, to categorize databases we need to capture
how “focused” D is and how many documents it contains
for a given category. For this we define the following two
metrics.

Definition 1. Consider a text database D and a category
Ci. Then the coverage of D for Ci is the number of docu-
ments in D in category Ci. The specificity of D on Ci is the
fraction of documents in D in category Ci:

Coverage(D, Ci) = ni

Specificity(D, Ci) =
ni

|D|

Specificity defines how “focused” a database is on a given
category. One problem with the definition above is that we
do not always know the number of documents in a database.
We will discuss how we can approximate this value in Sec-
tion 3. Coverage defines the “absolute” amount of infor-
mation that a database contains about a specific category.
An alternative definition for coverage could divide ni by the
total number of documents in all databases. This would cap-
ture what fraction of the existing documents in category Ci

are present in a given database. Although this definition is
interesting, it has the undesirable property of depending on
a universe of known databases. On the Internet, databases
come and go constantly so this definition would make the re-
sulting classification scheme that we describe quite unstable.

Moreover, since the Coverage value would have the same
normalizing constant for all databases, excluding this factor
will have no bearing on the relative ranking of databases by
their coverage of a certain topic.

Using the definitions above, each database D has a speci-
ficity and a coverage value for each category. We can use
these values to decide how to classify D into one or more
of the categories. As described above, we could classify a
database into one category when the majority of the docu-
ments it contains are of a specific category. Our classification
could alternatively be based on the number of documents of
a specific category that a database contains.

Definition 2. Consider a database D and a category Ci

and let τs, τc ≥ 0 to be two pre-specified thresholds. Then
D is in category Ci according to a “coverage-oriented” clas-
sification if Coverage(D, Ci) ≥ τc. Similarly, D is in cate-
gory Ci according to a “specificity-oriented” classification if
Specificity(D, Ci) ≥ τs.

Example 1. (cont.) Consider the two databases D1, D2

described above, and the category “Health.” Using Defini-
tion 2, Coverage(D1,“Health”) = 900, since D1 has 900
documents on health. Similarly, Coverage(D2,“Health”) =
200, 000. If threshold τc for our “coverage-oriented” classi-
fication is set to, say, 10,000, then D2 will be classified in
category “Health” while D1 will not, since it does not have
a sufficiently large number of documents in this category.
Analogously, Specificity(D1,“Health”) = 900

1000 = 0.9 while
Specificity(D2,“Health”) = 200,000

10,000,000 = 0.02. If threshold τs

for our “specificity-oriented” classification is set to, say, 0.3
then D1 will be classified in category “Health” while D2 will
not, since it is not sufficiently focused on health and holds
too many documents in other categories.

The two alternative database classification schemes above
assume that we somehow know the number of documents
that each database has in each category, which is clearly
unrealistic in most Internet settings. In effect, as discussed
in the Introduction, many times we do not have access to
a database’s contents other than through a query interface.
In the next section we introduce techniques for approximat-
ing the classification of text databases in this limited-access
scenario.

3. CLASSIFYING DATABASES THROUGH
PROBING

The previous section described how to classify a database
given the number of documents it contains in each of our
categories. Unfortunately, text databases do not export such
metadata. In this section we introduce a technique to clas-
sify text databases in the absence of any information about
their contents. Our technique starts by training a rule-based
document classifier over our categories (Section 3.1) and then
uses the classifier’s rules to design a set of probing queries
(Section 3.2). The database will be classified based on the
number of matches returned for each of these queries, with-
out accessing the documents per se (Section 3.3).



3.1 Training a Document Classifier
Our technique for classifying databases over a set of cate-
gories C1, . . . , Ck starts by training a rule-based document
classifier over those categories. We use RIPPER, an off-
the-shelf tool developed at AT&T Research Laboratories[2,
3]. Given a set of training, pre-classified documents, this
tool returns a classifier that might consist of rules like the
following:

Computers IF mac
Computers IF graphics windows
Religion IF god christian
Hobbies IF baseball

The first rule indicates that if a document contains the term
mac it should be classified in the “Computers” category. A
document should also be classified into that category if it has
the words graphics and windows. Similarly, if a document
has the words god and christian, it is a “Religion” docu-
ment, whereas if it has the word baseball, it is a “Hobbies”
document.

Once we have trained a document classifier using a tool like
RIPPER, we could apply it to every document in a database
D that we want to classify. This procedure would produce
a close approximation to the C = (n1, . . . , nk) vector of
category frequencies for D (Section 2), which we could use
to classify D according to Definition 2. Unfortunately, we
often do not have access to all the documents in a database,
other than indirectly through a query interface, as discussed
above. Next, we define a query probing strategy to deal with
such databases.

3.2 Probing a Database
Our goal is to create a set of queries for each category that
will retrieve exactly the documents for that category from
the database we are classifying. We will construct these
queries based on the document classifier discussed above.
To create our queries, we turn each rule into a query. The
number of matches for each query will be the number of doc-
uments in the database that satisfy the corresponding rule.
These numbers will then be used to approximate the distri-
bution of documents in categories within a text database,
as the following example illustrates.

