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ABSTRACT
Crowdsourcing has become a major tool for scholarly research since
its introduction to the academic sphere in 2008. However, unlike in
traditional laboratory settings, it is nearly impossible to control the
conditions under which workers on crowdsourcing platforms com-
plete tasks. In the study of communication disorders, crowdsourcing
has provided a novel solution to the collection of perceptual rat-
ings of human speech production. Such ratings allow researchers to
gaugewhether a treatment yieldsmeaningful change in howhuman
listeners’ perceive disordered speech. This paper will explore some
statistical considerations of crowdsourceddatawith specific focus on
collecting perceptual ratings of human speech productions. Random
effects models are applied to crowdsourced perceptual ratings col-
lected in both a continuous and binary fashion. A simulation study
is conducted to test the reliability of the proposed models under
differing numbers of workers and tasks. Finally, this methodology is
applied to a data set from the study of communication disorders.
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1. Introduction

Crowdsourcing enables data to be collected quickly, cheaply, and efficiently by sepa-
rating projects into micro-tasks that can be completed in small amounts of time. First
coined by Howe [31], crowdsourcing has become a major tool for scholarly research
since its introduction to the academic sphere in 2008 [7,31]. The use of crowdsourcing
in research spans many fields, including psychology [4,22,47], linguistics [63], astron-
omy [23], education [49], marketing [21], game theory [25], health research [38,65,67],
and speech-language pathology [26,35,40,41], amongmany others. The AmazonMechan-
ical Turk (AMT) crowdsourcing platform (www.MTurk.com) and its workers have been
most widely used and studied by academic researchers to date. Many studies on the utility
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of crowdsourcing have focused on the motivation of AMT workers, or comparing the
population of AMT workers to those in traditional laboratory experiments. These stud-
ies have found that AMT workers are more likely to be female than male, and they have a
median age of roughly 30 years [64]. Most workers do not rely on AMT as their primary
source of incomewithmostUS-basedworkers usingAMT to provide a secondary source of
income [32]. AMTworkers have been described as ‘less naive than researchers assume’ [9],
and ‘more representative of the U.S. population than in-person convenience samples’ [5].

While AMT was developed for commercial use, researchers have exploited its inter-
face, trusted payment system, and built-in advertising with considerable success [8]. The
ease and speed of crowdsourced data collection has been described as ‘revolutionary’, with
instances where traditional laboratory-based experiments were reproduced in roughly
2–3% of the time originally needed [13,63]. However, unlike in traditional laboratory set-
tings, it is nearly impossible to control the conditions under which workers complete tasks.
While crowdsourcing researchers do not dispute that this formof data collectionmay result
in higher variability than traditional methods, they argue that the ability to recruit much
larger samples thanwould ordinarily be available has the potential to overcome these draw-
backs. Moreover, although an individual recruited online is unlikely to display expert-level
performance in a given task, responses aggregated over numerous non-experts generally
converge with responses obtained from experts. This assertion is supported by both com-
putational modeling studies [33] and by experimental studies that validate results obtained
through AMT [13,30,47].

This paper focuses on an application of crowdsourcing in the study of communication
disorders, and specifically on disorders affecting speech production, where it has the poten-
tial to represent a novel solution to a longstanding problem. Communication disorders
affect up to 10% of the total population and are estimated to cost the US economy $150
billion per year [27]. Because effective medical management can reduce these impacts,
research investigating communication disorders represents an important public health pri-
ority. To study the efficacy of speech interventions, researchers must measure changes
in speech production accuracy or intelligibility over time. From a clinical standpoint, it
is most important to know whether a treatment yields a meaningful change in human
listeners’ perception of speech [56]. The conventional approach to obtaining perceptual
ratings of speech data is to rely on certified clinicians [42] or students in speech-language
pathology [39]. While it is desirable to use the expert judgment of certified clinicians,
researchers may find it difficult to offer compensation in line with the typical pay rate of
speech-language pathologists. In such cases, they may resort to non-optimal, and poten-
tially biasing, methods such as using the authors or other study personnel as the source of
perceptual ratings [40]. Crowdsourcing could be an important method to overcome bot-
tlenecks in the process of obtaining valid ratings of clinical speech samples. Recent studies
have validated the use of crowdsourced perceptual ratings against those obtained from
expert listeners [40], compared different elicitation conditions [41], and assessed the relia-
bility of crowdsourced ratings across repeated presentations [26]. Additionally, aggregated
ratings have been found to correlate strongly with acoustic gold standard measures both
when individual raters use a continuous rating scale, such as visual analog scaling [44], and
when individual raters provide binary ratings [40].

