
1

Facilitating Document Annotation
using Content and Querying Value

Eduardo J. Ruiz #1, Vagelis Hristidis #2, Panagiotis G. Ipeirotis ∗3

#Department of Computer Science & Engineering
University of California at Riverside, USA

1
eruiz009@cs.ucr.edu
2
vagelis@cs.ucr.edu

∗Leonard N. Stern School of Business
New York University, USA

3
panos@stern.nyu.edu

✦

Abstract—A large number of organizations today generate and

share textual descriptions of their products, services, and actions.

Such collections of textual data contain significant amount of struc-

tured information, which remains buried in the unstructured text.

While information extraction algorithms facilitate the extraction of

structured relations, they are often expensive and inaccurate, es-

pecially when operating on top of text that does not contain any

instances of the targeted structured information. We present a novel

alternative approach that facilitates the generation of the structured

metadata by identifying documents that are likely to contain informa-

tion of interest and this information is going to be subsequently useful

for querying the database. Our approach relies on the idea that hu-

mans are more likely to add the necessary metadata during creation

time, if prompted by the interface; or that it is much easier for humans

(and/or algorithms) to identify the metadata when such information

actually exists in the document, instead of naively prompting users to

fill in forms with information that is not available in the document. As

a major contribution of this paper, we present algorithms that identify

structured attributes that are likely to appear within the document,

by jointly utilizing the content of the text and the query workload. Our

experimental evaluation shows that our approach generates superior

results compared to approaches that rely only on the textual content

or only on the query workload, to identify attributes of interest.

1 INTRODUCTION

There are many application domains where users create and

share information; for instance, news blogs, scientific net-

works, social networking groups, or disaster management

networks. Current information sharing tools, like content

management software (e.g., Microsoft SharePoint), allow

users to share documents and annotate (tag) them in an

ad-hoc way. Similarly, Google Base [1] allows users to

define attributes for their objects or choose from predefined

templates. This annotation process can facilitate subsequent

information discovery. Many annotation systems allow only

“untyped” keyword annotation: for instance, a user may

annotate a weather report using a tag such as “Storm

Category 3”.

Annotation strategies that use attribute-value pairs are

generally more expressive, as they can contain more in-

formation than untyped approaches. In such settings, the

above information can be entered as (StormCategory , 3).
A recent line of work towards using more expressive queries

that leverage such annotations, is the “pay- as-you-go”

querying strategy in Dataspaces [2]: In Dataspaces, users

provide data integration hints at query time. The assumption

in such systems is that the data sources already contain

structured information and the problem is to match the

query attributes with the source attributes.

Many systems, though, do not even have the basic

“attribute-value” annotation that would make a “pay-as-you-

go” querying feasible. Annotations that use “attribute-value”

pairs require users to be more principled in their annotation

efforts. Users should know the underlying schema and

field types to use; they should also know when to use

each of these fields. With schemas that often have tens or

even hundreds of available fields to fill, this task becomes

complicated and cumbersome. This results in data entry

users ignoring such annotation capabilities. Even if the

system allows users to arbitrarily annotate the data with

such attribute-value pairs, the users are often unwilling to

perform this task: The task not only requires considerable

effort but it also has unclear usefulness for subsequent

searches in the future: who is going to use an arbitrary,

undefined in a common schema, attribute type for future

searches? But even when using a predetermined schema,

when there are tens of potential fields that can be used,

which of these fields are going to be useful for searching

the database in the future?

Such difficulties results in very basic annotations, if any

at all, that are often limited to simple keywords. Such

simple annotations make the analysis and querying of the

data cumbersome. Users are often limited to plain keyword

searches, or have access to very basic annotation fields,

such as “creation date” and “owner of document.”

In this paper, we propose CADS (Collaborative Adaptive

Data Sharing platform), which is an “annotate-as-you-

create” infrastructure that facilitates fielded data annotation.

A key contribution of our system is the direct use of the

2

query workload to direct the annotation process, in addition

to examining the content of the document. In other words,

we are trying to prioritize the annotation of documents

towards generating attribute values for attributes that are

often used by querying users.

Example 1: Our motivating scenario is a disaster man-

agement situation, inspired by the experience in building a

Business Continuity Information Network [3] for disaster

situations in South Florida. During disasters, we have

many users and organizations publishing and consuming

information. For example, in a hurricane situation, local

government agencies report shelter locations, damages in

structures, or structural warnings. Meteorological Agencies

report the status of the hurricane, its position and particular

warnings. Business owners describe the status and needs of

their stores and personnel. Volunteers share their activities

and look for critical needs. The information produced and

consumed in this domain is dynamic and unpredictable, and

agencies have their own protocols and formats of shar-

ing data, e.g., the Miami-Dade County Emergency Office

publishes hourly document reports. Further, learning the

schema from previous disasters is hard, as new situations,

needs, and requirements arise.

In Figure 1(a) we show a report extracted from the

National Hurricane Center repository, describing the status

of a hurricane event in 2008. The report gives the current

storm location, wind speed, warnings, category, advisory

identifier number, and the date it was disclosed. Even

though this is a text document, it contains implicitly many

attribute names and values, e.g., (StormCategory , 3). If we

had these values properly annotated (e.g., as in Figure 1(b)),

we could improve the quality of searching through the

database. For instance, Figure 1(c) shows three sample

queries for which the report of Figure 1(a) is a good answer

and the lack of the appropriate annotations makes it hard

to retrieve it and rank it properly.

The goal of CADS is to encourage and lower the

cost of creating nicely annotated documents that can be

immediately useful for commonly issued semi-structured

queries such as the ones in Figure 1(c). Our key goal is

to encourage the annotation of the documents at creation

time, while the creator is still in the “document generation”

phase, even though the techniques can also be used for post-

generation document annotation. In our scenario, the author

generates a new document and uploads it to the repository.

After the upload, CADS analyzes the text and creates an

adaptive insertion form. The form contains the best attribute

names given the document text and the information need

(query workload), and the most probable attribute values

given the document text. The author (creator) can inspect

the form, modify the generated metadata as- necessary, and

submit the annotated document for storage.

We should note that inserting fielded metadata is not the

only scenario in which the CADS strategies are applicable.

Consider the case of processing the documents after the hur-

ricane, in order to identify and extract important metadata

from the documents, so that this is information can be used

efficiently in the future (e.g., using a Dataspaces approach).

ZCZC MIATCPAT2 ALL
TTAA00 KNHC DDHHMM
BULLETIN
HURRICANE GUSTAV INTERMEDIATE ADVISORY
NUMBER 31A
NWS TPC/NATIONAL HURRICANE CENTER MIAMI FL
AL072008
600 AM CDT MON SEP 01 2008

EYE OF GUSTAV NEARING THE LOUISIANA
COAST...HURRICANE FORCE WINDS OVER PORTIONS
OF SOUTHEASTERN LOUISIANA... A HURRICANE
WARNING REMAINS IN EFFECT FROM JUST EAST
OF HIGH ISLAND TEXAS EASTWARD TO THE
MISSISSIPPI-ALABAMA BORDER...INCLUDING THE
CITY OF NEW ORLEANS AND LAKE PONTCHARTRAIN.
PREPARATIONS TO PROTECT LIFE AND PROPERTY
SHOULD HAVE BEEN COMPLETED. A TROPICAL
STORM WARNING REMAINS IN EFFECT FROM
EAST OF THE MISSISSIPPI-ALABAMA BORDER TO
THE OCHLOCKONEE RIVER. GUSTAV IS MOVING
TOWARD THE NORTHWEST NEAR 16 MPH...26
KM/HR... ON THE FORECAST TRACK...THE CENTER
WILL CROSS THE LOUISIANA COAST BY MIDDAY
TODAY. MAXIMUM SUSTAINED WINDS ARE NEAR
115 MPH...185 M/HR...WITH HIGHER GUSTS. GUSTAV
IS A CATEGORY THREE HURRICANE ON THE SAFFIR-
SIMPSON SCALE.