Example 2. Consider a database D with 500 documents,
all about “Computers,” and suppose that our categories of
interest are “Computers,” “Hobbies,” and “Religion.” Then
D has associated with it a vector C = (500, 0, 0) (Section 2),
showing the distribution of documents over these three cate-
gories. Suppose also that we have trained a rule-based docu-
ment classifier and obtained the four rules shown above for
the three categories. If we do not have access to all the doc-
uments of D, we can still characterize its contents by issu-
ing probing queries constructed from the document classifier
as discussed above. Our first probe will be the query mac.
The database will return a result of the form “92 documents
found.” We send a second query graphics AND windows.
Again, we get a result like “288 documents found.” Queries
god AND christian and baseball return 0 and 2 matches

respectively. From these results we conclude that D has
288+92=380 “Computers” documents, 0 “Religion” docu-
ments, and 2 “Hobbies” documents. Thus we approximate
the ideal vector C, with C′ = (380, 0, 2).

RIPPER can produce either an ordered set of rules or an
unordered set of rules. When the rules are ordered, the
first rule that is satisfied by a document fires and gives
a classification for that document. No subsequent rules
are matched against that document. We should formu-
late our queries properly in order to simulate the actions
of the classifier as much as possible. For example, if the
rules above were ordered rules, our second probing query
would have been graphics AND windows AND NOT mac, to
avoid retrieving any documents that would match the first,
earlier rule.

If the query interface of a database does not support the
kind of queries described above, we break these queries into
smaller pieces that we can send separately. A detailed de-
scription of this technique is beyond the scope of this paper.
For completeness, we mention that we submit the probing
queries in such a way that we can use the inclusion-exclusion
principle to calculate the number of results that would have
been returned for the original queries.

A significant advantage of our probing approach is that we
do not need to retrieve documents to analyze the contents
of a database [1]. Instead, we count only the number of
matches for these queries. Thus, in our approach we only
require a database to report the number of matches for a
given query. It is common for a database to return some-
thing like “X documents found” before returning the actual
results.

3.3 Using Probing Results for Classification
After the probing phase, we have calculated an approxima-
tion of the coverage of a database for our categories. To
calculate the specificity values, we would need the size of
the database |D|, and we approximate it by |D| '

Pk
i=1 ni.

This means that we will use only the documents that are
classified into the given categories to calculate the size of the
database. This approximation, especially for a small number
of queries, is not close to the real size of the database, but it
is sufficient for our purposes. Our estimates will be accurate
as long as the fraction of matches for a category, as deter-
mined by the query probes, is representative of the actual
fraction of documents in that category in the database. Un-
fortunately, this approach can give poor results when there
are many documents that do not belong to any of the given
categories. In such a case, it is also difficult to categorize
this text database into the given classification scheme, since
no category will accurately reflect the database contents.

An extra step that we applied to our method to improve
the results is the following. For each of the rules, we know
its accuracy from the training phase of the classifier. For
example, the rule Computers IF mac may have correctly
classified 90 documents and incorrectly classified 10 other
documents during the training phase, resulting in an accu-
racy of 0.9. We adjust our results from the probing phase
by multiplying the number of documents matched by each



rule by the accuracy of that rule. Also, for the set of rules
that classified documents into one category, we know their
“recall,” i.e., how many documents they recalled over all
the documents in this category. For example if category
Computers in the training phase had 150 documents and
the rules retrieved 100, then recall is 0.67. This means that
only this portion of all the documents of this category were
retrieved. To adjust our results further, we divide each ele-
ment of the C′ approximation vector with the recall for this
category. This regularization of the values ni helps account
for the fact that rules generally do not (and need not) have
perfect recall on real document databases.

4. INITIAL EXPERIMENTS
Using RIPPER, we created a classifier using a collection
of 20,000 newsgroup articles from the UCI KDD archive4.
This collection has been used in previous text categorization
experiments [8, 14], and is composed of 1,000 newsgroup
articles from each of 20 newsgroups. We further grouped
the articles into five large sets according to their originating
newsgroups: Computers (comp.*), Science (sci.*), Hobbies
(rec.*), Society (alt.atheism, talk.*, soc.*) and Misc
(misc.sale). We have removed all the headers (except for
the “Subject:” line), the e-mail addresses from the body
of the articles and all punctuation. Subsequently, we elimi-
nated all words that appeared in fewer than three documents
in the collection and the 100 most frequent words. Such fea-
ture reduction is in accordance with Zipf’s Law [18], which
shows that there are many infrequently used words in doc-
ument collections. For purposes of classification, however,
such infrequent terms generally provide little discriminating
power between classes (due to their rarity), and can thus
be safely eliminated with little, if any, reduction in subse-
quent classification accuracy. Similarly, very frequent words,
that often tend to appear in virtually all articles, will also
provide little ability to make classification distinctions, and
can likewise be eliminated. After this step we applied an
information theoretic feature selection algorithm [9, 10] to
reduce the terms from about 40,000 to 5,000. This algo-
rithm eliminates features that have the least impact on the
class distribution of documents (as measured by the rela-
tive entropy of the distribution of the document class labels
conditioned on the appearance of a given feature). Features
that have little impact on the class distribution are likely
to also have little discriminating power between classes, and
can thus be eliminated without much adverse impact on the
final classification accuracy. For the training set we used
a random sample of 10,000 documents and the remaining
10,000 documents were used for testing.