Increasing the speed of data collection through crowdsourcing is only advisable if it does
not compromise the quality of the data and any inferences subsequently drawn. Previous
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research has aimed to understand and mitigate the drawbacks of crowdsourcing that arise
from the inherent variability of data obtained from multiple workers [58], specifically if
some workers do not understand the requested task [71], cheat [62] or vary in quality or
expertize [70,72]. Thus, previous work has developed algorithms to estimate the quality of
the workers, allowing for the rejection and blocking of the low-performing workers and
spammers [34,58,69,71]. Dawid and Skene [15] developed an expectation maximization
(EM) algorithm to obtain maximum likelihood estimates of workers’ error rates in rat-
ing tasks when the true rating (gold standard) is unknown [15]. Ipeirotis, Provost, and
Wang [34] used the EM algorithm to assign quality scores to workers who answer multiple
choice tasks by separating true error rates from workers’ biases [34]. Bayesian extensions
of the EM algorithm have been proposed to capture the skill of different workers through
prior distributions that are specified from the results of similar previous experiments or
pilot studies [53,71]. Others have developed algorithms to filter ratings from non-experts
in settings where the quality of the workers are already known [52,72]. Recent work has
combined spectral methods and EM algorithms with an optimal convergence rate up
to a logarithmic factor for inferring the true ratings from the noisy ratings provided by
non-expert crowdsourcing workers [73].

However, most current methods are algorithmic techniques that assign a deterministic
score to classify the workers, instead of providing an underlying probabilistic model for
the data and subsequent ratings obtained.Without quantifying the uncertainty inherent in
such estimates, it is unclear how to assess or compare these algorithms. Probabilisticmodels
and standard inferential tools, however, provide a principled way to assess the appropri-
ateness of model fit for a particular dataset, the reproducibility of results to future datasets,
and the generalizability of these approaches to other contexts.

This paper explores some statistical considerations of crowdsourced data with spe-
cific focus on collecting perceptual ratings of human speech productions. Following this
brief introduction, Section 2 reviews random effects models, and explores their utility in
modeling crowdsourced perceptual ratings collected using both continuous and binary
rating scales. Section 3 presents a simulation study to determine the number of workers
and tasks required to obtain robust estimates of both worker quality and task accuracy.
Section 4 applies this methodology to a dataset consisting of perceptual ratings of speech
produced by children receiving treatment for misarticulation of the English /r/ sound.
Finally, Section 5 presents concluding remarks and discussion of future work.

2. Methodology

In crowdsourced tasks of rating human speech productions, a set of J workers are presented
with I tasks, to rate on a unidimensional continuous trait, such as accuracy or intelligibil-
ity. Thus, each task has some true value, {αi}, that must be estimated from the observed
responses, yij. However, each worker exhibits some degree of skill or bias in the rating task,
which may be characterized by the set of parameters {βj}. Therefore, the ratings obtained
for each task are noisy estimates of the true, underlying value.

Despite the continuous nature of the underlying trait, perceptual ratings of human
speech production, yij, may be obtained through either continuous or binary response
mechanisms. In a continuous response task, workers may be presented with a visual ana-
log scale (VAS) demarcated by two endpoints indicating fully correct and fully incorrect
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productions. The corresponding measurement is calculated as the proportion of the total
VAS length contained between the left endpoint and the worker’s click location. In a binary
task, workers may be presented with two options (e.g. correct or incorrect) and forced to
categorize the task as one or the other. Either of these response mechanisms may be used
to derive valid measures of gradient characteristics of speech, either by averaging VAS
click locations across workers, or by computing the proportion of workers who selected
a particular option (e.g. correct) in a forced-choice task [41].

From a statistical perspective, this data structure falls within the framework of non-
nested random effect models. We assume that the response variables yij are drawn from a
probabilistic model that depends on both the worker and task random effects [20]. Models
for both continuous and binary responses are described below.

2.1. Random effectsmodel for continuous responses

When continuous rating tasks are used, a random effects model for the responses may be
formulated as follows:

yij = μ + αi + βj + εij, εij ∼ N (0, σ 2
y ),

αi ∼ N (0, σ 2
α), βj ∼ N (0, σ 2

β),

yij ∼ N (μ + αi + βj, σ 2
y + σ 2

α + σ 2
β) i = 1, . . . , I, j = 1, . . . , J,

(1)

where yij is the continuous measurement given by worker j to task i, μ is the intercept
describing the overall mean of the response distribution, αi and βj are the main effects in
the response yij for task i and worker j respectively, and εij represents the residual error.
This model requires I+J+3 parameters to be estimated, including the I task-level parame-
ters, the J worker-level parameters, and three variance estimates: σy, σα and σβ . The use of
random effects for both {αi} and {βj} rather than fixed effects allows the specific workers
and tasks to be modeled as a random sample from the set of all possible workers and tasks.
Furthermore, although not considered here, this framework may be extended to adjust for
the effects of worker-level or task-level covariates, such as the age or gender of either the
worker or the speaker producing each task.