(a) Example of an unstructured document

Storm Name = ‘Gustav’
Storm Category = 3
Warnings = ‘tropical storm’

(b) Desirable annotations for the document above

Q1: Storm Name = ‘Gustav’ AND Warnings = ‘flood’
Q2: Storm Name = ‘Gustav’ AND Storm Category > 2
Q3: Document Type = ‘advisory’ AND Location = ‘Louisiana’
AND Date FROM 08/31/2008 TO 09/30/2008

(c) Queries that can benefit from the annotations

Fig. 1. Sample Document and Annotations.

If we use automated information extraction algorithms to

extract targeted relations from the document (e.g., addresses

of evacuated buildings), it is important to process only

documents that actually contain such information: when

we process documents that do not contain the targeted

information and we use automated information extraction

algorithms to extract such fields, we often face a significant

number of false positives, which can lead to significant

quality problems in the data [4]. Similarly, if the docu-

ments are processed by humans (i.e., where there is low

probability of false positives), asking humans to inspect

documents where no relevant information is present is

expensive and counterproductive. For example, if only 1%

of the documents contains information about the address of

evacuated buildings, it is going to be unnecessarily expen-

sive to ask humans to inspect all documents to identify such

information: It is much better to target and process only

promising documents, with high probability of containing

relevant information.

Going back to our disaster management motivating sce-

nario, after the user submits the hurricane advisory doc-

ument of Figure 1(a), CADS analyzes the content and

3

Fig. 2. Adaptive Insertion Form.

finds that the following attributes types are relevant and

present in the document: “Storm Name,” “Storm Category,”

and “Warnings.” Figure 2 presents the adaptive insertion

form for that document. The system adds the suggested

attributes to a set of default attributes like: “Document

Type,” “Date,” and “Location,” which are the basic metadata

that the user always provides, as defined by a domain expert.

This adaptive generation of metadata forms allows for much

more streamlined metadata generation. (Of course, the user

can also add new attributes, which are not suggested by the

adaptive form.) As we are going to see later, our CADS

system prioritizes and suggests first attribute types that

are used frequently by users that issue queries against the

database.

In short the contributions of this paper are:

• We present an adaptive technique for automatically

generating data input forms, for annotating unstruc-

tured textual documents, such that the utilization of the

inserted data is maximized, given the user information

needs.

• We create principled probabilistic methods and algo-

rithms to seamlessly integrate information from the

query workload into the data annotation process, in

order to generate metadata that are not just relevant to

the annotated document, but also useful to the users

querying the database.

• We present extensive experiments with real data and

real users, showing that our system generates accurate

suggestions that are significantly better than the sug-

gestions from alternative approaches.

The rest of the paper is structured as follows: Section 2

describes the framework of our approach. Then, we de-

scribe our techniques for identifying important attributes

within the document (Section 3). Then we present the

implementation details in Section 4. Section 5 presents our

experimental evaluation. Section 6 presents the related work

and Section 7 concludes.

2 FRAMEWORK AND PROBLEM DEFINITION

In this section, we present the notation that we use in

the rest of the paper and describe the problem setting. As

discussed in Section 1, our goal is to suggest annotations

for a document. We define a document d as a pair (dt, da),
composed of the textual content dt and the set of existing

user annotations da. We use dopta to denote the complete

and optimal set of annotations for d. The dopta serves as a

conceptual baseline, i.e., is created by an oracle with perfect

knowledge of the domain of d (e.g., disaster management)

and, of course, dopta is unknown to the algorithm that is

trying to estimate as accurately as possible the dopta .

Each annotation A in da has the form (Aj , Vi), where

Aj is the attribute name and Vi is the attribute value. The

attributes can have multiple values (i.e., da may contain

both (Aj , V1) and (Aj , V2)). We say that a document d
is annotated with attribute Aj if there is any value v for

which (Aj , v) ∈ da. We use the notation DA and DV for

the domains of the attribute names and values, respectively1

and D to denote the repository of all documents stored in

the database.

Example 2: In Figure 1(a), we show the text of the doc-

ument dt and in Figure 1(b) we see a possible annotation

set da:

da = {(Storm Name,Gustav), (Storm Category , 3),

(Warnings ,Tropical Storm)}

For the document in Figure 1(a) the optimal anno-

tations dopta may also include (Storm Speed , 16 mph),
(Location,Louisiana), (Max Wind Speed , 115 mph).

The query workload W contains conjunctive queries

of the form Q = q1 ∧ · · · ∧ qm, where each qi is a

triplet (Aj , p, V), where Aj is an attribute value, p a

predicate (e.g., =, >,<) and V is an attribute value. The

queries in the workload express the information need of

the users and we expect similar queries to be asked in the

future.2 The answer to a query Q are all the documents

in D, with annotations that satisfy the conditions of Q.

For simplicity, and without loss of generality, we only

consider the equality predicate in this work, although we

also show some examples with more complex predicates

(range condition in Figure 1(c)).

Example 3: The workload W in Figure 1(c) con-

tains three queries Q1, Q2, Q3. Q1 has conditions

q11 = (Storm Name = Gustav) and q12 =
(Warnings ,CONTAINS ,flood). Given the annotations in

Figure 1(b), Q2 in Figure 1(c) is satisfied by conjunctive

semantics. Query Q1 is partially satisfied.

Table 1 summarizes the notation presented.

Using the above, we define our problem. A straight-

forward goal is to produce and display in the adaptive

insertion form dopta , given dt; this is usually a very large

1. Note that DA and DV are not known a priori.

2. This is a common strategy for many learning algorithms that uti-
lize query workloads, .e.g, the Google autocomplete algorithm, and the
Microsoft Tuning Advisor for SQL Server.

4

A Attributes used in the union of W and D
Aj Attribute in A
d Document
dt Document text for d
da Document annotations for d
D Repository
k Maximum number of suggestions
Q = q1, q2 . . . qm Query

dopta complete and optimal annotations for d
W Workload
annotated(d,Aj) Document d is annotated with Aj

use(Aj , q) Query q uses Aj

P System Prior
w term
score(Aj) Ranking function
D Database
DAj

Database Documents annotated with Aj

DAj ,w Database Documents annotated with Aj

that contains term w
βi Coefficients for Bernoulli Model

TABLE 1

Notation

set of annotations. Even if we could produce all relevant

annotations, a large number of such annotations may also

overwhelm the user who must examine, modify, and ap-

prove all the suggestions.3 Hence, our efforts focus not only

on identifying the potential annotations fields that exist in

dopta , but also to rank them and display on top the most

important ones. Since the goal of annotations is to facilitate

future querying, we want the annotation effort to focus on

generating annotations useful for the queries in the query

workload W . So, if users are willing to fill-in at most k
annotations for a single document (where k is arbitrary,

but fixed), our goal is to generate a subset of dopta , while

under the constraint of at-most-k- annoations. This set of

annotations should be the one that increases the visibility

of document d in W , that is, maximizes the number of

queries that retrieve d.

Problem 2.1 (Attribute Suggestion): Given a new docu-

ment d, for which we only know its text content dt,
workload W , and a limit value k, compute a set S of k
attribute suggestions, such that if da becomes the subset of

dopta that contains attributes in S, the visibility of d in W
is maximized.

The key contribution of this work is the “attribute sug-

gestion ” problem, which accounts for the query workload,

and identifies the attributes that are present in the document,

but not their values. The problem of suggesting values for

the identified attributes as been widely studied before in

the context of information extraction, as we discuss in 6.

While we believe that query workload information can be

productively used for the problem of suggesting values for

the identified attributes, we consider that research problem

out of the scope of the current paper and leave it as an

interesting direction for future research.

3. This is even more important in scenarios where mobile devices with
small display space are used, or users have little time. We need to take
into consideration this aspect when formulating our goal.

3 ATTRIBUTES SUGGESTION

In this section we study and propose solutions for the

“attributes suggestion” problem. From the problem defini-

tion we identify two, potentially conflicting, properties for

identifying and suggesting attributes for a document d:

• First, the attributes must have high querying value

with respect to the query workload W . That is, they

must appear in many queries in W , since the frequent

attributes in W have a greater potential to improve the

visibility of d.

• Second, the attributes must have high content value

with respect to dt. That is, they must be relevant

to dt. Otherwise, the user will probably dismiss the

suggestions and d will not be properly annotated.