The initial document classifier generated by RIPPER con-
sisted of 534 ordered rules. Many of the rules were covering
very few (one or two) examples from the training set. These
rules did not contribute much to the overall accuracy of the
document classifier, and would result in too many probing
queries during the classification stage. Thus, we decided to
restrict the classifier to produce only rules that covered at
least 50 examples from the training set. This resulted in a
classifier with 29 ordered rules that included a total of 32
words. We also tried to produce a rule set that would include
rules with negations (NOT clauses). The resulting classifier

4http://kdd.ics.uci.edu/

had 31 rules with much better accuracy, but, in this case, a
total of 92 words were used to form the rules. The queries
for this classifier were much longer and we opted to use the
simpler classifier (that had only 29 rules and 32 words) for
the sake of query efficiency. The rules given in Section 3.1
are, in fact, examples of rules used by this classifier.

After constructing the classifier, we selected four sites from
InvisibleWeb5 to test our method. These four sites are topi-
cally cohesive, and should be classified in the same category
by both the specificity- and the coverage- oriented classifi-
cation alternatives of Definition 2:

• Cora6: A repository of technical papers about Com-
puter Science. This database should be classified un-
der the category “Computers.”

• American Scientist7: An on-line version of a magazine
on science and technology. This repository should be
classified under the category “Science.”

• AllOutdoors8: A site with articles about fishing, hunt-
ing, and other outdoor activities. This site should be
classified under the category “Hobbies.”

• ReligionToday9: A site with news and discussion about
religion. This site should be classified under the cate-
gory “Society.”

We probed these sites using the techniques described in Sec-
tion 3.2. One problem that arose during the probing phase
was a limitation on the length of the queries that we could
submit to the “American Scientist” site. We truncated the
long queries by eliminating terms that did not cover any
documents (e.g., instead of issuing a query baseball AND
NOT god, if the query god returned 0 results, we issue only
the query baseball).

The results of our probing phase can be seen in Figure 1.
Consider, for example, the results for Cora. After submit-
ting the queries for the class Computer, the database re-
ported 1450 matches for all the queries. For classes Science,
Hobbies, Society, and Misc, it reported 151, 95, 215, and
45 matches respectively. Using these coverage values we es-
timated specificity as in Section 2. The specificity values
are depicted using the bars, and it can be clearly seen that
the results indicate that Cora is a site that is “focused” on
Computers. Similarly for the other sites, we probed them
using the same rules. The results clearly indicate the focus
of each site. For example, if we had a threshold value for
specificity of τs = 0.6, then each site would be classified cor-
rectly. Moreover, to measure the significance of our results,
we performed a Chi-squared test comparing the distribution
of the classes for each database given by the probes to the
uniform distribution. This test gives us a measure for how
likely the skew in the class distribution (toward the correct

5http://www.invisibleweb.com/
6http://www.cora.jprc.com/
7http://www.amsci.org/
8http://www.alloutdoors.com/
9http://www.religiontoday.com/
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Figure 1: Specificity and coverage values for four web-accessible databases.

class) is likely to have been gotten by chance. The Chi-
square test reveals that the skews in the class distributions
for each database are significant at the 99.9% level. Thus,
it appears that, in every case, the probes generated by the
RIPPER rules have accurately captured the concept repre-
sented by each class of documents.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a method that uses probing
queries produced by a classifier to classify a text database.
We have also shown some promising initial experiments.
The method managed to identify the right category for each
database, using only the number of matches for a small set
of queries and without retrieving any documents. Our tech-
nique could also be used to characterize web sites that offer
a browsable interface as well. The only requirement is the
existence of a search interface for the local contents, which
many sites offer. By using only a small set of probe queries,
we can get a coarse idea about the contents of a web site.

Our future work includes the expansion of our strategy into
a hierarchical classification scheme. We believe that hierar-
chical organization of the categories will allow our scheme to
handle a large number of categories. A fundamental ques-
tion that we will also study is how to find training sets that
would be representative of the kinds of data sets available on
the web. Our technique relies on good document classifiers,
so having appropriate training sets is a crucial issue. We will
explore the efficiency of our algorithm for various indexing
environments and for search interfaces that support different
sets of boolean operators. We also plan to compare our ap-
proach against an adaptation, for the database classification
problem, of the technique in [1]. Finally, we will expand our
adjustment technique (that currently uses only the precision
of each rule and the recall for each category) to use the full
set of statistics (i.e., confusion matrices) from the document
classifier. This could produce better approximations of the
contents of the search-only text databases.
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