We combine both objectives, in a principled way, using a

probabilistic approach. Our theoretical model is similar to

the idea of language models [5], with one key difference:

our model assume that attributes are generated by two

processes, in parallel: (a) By inspecting the content of

the document and extracting a set of attributes related

to the content of the document, following a probability

distribution given by an (unknown to us) joint probability

distribution p(da, dt); and (b) By knowing the types of

queries that users typically issue to the database, following

again an (unknown to us) joint probability distribution

p(da,W).
As we will describe in this section, in this setting our goal

becomes to compute a set of candidate annotation fields

d̂a, such that the conditional probability p(d̂a|W,dt) is

maximized. The value p(da|W,dt) measures how probable

a set of annotations is for a document, given the overall

query workload for the database and the text of the specific

document. Adopting this probabilistic framework, we can

redefine the Attributes Suggestion problem as:

Problem 3.1 (Probabilistic Atribute Suggestion): Given

a query workload W and a new document d, for which

we only know its content dt, find a candidate set d̂a of k
attributes that maximize p(d̂a|W,dt).�

Of course, the problem is inherently intractable, if we

consider all possible dependencies across attributes, docu-

ment content, and workload: it is very difficult to estimate

the full joint distribution of so many variables. Following

the common practice, when estimating language models, we

consider each attribute Aj independently, and we compute

the k attributes that maximize p(Aj |W,dt).
Our approach for estimating the values p(Aj |W,dt) we

treat, conceptually, W and dt as forecasters (sources of

evidence) and p(Aj |W,dt) is the dependent variable that

we need to estimate. We leverage established work from

statistics, on combining probability estimates from multiple

forecasters using a Bayesian approach [6]. Given W and

d as the forecasts from different sources of evidence, our

system (CADS) is the decision manager, with a specific

prior P ,4 that decides how to combine the probability

estimates from multiple sources. We experiment with two

4. The form of this prior depends on the combination strategy that we
will be using.

5

approaches: In Section 3.1 we combine the information

from the forecasters assuming conditional independence,

given Aj ; in Section 3.2 we build an approach that assumes

conditional independence among the forecasters.

3.1 Conditional Independence given Aj and Aj

We denote with p(Aj |W,dt,P) be the posterior probability

that document d is annotated with Aj , given the forecast of

W ,d and a prior belief P of CADS about the probability

of adding Aj in any document.5 We define the score of

attribute Aj as the odds that the attribute should appear in

da. Using the Bayes theorem:

Score(Aj) =
p(Aj |P,W, dt)

p(Aj |P,W, dt)
=

p(P,W, dt|Aj) · p(Aj)

p(P,W, dt|Aj) · p(Aj)

The numerator and denominator are equivalent to the joint

distributions p(P,W, dt, Aj) and p(P,W, dt, Aj), respec-

tively. Using the chain rule on both terms:

Score(Aj) =
p(P) · p(Aj |P) · p(W |Aj ,P) · p(dt|Aj ,P,W)

p(P) · p(Aj |P) · p(W |Aj ,P) · p(dt|Aj ,P,W)

If W is independent of P , given A, and dt is independent

of W,P , we simplify:

Score(Aj) =
p(Aj |P) · p(W |Aj) · p(dt|Aj)

p(Aj |P) · p(W |Aj) · p(dt|Aj)

Our prior belief P is independent of p(Aj), as we are not

using any external knowledge to affect the estimates. So,

the above equation can be further simplified to:

Score(Aj) =
p(Aj |W)

1− p(Aj |W)
·
p(dt|Aj)

p(dt|Aj)
(1)

Equation 1 is our score function. The first term represents

the likelihood of producing Aj , given the workload W .

We refer to that term as querying value as it expresses

the “relevance” of the attribute to the query workload.

The second term, which we refer to as content value is

the likelihood of observing the content dt given that the

attribute Aj appears in the document.

Estimation Process

We now present our process for estimating the values of

the parameters in Equation 1.

Querying Value: Let WAj
= {Q ∈ W : use(Q,Aj)} be

the set of queries in W that use Aj as one of the predicate

conditions. We use Laplace smoothing [7] to avoid zero

probabilities for the attributes that do not appear in the

workload, we have:

p(Aj |W) =
|WAj

|+ 1

|W |+ 1
(2)

Content Value: For the content value p(dt|Aj), our prob-

abilistic model assume independence between the terms

5. We keep the prior P in the conditional, separate from p(Aj) mainly
to align with the formal probabilistic models in [6].

in dt, which is a typical assumption when dealing with

textual data (e.g., in probabilistic information retrieval, text

classification, language models, etc.) We have:

p(dt|Aj) =
∏

w∈dt

p(w|Aj) (3)

where the product goes over all terms w in dt.
Let DAj

= {d ∈ D : annotated(d,Aj)} be the

set of documents in the database D, annotated with the

attribute Aj . Let DAj ,w = {d ∈ D : annotated(d,Aj) ∧
contains(dt, w)} be the set of documents in the database

that are annotated with Aj and also contain the word w in

their text dt. We estimate the probability of each term in

Equation 3 as:

p(w|Aj) =
|DAj ,w|+ 1

|DAj
|+ |D|+ 1

(4)

Again we use smoothing to avoid zero probabilities. For

each term, the prior is uniform and we update the proba-

bility using the observed co-occurrences of Aj and w. In a

similar way we define:

p(w|Aj) =
|DAj ,w

|+ 1

|DAj
|+ |D|+ 1

(5)

where we examine only documents that have been anno-

tated and the attribute Aj was not added.

Example 4: Figure 3 shows an example of the document

collection and the query workload. Documents d1, d2, d3,

and d4 are already annotated on the database. A new

document d5 has just arrived and we need to find the best

annotation for it. Let’s consider the relative order between

attributes City and Supplies. For each attribute we calculate

the score as described in Equation 1. For the attribute City

the querying value is calculated using Equation 2:

|WAj
|+ 1

|W |+ 1
=

1 + 1

6 + 1
=

2

7

The first term in Equation 1 is:

p(Aj |W)

1− p(Aj |W)
=

2/7

1− (2/7)
≈ 0.4

In a similar way we calculate the querying value for

Supplies to be 3/7 and the final contribution to be 0.75.

As expected this attribute is ranked higher. To calculate

the second term of 1 we need to the estimate the prob-

abilities described in Equation 3. As we assume inde-

pendence, we calculate the score for each word sepa-

rately. For example the probabilities for the word ice are

p(ice|City) = 3/8, p(ice|City) = 1/6, p(ice|Supplies) =
3/7, p(ice|Supplies) = 1/7. The content value contribu-

tion is:

p(dt|Aj)

p(dt|Aj)
=

∏
w∈dt

p(w|Aj)∏
w∈dt

p(w|Aj)
=

2/8 · 3/8 · 2/8 · 2/8

1/6 · 1/6 · 1/6 · 1/6
≈ 7.59

Similarly the content value contribution for Supplies is

6.0. Finally score(City) = 7.59 · 0.4 ≈ 3.03 and

6

Document Id Content Annotations
d1 Hurricane Wilma Wind forty mph Hurricane:Wilma, Wind Speed: 40 Mph
d2 damaged traffic signals Peembroke Reported Damage: traffic signals, City: Peembroke
d3 Water Ice Doral HS, Miami Supplies: Water, Ice POD: Doral HS, School: Doral HS City:Miami
d4 Ice need Miami Supplies: Ice, City: Miami

d4 need ice at Peembroke HS ?

(a) Example Collection

Query

County: Browards, POD: Peembroke Pines HS
POD: Marlins Stadium, City: Miami
POD: Doral High School, Supplies: Water
School Status: Open, School: Doral HS
County: Broward, Damage: 140 Trees
POD: Downtown POD, Supplies: Water

(b) Example Workload

Fig. 3. Running Example

score(Supplies) = 6.0 · 0.75 ≈ 4.5. So we can see that

even if we have a stronger confidence on the content we

use the query value to invert the order and present to the

user the most promising annotation.

3.2 Conditional Independence Among Forecaster

Evidence

The second model is based on the assumption that each

of the two forecasters has independent information about

the event “attribute Aj appears in the document,” (which

is different than conditioning on Aj). We capture this

information as a variable with distribution p that mod-

els the occurrence of the event “attribute Aj appears in

the document” as a Bernoulli experiment. Given the P ,

pW = p(Aj |W), and pd = p(Aj |dt) our final estimates is

computed based on independent pieces of evidence, using

the following model [6]:

p(Aj |W,dt,P) = β0 · P + β1 · pW + β2 · pd (6)

In this model, each forecaster provides an independent

view of the annotation. To combine the evidence from

multiple sources, we use the theory model from [6], which

results in a weighted average combination of forecasts. We

can interpret the weights as the relative expertise of each

component (forecaster/source). If the prior information that

we have for the attributes is non-informative, then β0 = 0
and we have:

p(Aj |W,dt,P) = β1 · pW + β2 · pd (7)

where pW and pd are the querying value and content value

components.

Estimation Process

Now, we present the estimation process for the probabilities

in Equation 7.

Querying Value: Let WAj
= {Q ∈ W : use(Q,Aj)} be

the set of queries in W that specify Aj . As in Section 3.1,

we have:

pW = p(Aj |W) =
|WAj

|+ 1

|W |+ 1
(8)

Content Value: For the content value we use effectively

the same approach as a Naive Bayesian Classifier:

pd = p(Aj |dt) ∝ p(Aj) ·
∏

w∈dt

p(w|Aj) (9)

where again we assume independence among the terms. We

estimate p(Aj) as the smoothed frequency of Aj in the

database:

p(Aj) =
|DAj

|+ 1

|D|+ 1
(10)

Example 4: Continued:

We continue our example calculating the score using the

Bernoulli Model. First we find the pW value for Equation 7.

As the querying value is the same we estimated before we

have that the pw(City) = 2/7 and pw(Supplies) = 3/7.

To calculate the content value of 7:

pd(Aj) = p(Aj |dt) ∝ p(Aj) ·
∏

w∈dt

p(w|Aj)

That gives pd(City) = 3/4·(2/8·3/8·2/8·2/8) ≈ 0.004
and pd(Supplies) = 2/4 · (2/7 · 3/7 · 1/7 · 2/7) ≈ 0.002.

To use Equation 7, we first need to normalize pW and pd
to sum up to 1 accross all candidate attributes. To simplify

the example, consider only our two attributes. Then we

have pd(City) = 0.4 and pd(Supplies) = 0.6. For the

workload contribution we have pW (City) = 0.33 and

pW (Supplies) = 0.66
Finally score(City) = β · 0.4 + (1 − β) · 0.66 and

score(Supplies) = β · 0.6 + (1 − β) · 0.33. The value

of β can be used to change the order. In particular

score(Supplies) > score(City) if β > 0.6.

Weight Coefficients Estimation

In the Bernoulli model of Equation 7, the probability

estimates provided by both sources of evidence (document

content and query workload) are independent, given the

(latent) Aj . A key challenge is to assign values to coef-

ficients β1 and β2 in Equation 7. For that, we adopt an

incremental learning technique: We use as training data the

7

queries and documents that have been annotated so far (i.e.,

for which the dopta is given) and we pick the coefficient

values that maximize the likelihood that the annotation

will improve the querying and content value. The process

for estimating works as follows. Let da,qv , da,iv be the

top-k suggestions computed for a document d using just

the Querying Value score or just the Content Value score,

respectively. Using the set of optimal annotations dopta we

compute the intersection sda,qv ∩ dopta , da,iv ∩ dopta , which

is the set of correctly suggested annotations. Then, for each

document, we count how many queries are satisfied using

da,qv ∩ dopta or da,iv ∩ dopta . Let zqv , ziv be the sums

of these two numbers across all documents respectively;

we define β1/β2 = ziv/zqv , which is the ratio of the

(correct) contribution of the two components towards the

maximization of coverage of the document in the query

workload.6

One problem with the presented equations for calculating

Querying Value (QV) and Content Value (CV) is that QV

and CV may have different ranges, and hence the overall

score may be dominated by either QV or CV in Equations 1

and 7. We normalize CV and QV in the range between

0 and 1 by calculating their maximum value across all

attributes, and dividing the rest with this number. In this

way we guarantee that QV and CV have the same impact.

4 EFFICIENCY ISSUES AND SOLUTIONS

In this section, we discuss the algorithmic approaches

that allow us to implement efficiently the algorithms de-

scribed in the previous section. In particular, we show how

pipelined algorithms can be employed to compute the top-k
attributes with the highest scores, where scores are defined

using Equation 1 (Bayes strategy) or Equation 7 (Bernoulli

strategy).

In both strategies, we need to find efficient ways to

calculate the Querying Value (QV) and Content Value (CV)

components, which are defined in similar ways for the two

strategies. We observe that in both strategies the score is a

monotonically increasing function (f(QV,CV) = CV ·QV
for Bayes and f(QV,CV) = β1 · QV + β2CV for

Bernoulli).

QV computation

A key observation is that the QV of an attribute is indepen-

dent of the submitted document, as seen in Equation 2;

QV only depends on the query workload. Hence, we

maintain a precomputed list LQV of QVs of the attributes

in DA, ordered by decreasing QV values. Since the query

workload does not change significantly in real-time, we

update LQV only periodically, as new queries arrive, since

is not critical for the QV metrics to be absolutely up-to-date:

approximations suffice.

6. An alternative approach, that we leave for future work, is to treat each
the two sources of evidence as “noisy labelers” that identify an attribute
as present or not, and then estimate the quality of the sources using a
framework similar to the one used to evaluated crowd-sourcing workers
(e.g. [8]).

CV computation

In contrast, it is expensive in terms of time and space

to maintain all the CVs for all pairs of documents and

attributes, where CV is defined in Equation 3. For that,

we compute the CVs at run-time when a document arrives.

The goal is to minimize the number of such computations

when computing the top-k attribute suggestions. Given a

document dt, we compute CV as follows. We first parse

dt. For each term w ∈ dt we compute its contribution

using Equation 5. For that, we exploit two indexes: the

inverted index It indexes the text of all documents, and

the inverted index Ia stores for each attribute name Aj

the list of documents for which Aj ∈ da. To compute the

numerator DAj ,w of Equation 5 we intersect the lists for

Aj from the two indexes It and Ia. The denominator DAj

is computed directly using Ia. We refer to this algorithm

as GetCV (Aj).

Combining QV and CV

We employ a variation of the Threshold Algorithm with

Restricted Sorted Access (TAZ), described in [9]. The

pipelining algorithm performs sequential access on LQV

and for each seen attribute Aj it performs a “random access”

to compute CV by executing GetCV (Aj).
The algorithm executes as follows:

1) Retrieve next Aj from LQV .
2) Get the Content Value (CV) for attribute Aj .

3) Calculate the Threshold value τ = F (CV ,QV (Aj)) where

CV is the maximum possible CV for the unseen attributes
and QV (Aj) is the QV of Aj .

4) Let R be the set of k attributes with highest score that we
have seen. Add Aj to R if possible.

5) If the k-th attribute Ak has Score(Ak) > τ we return R.
Else we go back to Step 1.

Note that instead of using TAZ to combine CV and

QV, we could have used the MPro algorithm [10], where

the key difference is that sequential accesses has cost

0, and the execution is scheduled such that the number

of random accesses are minimized. For simplicity, and

since the efficiency of such computations is not the core

contribution of this paper, we only present the results that

we observed using the TAZ algorithm.

5 EXPERIMENTS

5.1 Datasets

Documents: For our experiments we use two document

collections:

• The Emergency corpus consists of 270 documents, gen-

erated by the Miami-Dade Emergency Management

Office. The documents are advisory, progress and situ-

ation reports submitted by various county stakeholders

during the five days before and after Hurricane Wilma,

which hit Miami-Dade county in October 2005.

• The CNET corpus consists of 4,840 electronic product

reviews obtained from CNET7. The dataset contains

different kinds of products like cameras, video games,

television, audio sets, and alarm clocks.

7. http://www.cnet.com

8

Emergency CNET Amazon

Number of Documents 270 4840 19700
Maximum Size (KB) 35.8 90.4 4.0
Average Size (KB) 2.87 10.56 1.06
Minimum Size (KB) 0.37 0.16 0.002
Annotations per Document (Max) 24 53 43
Annotations per Document (Min) 1 1 1
Annotations per Document (Avg) 7.9 9.61 4.82

TABLE 2

Corpus Statistics

• The Amazon Products corpus are 19700 documents

downloaded from Amazon 8. This dataset also in-

cluded electronic products, books and other items that

are sell at Amazon.

Statistics for each collection are presented in Figure 2.

Annotations: We generated annotations for the datasets,

which we use as training and test data, to train and evaluate

our algorithms.

For the Emergency corpus we acquired the annotations

in two phases. In the first phase, a group of five students

read a random sample of 40 documents and identified a set

of 76 attributes that best describe the domain (see Table 3

for a sample of these attributes). We mapped attributes with

similar meaning (e.g. time, hour) to a single attribute. In the

second phase, we used Amazon Mechanical Turk9 to have

Mechanical Turk users annotate the documents, using the

attributes identified in the first phase. For each document,

we assigned five users (“workers”), who each submitted at

least five annotations for each documents. Workers selected

the attribute names from a-drop down list and specified the

values using text boxes. Users were limited to annotating

at most ten documents, to avoid excessive influence of

any single participant in the overall extraction process.

To avoid invalid annotations, we sampled five annotations

from of each annotator and validated that the identified

attributes and values were correct. We check manually that

the annotations are relevant (not noise) and are related

to the document content. Users with invalid annotations

were disqualified and their annotations discarded. For each

document, we use as ground truth the annotations given by

at least two (of the five) qualified workers that examined

and annotated the document.

To annotate the CNET reviews we used the CNET

specifications page for each product. The page contains

structured data for a product in the form of “attribute name,

value”. Given that we are only interested in annotations that

come from the document text (i.e. the product’s review), we

removed annotations that are not mentioned in any sentence

in the review text. To decide when a sentence s is related

(mentions) to an annotation A = (Aj , Vi), we used the

containment ratio heuristic; specifically, we computed:

cr(A, s) = δ
|Aj ∩ s|

|Aj |
+ (1− δ)

|Vi ∩ s|

|Vi|
(11)

8. http://www.amazon.com

9. https://www.mturk.com/mturk

Emergency CNET Amazon

Date Diagonal Size Memorabilia

County Color Support Autographed

Phone Included Accessories Batteries Included

Person Data Link Protocol Model

Hours Technology EAN

Report Number Enclosure Color NumberOfItems

Storm Exposure Modes Display Size

Address Device Type MPN

Agency Color Optical Size

Web Page Supported Battery Lens Type

TABLE 3

Attributes with the highest frequency in each data set

where Aj , Vi, s are the set of words for the attribute

name, value and the sentence, respectively; δ conveys the

importance of matching the name and value. To set the

δ parameter we consider some special cases: For Boolean

attributes (yes or no values) we focus only on the attribute

name (δ = 1). For values that only appear in one attribute,

we assign a higher weight to the value (δ = 0.8). In all

other cases, we allocate the same weight (δ = 0.5). We

performed a manual check on a sample of 50 documents

to confirm the precision of this heuristic: we found that in

all cases the heuristic worked for our purpose.

For the Amazon dataset we divide the page into two

parts: the textual part formed with the product description

and the list of features, and the annotations formed with

the structured attribute/value section on the web-page. We

consider the same strategy as used on the CNET corpus to

find those annotations that appears on the text.

Table 3 shows the top 10 most frequent attributes names

and their distribution for both corpora.

Queries: When generating the query workload for our

datasets we had to address two main challenges. First, we

did not have a query workload that was used to query the

data sets in our disposal. So, we had to generate a workload,

with an attribute distribution representing the user interests

in a realistic way. Second, we had to create queries of the

form attribute-value as described in Section 2.

To obtain a realistic query distribution we leveraged

the Google Trends and Google Insights tools, which list

statistics about the popularity and time variations of queries

issued against the Google search engine. Furthermore, these

tools allow us to focus on a specific geographical area

to extract such statistics, and we can also compare two

keywords and see the relative lift for the query based on

a particular time and location. In our first pass, we picked

the queries that presented a significant increase in usage

during the time-frame of the dataset, and for the specified

location. Then, used the relative frequencies of the queries

in the Google Insights/Trends to weight appropriately the

workload in the results. For example, for the emergency

data set we could see more queries related with the status

of the schools on the city compared to queries asking for

the status of the ports. Given that the former were submitted

five times more often, then we generate five queries related

to school information, and only one asking for a the ports.

The second problem is how to transform keyword queries

to structured queries. For this, we examined the queries

9

that were returned by Google, to examine whether they

mention or imply an attribute value. For example, these

are two query transformations: “open schools” → “School

Status: open,”; the query “kodak 1120 color blue” →
“model: kodak 1120, camera color: blue”. Effectively, we

injected attributes in the otherwise flat keyword workload.

We accepted a transformation as correct only when entered

independently by multiple independent users on Amazon

Mechanical Turk.

For our emergency data set, since the documents are

from the Wilma Hurricane in 2005 in Florida, we specify

Florida as location and 2005 as year in Google Trends. To

avoid zero frequencies, we smooth these Florida-specific

frequencies with the US and World frequencies for the same

period. In particular:

f(w) = 0.5 ·fFL(w)+0.25 ·fUS(w)+0.25 ·fW (w) (12)

where fFL, fUS , fFL are the Florida, US and World

frequencies respectively. We use f(w) = ǫ as a default

probability for those with zero frequencies.

To generate queries for the Product and Amazon database

we use a two phase process. First, we check the attributes

popularity using Google Insights restricted to the Technol-

ogy domain. For each attribute we submit a single query

with the attribute name to the service, and obtain the relative

returned popularity. Then we use this value to create vector

with one entry per attribute name and some probability.

Attributes with zero popularity in the Google Insights are

added to the vector with some minimal probability ǫ to

avoid zero entries. In the second phase we generate 10,000

queries using the following procedure:

1) Select the length of the query l by sampling from a

uniform probability distribution with lengths varying

from 1 to 3.

2) Select an attribute A1 using the popularity that they

have on the vector we obtained from Google Insights.

3) Select the next attribute A2 using the co-occurrence

ratio with the previous attribute A1.

4) Repeat from Step 2, until we get l different attributes

Note that when generating the queries in Emergency

we do not consider their pairwise correlations because the

correlations across the emergency queries were significantly

lower. In contrast, for CNET, we observed significant de-

pendencies across attribute pairs. Using the co-occurrence

in step 3 we favor attributes from the same product type

(cameras, notebooks, air conditioners), as opposed to inde-

pendently combining attributes across such product types.

Table 4 shows the top 10 most frequent attributes for the

workload and their distribution for both corpora.

5.2 Experimental Setup

To evaluate the algorithmic approaches that we introduce

in this paper, we compare our algorithms with a variety of

existing baselines.

• DataFreq: Suggest the most frequent attributes in the

database of annotated documents.

Emergency CNET Amazon

School Status (3738) Software (1793) studio(1178)

County (2202) Audio (1520) model(1141)

Weather (2087) Power (876) type(816)

Address (1695) Speed (628) publisher(812)

Supplies (1640) Additional Features (600) size(767)

Storm (1500) Control (549) label(745)

Phone (1254) Modem (536) CPU manufacturer(747)

Location (1106) Connection (448) brand(668)

Water Status (954) Color (422) creator(666)

Library Status (859) Service Support Details(413) binding (595)

TABLE 4

Attributes with the highest frequency in the query

workload

• QV: Suggest attributes based on the querying value

component of Section 3, which is similar to ranking

attributes based on their popularity in the workload.

• CV: Suggest attributes based on the content value

component of Section 3.

• Calais: We use the Open Calais10 information extrac-

tion system, as a black box. Calais can recognize

persons, locations, dates and other entities that are

common in news articles. The entities extracted are

fixed to a particular schema that we map to our own

attributes. We annotate the documents and consider

all the attributes that correspond to an entity. We use

the Calais relevance score to rank the attributes. If the

same attribute is annotated with multiple values we use

the highest relevance score value to score it. Products

have specialized attributes and hence we can not use

this generic extractor as a baseline, so we only use this

strategy as a baseline for the Emergency data set.

• RAKEL We use RAKEL [11] a state-of-the-art multi-

labeler that take into account the correlation between

tags for annotations. We use the implementation pro-

vided in Mulan11 using the default parameters pro-

vided in the tool, i.e, a LabelPowerset transformation

and the J48 algorithm.

• Bayes: combine QV and CV as presented in Sec-

tion 3.1.

• Bernoulli: combine QV and CV as presented in Sec-

tion 3.2 with a specific β1. If we do not specify β1 we

are referring to the β1 estimation strategy described in

Section 3.2.

5.3 Precision and Recall of Suggested Attributes

In this experiment, we measure the quality of the suggested

attributes for a document, compared to its ground-truth

attributes. Note that this experiment ignores the query

workload, and hence does not measure the success of

the strategies in solving the Attribute Suggestion problem,

which is the key contribution of this paper, and is evaluated

in Section 5.4. Nevertheless, the purpose of this experiment

is to show that a strategy does not suggest attribute that are

irrelevant to the content of a document.

For each execution, we pick a document d for evaluation

(testing) and use the rest as training set, that is, as the

10. http://www.opencalais.com/

11. http://mulan.sourceforge.net/

10

annotated documents database. We calculate the precision

for the test document d as the ratio of the suggested

attributes da that are in the ground truth attributes dopta

of d. We use the full workload to estimate the querying

value. We report the precision and recall averaged over all

documents d in D.

Figures 4 show the average precision and recall for

varying number of top-k suggestions. As expected, the

most precise strategy is CV, since it focuses on using the

document text to suggest attributes. DataFreq is very close

to CV, because as we see in Table 3 the frequency of

the highest attribute is very common suggesting the most

frequent attributes is quite effective. Another reason is that

there are very few training documents for the infrequent

attributes for CV to be effective. We also observe that

our proposed strategies Bernoulli and Bayes have also

high precision, even though they are designed to also

consider the query workload. A key difference between

the two datasets is that in CNET and Amazon DataFreq

performs much worse due to the richness of the schema.

The precision decreases with the number of suggestions

because each document only has few ground-truth attributes.

This is typical behavior where the precision decreases and

the recall increases as we show more results (suggestions).

Calais shows why a fixed schema extractor can not adapt

to the kind of domains we are addressing. As we can see

generic extractors for multiple domains focus on generic

attributes like person, location, dates, organization that are

very useful on more general domains but not for domain

specific task. RAKEL on the other hand can learn with the

schema in the same way as the proposed techniques. As

we can see is as competitive as the other techniques. On

the other hand is still worse than the Naive Bayes classifier.

This strange behavior can come from two reasons: one our

tagging is noisy, users are missing tags or annotate with

incorrect annotations. On the other hand attributes on this

domain are poorly correlated so searching for correlations

can be misguiding. Naive Bayes seems to be less sensitive

to the noise. KaREL also is exponential on the number

of attributes combinations that it test. Even testing for

pairwise correlations we can not make the system finish

for the Amazon Dataset. We report only for the CNET and

Emergency datasets.

5.4 Attributes Suggestion Problem

In this experiment, we examine how the different strategies

solve the Attributes Suggestion Problem, which is the core

focus of our work. That is, if a strategy is used for attributes

suggestion, how well are the queries of the workload

answered? To measure this we use the sum of documents

returned by the queries in the workload, where a document

is counted multiple times, once for every query that returns

it. We refer to this measure as Full Match. We also consider

a simpler variant, Partial Match, where we count how many

query conditions are satisfied by the documents, that is, we

view each query condition as a separate query.

We first introduce the optimal suggestion techniques,

which will be used as baselines to evaluate the strategies.

• OPTFullMatch suggests the subset of the ground-

truth attributes for each document that maximize its

query visibility in the query workload, that is, that

satisfies the maximum number of queries. Miah et

al. [12] prove that this problem is NP-Hard. However,

given the relatively small size of our query workload,

we were able to compute an exact solution using the

exact algorithm from [12], following a brute-force

approach, which took a significant amount of time but

allowed us to measure exactly how close to the optimal

each algorithm is.

• OPTPartialMatch suggests a subset of the ground-

truth attributes that maximize the number of query

conditions satisfied. This can be computed making a

single pass on the workload

We report the average coverage across all documents,

where the coverage for one document is defined as the

number of matches (or partial matches) divided by the

number of matches of OPTFullMatch (or OPTPartialMatch,

respectively). Figures 5 and 6 show the average coverage

for full and partial matches for the strategies. The proposed

strategies Bayes and Bernoulli dominate the rest strategies

by up to 50%, especially for fewer numbers of suggestions,

which are the most practical cases. We observe that the

baselines Calais and RAKEL are not competitive for the

reasons discussed above: the former is highly imprecise

is does not capture many attributes in the document and

queries, and the latter ignores the workload information.

Interestingly, the QV strategy performs well, even though

it ignores the text of the documents. The reason is that

the frequency of the attributes in the workload decreases

very quickly, so covering the top attributes is a successful

strategy. Nevertheless, as we discussed in Section 5.3 the

precision for this strategy is too low, so much of the user

effort will be wasted on removing spurious suggestions.

We also note that QV’s rate of improvement (in number

of matches) drops considerably after 10 suggestions, com-

pared to DataFreq. The reason is that in the query workload,

the attributes after the top-10 (in terms of frequency) cover

few documents.

Note that for the CNET and Amazon dataset it was

infeasible to calculate the optimal results, so we report the

raw (non-normalized) number of matches instead of the

normalized version.

Discussion: The results confirm our intuition that the

best ways to select a number of candidate attributes to

annotate a document need to balance both CV and QV ,

as is the case for Bayes and Bernoulli. The reason is that

high CV is needed to avoid suggesting attributes that are

irrelevant to the document (which the user annotator will

have to manually discard – no second round of suggestions

is allowed in our model if some attributes are judged as

irrelevant), and high QV is needed to prefer attributes that

are popular in the query workload.

For both datasets the CV performs better than the

baseline. The reason is that the elements of the schema that

are used to annotate one product depends on the particular

product type (e.g attributes for camera). As the CV behaves

11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

P
re

ci
si

on

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
Calais
RaKEL

(a) Precision for the Emergency Dataset

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

P
re

ci
si

on

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
RaKEL

(b) Precision for the CNET Dataset

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

P
re

ci
si

on

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV

(c) Precision for the Amazon Dataset

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

R
ec

al
l

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
Calais
RaKEL

(d) Recall for the Emergency Dataset

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

R
ec

al
l

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
RaKEL

(e) Recall for the CNET Dataset

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

R
ec

al
l

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV

(f) Recall for the Amazon Dataset

Fig. 4. Attributes Precision/Recall for All Datasets

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

M
at

ch
es

 (
N

or
m

al
iz

ed
)

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
Calais
RaKEL

(a) Full Matches

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Suggestions

P
ar

tia
l M

at
ch

es
 (

N
or

m
al

iz
ed

)

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
Calais
RaKEL

(b) Partial Matches

Fig. 5. Number of Full and Partial Query Matches in Emergency DataSet.

like an object classifier, it picks the right attributes for the

object, even when the are not the most frequent in the

database or the workload (DataFreq and QV).

Effect of the β1 parameter: In the Bernoulli strategy

we can manipulate the weights of the components, CV and

QV. In this experiment we check the effect of the parameter

β1 (see Equation 7) for full and partial matches. We set the

number of suggestions to k = 5.

Figure 8 shows the changes on number of matches and

partial matches for both datasets. The vertical line shows

the β1 computed using the method proposed in Section 3.2

for both databases. For the Emergency dataset this value is

around 0.51. For the CNET dataset the value is around

0.31. We see that the number of matches increases as

we add more weight to the workload and decrease only

slightly at the end. As we already discussed the most

common attributes are highly common so a simple strategy

is competitive as we see in Figure 8(a). For the CNET

dataset we see in Figure 8(b) that the most competitive

strategy is the CV. So, adding too much weight to the

workload only makes the results worse.

5.5 Database Size Effect

In this experiment we check the effect of the size of the

database on the precision of attribute suggestions and the

number of query matches. Recall that the content value

is computed using the database of annotated documents, as

shown in Equation 5. We consider subsets of the database of

documents of different sizes. As the number of documents

of the Emergency dataset is very small ,we only report the

results obtained in the CNET and Amazon dataset.

Figure 9 shows the variations in precision of suggested

attributes and in the normalized number of partial query

matches when we use 1/16, 1/8, 1/4 and 1/2 of the

database for the estimation and the rest of the database

as test set, and report on the average values.

In particular, Figures 9(a) and 9(c) show the precision

changes when we increase the size of the training set.

As expected the proposed strategies increase their quality

when we increase the training data size. The QV line is

constant since it does not use the database but only the

query workload.

Figures 9(b) and 9(d) show the number of partial query

matches for each strategy as the training size increases. The

proposed query agnostic strategies improve again as we

increase the size of the training set.

6 RELATED WORK

Collaborative Annotation: There are several system that

favor the collaborative annotation of objects and use pre-

vious annotations or tags to annotate new objects. There

12

0
50

00
0

10
00

00
20

00
00

30
00

00

Number of Suggestions

M
at

ch
es

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
RaKEL

(a) Full Matches (Non-Normalized)

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

Number of Suggestions

P
ar

tia
l M

at
ch

es

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV
RaKEL

(b) Partial Matches (Non-Normalized)

Fig. 6. Number of Full and Partial Query Matches for CNET Dataset.

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

Number of Suggestions

M
at

ch
es

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV

(a) Full Matches (Non-Normalized)
0e

+
00

2e
+

06
4e

+
06

6e
+

06
8e

+
06

Number of Suggestions

P
ar

tia
l M

at
ch

es

1 5 10 15

Bayes
Bernoulli
CV
DataFreq
QV

(b) Partial Matches (Non-Normalized)

Fig. 7. Number of Full and Partial Query Matches for Amazon Dataset.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta

M
at

ch
es

 (
N

or
m

al
iz

ed
)

Full Matches
Partial Matches

(a) Emergency database

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

Beta

M
at

ch
es

Full Matches
Partial Matches

(b) CNET database

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

6e
+

06

Beta

M
at

ch
es

Full Matches
Partial Matches

(c) Amazon database

Fig. 8. Effect of β1 in the Bernoulli Model.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size of the Training Set (1/k)

P
re

ci
si

on

1/16 1/8 1/4 1/2

Bayes
Bernoulli
CV
DataFreq
QV

(a) Precision Change (CNET)

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0

Size of the Training Set (1/k)

P
ar

tia
ls

 M
at

ch
es

1/16 1/8 1/4 1/2

Bayes
Bernoulli
CV
DataFreq
QV

(b) Partial Matches Change (CNET)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size of the Training Set (1/k)

P
re

ci
si

on

1/16 1/8 1/4 1/2

Bayes
Bernoulli
CV
DataFreq
QV

(c) Precision Change (Amazon)

2e
+

06
3e

+
06

4e
+

06
5e

+
06

6e
+

06

Size of the Training Set (1/k)

P
ar

tia
ls

 M
at

ch
es

1/16 1/8 1/4 1/2

Bayes
Bernoulli
CV
DataFreq
QV

(d) Partial Matches Change (Amazon)

Fig. 9. Effect of Training Set Size in CNET/Amazon Dataset.

have been a significant amount of work in predicting the

tags for documents or other resources (webpages, images,

videos) [13], [14], [15], [16], [17]. Depending on the object

and the user involvement, this approaches have different

assumptions on what is expected as an input, Neverthless

the goals are similar as the expect to find missing tags that

are related with the object. We argue that our approach is

different as we use the workload to augment the document

13

visibility after the tagging process. Compared with the other

approaches precision is a secondary goal as we expect that

the annotator can improve the annotations on the process.

On the other hand, the discovered tags assist on the taks of

retrieval instead of simply bookmarking.

Dataspaces and pay-as-you-go integration: The integra-

tion model of CADS is similar to that of dataspaces [18],

where a loosely integration model is proposed for heteroge-

neous sources. The basic difference is that dataspaces inte-

grate existing annotations for data sources, in order to an-

swer queries. Our work suggests the appropriate annotation

during insertion time, and also takes into consideration the

query workload to identify the most promising attributes to

add. Another related data model is that of Google Base [1],

where users can specify their own attribute/value pairs, in

addition to the ones proposed by the system. However, the

proposed attributes in Google Base are hard-coded for each

item category (e.g., real estate property). In CADS, the

goal is to learn what attributes to suggest. Pay-as-you go

integration techniques like PayGo [19] and [2] are useful

to suggest candidate matchings at query time. However, no

previous work considers this problem at insertion time, as in

CADS. The work on Peer Data Management Systems [20]

is a precursor of the above projects.

Content management products: Microsoft

Sharepoint [21] and SAP NetWeaver [22] allow users

to share documents, annotate them and perform simple

keyword queries. Hard-coded attributes can be added

to specialized insertion forms. CADS improves these

platforms by learning the user information demand and

adjusting the insertion forms accordingly.

Information extraction (IE): Information extraction is re-

lated to this effort, mainly in the context of value suggestion

for the computed attributes. (See [23] for an overview of

IE.) We can broadly separate the area into two main efforts:

Closed IE and Open IE. Closed IE requires the user to

define the schema, and then the system populates the tables

with relations extracted from the text. Our work on attribute

suggestion naturally complements closed IE, as we identify

what attributes are likely to appear within a document.

Once we have that information, we can then employ the

IE system to extract the values for the attributes. Open

IE [24] is closer to the needs of CADS. In particular, Open

IE generates RDF-like triplets, e.g., (Gustav, is category,

3) with no input from the user. Open IE leads to a very

large number of triplets, which means that even after the

successful extraction of the attribute values, we still have

to deal with the problem of schema explosion that prevents

the successful execution of structured queries that require

knowledge of the attribute names and values that appear

within a document. In principle, we could use Open IE,

and then pay-as-you-go solutions for identifying equiva-

lency relations across attribute names: however, it is much

better to deal with the problem early-on, during document

generation, instead of trying to fix issues that could be pre-

vented with proper design. The CIMPLE project [25], [26]

uses IE techniques to create and manage data-rich online

communities, like the DBLife community. In contrast to

CIMPLE, where data is extracted from existing sources and

a domain expert must create a domain schema, CADS is

a data sharing environment where users explicitly insert

the data and the schema automatically evolves with time.

Nevertheless, the IE and mass collaboration techniques of

CIMPLE can help in creating adaptive insertion forms in

CADS.

Schema Evolution: Note that the adaptive annotation in

CADS can be viewed as semi-automatic schema evolution.

Previous work on schema evolution [27] did not address the

problem of what attribute to add to the schema, but how to

support querying and other database operations when the

schema changes.

Query Forms: Existing work on query forms can be

leveraged in creating the CADS adaptive query forms.

Jayapandian and Jagadish [28] propose an algorithm to

extract a query form that represents most of the queries

in the database using the ”querability” of the columns,

while in [29] they extend their work discussing forms

customization. Nardi and Jagadish [30] use the schema

information to auto-complete attribute or value names in

query forms. In [26] keyword queries are used to select the

most appropriate query forms. Our work can be considered

a dual approach: instead of generating query forms using

the database contents, we create the schema and contents

of the database by considering the content of the query

workload (and the contents of the documents, of course).

The work in USHER [31] is also related: in USHER the

system automatically decides which questions in a survey

are the most important to ask, given past experience with

the completion of past surveys. In a sense, USHER is

complementary to CADS: once we identify the attributes

and values in the documents using CADS, we can then use

USHER to model the dependencies across attributes and

minimize the number of questions asked.

Probabilistic Models: Probabilistics tag recommendation

systems [32], [33] have a similar goal like our system.

However, the main difference is that we use the query

workload in our model, reflecting the user interest.

7 CONCLUSION

We proposed adaptive techniques to suggest relevant at-

tributes to annotate a document, while trying to satisfy the

user querying needs. Our solution is based on a probabilistic

framework that considers the evidence in the document

content and the query workload. We present two ways to

combine these two pieces of evidence, content value and

querying value: a model that considers both components

conditionally independent and a linear weighted model. Ex-

periments shows that using our techniques, we can suggest

attributes that improve the visibility of the documents with

respect to the query workload by up to 50%. That is, we

show that using the query workload can greatly improve the

annotation process and increase the utility of shared data.

14

ACKNOWLEDGMENTS

Vagelis Hristidis was partially supported by NSF grants IIS-

1216032 and IIS-1216007. Panagiotis G. Ipeirotis was par-

tially supported by NSF grant IIS-0643846, and a George

A. Kellner Faculty Fellowship. Both were also supported

by a Google Award.

REFERENCES

[1] Google, “Google base, http://www.google.com/base,” 2011.

[2] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy, “Pay-as-you-go user
feedback for dataspace systems,” in ACM SIGMOD, 2008.

[3] K. Saleem, S. Luis, Y. Deng, S.-C. Chen, V. Hristidis, and T. Li,
“Towards a business continuity information network for rapid dis-
aster recovery,” in International Conference on Digital Government

Research, ser. dg.o ’08, 2008.

[4] A. Jain and P. G. Ipeirotis, “A quality-aware optimizer for informa-
tion extraction,” ACM Transactions on Database Systems, 2009.

[5] J. M. Ponte and W. B. Croft, “A language modeling approach
to information retrieval,” in Proceedings of the 21st annual

international ACM SIGIR conference on Research and development

in information retrieval, ser. SIGIR ’98. New York, NY,
USA: ACM, 1998, pp. 275–281. [Online]. Available: http:
//doi.acm.org/10.1145/290941.291008

[6] R. T. Clemen and R. L. Winkler, “Unanimity and compromise
among probability forecasters,” Manage. Sci., vol. 36, pp. 767–779,
July 1990. [Online]. Available: http://portal.acm.org/citation.cfm?
id=81610.81609

[7] C. D. Manning, P. Raghavan, and H. Schütze, Introduction

to Information Retrieval, 1st ed. Cambridge University Press,
July 2008. [Online]. Available: http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20\&path=ASIN/0521865719

[8] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on
amazon mechanical turk,” in Proceedings of the ACM SIGKDD

Workshop on Human Computation, ser. HCOMP ’10. New
York, NY, USA: ACM, 2010, pp. 64–67. [Online]. Available:
http://doi.acm.org/10.1145/1837885.1837906

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms
for middleware,” J. Comput. Syst. Sci., vol. 66, pp. 614–656,
June 2003. [Online]. Available: http://portal.acm.org/citation.cfm?
id=861182.861185

[10] K. C.-C. Chang and S.-w. Hwang, “Minimal probing: supporting
expensive predicates for top-k queries,” in ACM SIGMOD, 2002.

[11] G. Tsoumakas and I. Vlahavas, “Random k-labelsets: An ensemble
method for multilabel classification,” in Proceedings of the 18th

European conference on Machine Learning, ser. ECML ’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 406–417. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-74958-5 38

[12] M. Miah, G. Das, V. Hristidis, and H. Mannila, “Standing out in a
crowd: Selecting attributes for maximum visibility,” ICDE, 2008.

[13] P. Heymann, D. Ramage, and H. Garcia-Molina, “Social tag
prediction,” in Proceedings of the 31st annual international ACM

SIGIR conference on Research and development in information

retrieval, ser. SIGIR ’08. New York, NY, USA: ACM, 2008, pp.
531–538. [Online]. Available: http://doi.acm.org/10.1145/1390334.
1390425

[14] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. L.
Giles, “Real-time automatic tag recommendation,” in Proceedings of

the 31st annual international ACM SIGIR conference on Research

and development in information retrieval, ser. SIGIR ’08. New
York, NY, USA: ACM, 2008, pp. 515–522. [Online]. Available:
http://doi.acm.org/10.1145/1390334.1390423

[15] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green, “Automatic
generation of social tags for music recommendation,” in Advances

in Neural Information Processing Systems 20. Cambridge, MA:
MIT Press, 2008.

[16] B. Sigurbjörnsson and R. van Zwol, “Flickr tag recommendation
based on collective knowledge,” in Proceeding of the 17th

international conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 327–336. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367542

[17] B. Russell, A. Torralba, K. Murphy, and W. Freeman, “Labelme: A
database and web-based tool for image annotation,” International

Journal of Computer Vision, vol. 77, pp. 157–173, 2008,
10.1007/s11263-007-0090-8. [Online]. Available: http://dx.doi.org/
10.1007/s11263-007-0090-8

[18] M. Franklin, A. Halevy, and D. Maier, “From databases to
dataspaces: a new abstraction for information management,”
SIGMOD Rec., vol. 34, pp. 27–33, December 2005. [Online].
Available: http://doi.acm.org/10.1145/1107499.1107502

[19] J. Madhavan and et al., “Web-scale data integration: You can only
afford to pay as you go,” in CIDR, 2007.

[20] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov, “Schema mediation
in peer data management systems,” in Data Engineering, 2003.

Proceedings. 19th International Conference on, march 2003, pp. 505
– 516.

[21] M. Sharepoint, “http://www.microsoft.com/sharepoint/,” 2011.
[22] S. N. C.-C. Management, “https://www.sdn.sap.com/irj/sdn/nw-cm,”

2011.
[23] M. J. Cafarella, J. Madhavan, and A. Halevy, “Web-scale extraction

of structured data,” SIGMOD Rec., vol. 37, pp. 55–61, March 2009.
[Online]. Available: http://doi.acm.org/10.1145/1519103.1519112

[24] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open
information extraction from the web,” Commun. ACM, vol. 51, pp.
68–74, December 2008. [Online]. Available: http://doi.acm.org/10.
1145/1409360.1409378

[25] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann,
M. Sayyadian, and W. Shen, “Community information management,”
IEEE Data Eng. Bull., vol. 29, no. 1, pp. 64–72, 2006.

[26] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton, “Combining
keyword search and forms for ad hoc querying of databases,” in
SIGMOD, 2009.

[27] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth, “Semantics and
implementation of schema evolution in object-oriented databases,”
in ACM SIGMOD, 1987.

[28] M. Jayapandian and H. V. Jagadish, “Automated creation of
a forms-based database query interface,” Proc. VLDB Endow.,
vol. 1, pp. 695–709, August 2008. [Online]. Available: http:
//dx.doi.org/10.1145/1453856.1453932

[29] M. Jayapandian and H. Jagadish, “Expressive query specification
through form customization,” in Proceedings of the 11th

international conference on Extending database technology:

Advances in database technology, ser. EDBT ’08. New York,
NY, USA: ACM, 2008, pp. 416–427. [Online]. Available:
http://doi.acm.org/10.1145/1353343.1353395

[30] A. Nandi and H. V. Jagadish, “Assisted querying using instant-
response interfaces,” in ACM SIGMOD, 2007.

[31] K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and T. S. Parikh,
“Usher: Improving data quality with dynamic forms,” in ICDE, 2010.

[32] D. Liu, X.-S. Hua, L. Yang, M. Wang, and H.-J. Zhang, “Tag
ranking,” in WWW, 2009.

[33] D. Yin, Z. Xue, L. Hong, and B. D. Davison, “A probabilistic model
for personalized tag prediction,” in ACM SIGKDD, 2010.

Eduardo J. Ruiz is a Ph.D. student at the Department of Computer
Science & Engineering in UC Riverside. Previously he received his
M.Sc. and B.S. at the Universidad Simon Bolivar, Venezuela.

Vagelis Hristidis is an Associate Professor of Computer Science at
UC Riverside. His key areas of expertise are Databases, Information
Retrieval, and particularly the intersection of these two areas. His
work in these areas has received more than 3,000 citations accord-
ing to Google Scholar. His key achievements also include the NSF
CAREER award, a Google Research Award, an IBM Award, and a
Kauffmann Entrepreneurship Award.

Panos Ipeirotis is an Associate Professor and George A. Kellner
Faculty Fellow at the Department of Information, Operations, and
Management Sciences at Leonard N. Stern School of Business of
New York University. He has received three Best Paper awards (IEEE
ICDE 2005, ACM SIGMOD 2006, WWW 2011), two Best Paper
Runner Up awards (JCDL 2002, ACM KDD 2008), and is also a
recipient of a CAREER award from the National Science Foundation
and several other industry grants.