The random effects paradigm provides a natural measure of reliability for both workers
and tasks. Since workers vary in their ability to provide accurate task ratings, it is of interest
to measure the reliability of the ratings obtained from a single worker. Additionally, since
the reliability of a single worker’s ratings may be extremely low, it is also of interest to
measure the reliability of ratings averaged across the set of all workers. As defined by Shrout
and Fleiss [60], these reliability measures may be formulated as ICCw(2, 1) and ICCw(2, J)
as follows:

ICCw(2, 1) = σ 2
α

σ 2
α + σ 2

β + σ 2
y
, and ICCw(2, J) = Jσ 2

α

Jσ 2
α + σ 2

β + σ 2
y
. (2)

Similarly, not all tasks may lead to an equal assessment of a worker’s ability. Therefore, it is
also of interest to understand the reliability of a single task (ICCt(2, 1)) or the mean of the
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set of all tasks (ICCt(2, I)) for predicting a worker’s effect, which can be calculated as:

ICCt(2, 1) =
σ 2

β

σ 2
α + σ 2

β + σ 2
y
, and ICCt(2, I) =

Iσ 2
β

σ 2
α + Iσ 2

β + σ 2
y
. (3)

2.2. Random effectsmodel for binary responses

When binary rating tasks are used, a random effects model for the responses may be
formulated through a logistic link function:

logit(Pr[yij = 1]) = μ + αi + βj, αi ∼ N (0, σ 2
α)

βj ∼ N (0, σ 2
β),

yij ∼ Bernoulli (Pr[yij = 1]), i = 1, . . . , I, j = 1, . . . , J,

(4)

where yij is the binary observed response from worker j to task i, and αi and βj are the
main effects for task i and the worker j, respectively. This model requires a total of I+J+2
parameters to be estimated, from the I tasks, J workers, and two variance components: σα

and σβ .
As above, we can obtain an estimate of a worker’s reliability on a given task frommodel

(4). Fleiss’ kappa (κ) coefficient [18], which is a generalization of Scott’s pi statistic [57]
and Cohen’s kappa [11,12] to more than two workers or tasks, calculates the inter-class
reliability above and beyond that which would be expected by chance. As with the ICC for
continuous responses, the κ coefficient ranges from 0 to 1, with higher values indicating
higher levels of reliability. The κ coefficient for binary responses is defined as follows:

κw = pwa − pws
1 − pws

and κ t = pta − pts
1 − pts

, (5)

where

pwa = 1
IJ(J − 1)

( I∑
i=1

1∑
k=0

x2ik − IJ

)
, pws =

1∑
k=0

(
1
IJ

I∑
i=1

xik

)2

,

pta = 1
IJ(I − 1)

⎛
⎝ J∑

j=1

1∑
k=0

z2jk − IJ

⎞
⎠ , and pts =

1∑
k=0

⎛
⎝ 1
IJ

J∑
j=1

zjk

⎞
⎠

2

,

xik is the number of workers that assign category k (k=0,1) to task i, and zjk is the number
of tasks that worker j assigns as a category k (k=0,1).

3. Simulation study

Randomeffectsmodels provide a natural framework to partition the variability in observed
responses to task-level factors and worker-level factors. In practice, researchers must col-
lect ratings from a sufficiently large number of workers on a sufficiently large number of
tasks to ensure that parameter estimates obtained from these models are robust. However,
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there currently do not exist guidelines for the number of workers or tasks needed to obtain
robust parameter estimates, and how these numbers may vary as a function of worker and
task reliability. The following simulation study presents a comparison of model fit for both
continuous and binary response data, and provides guidelines for the numbers of workers
and tasks required to obtain robust estimates of the model parameters.

3.1. Simulation design

The utility of random effects models are compared using a four-way factorial simulation
design, resulting in a total of 24 simulation scenarios. The response mechanism was sim-
ulated to have either continuous (VAS) responses or binary responses. The values of μ,
σα , σβ , and for the continuous response conditions, σy, were chosen so that the reliability
varied from low, to medium, to high, controlling separately for the reliability of tasks and
the reliability of workers.

For each combination of the first three factors, either the number of workers or tasks
was fixed at one of four values (10, 25, 50, 100) and the other was varied from 1 to 80.
The factor that was varied, which we deem the focus of the simulation scenario, was then
used to determine the minimum number of either tasks or workers required. For each
combination of the simulation factors, 100 replications were generated, resulting in a total
of 768,000 simulated datasets. A full list of parameters used may be found in Table 1.

3.2. Simulation statistics

Each simulated dataset consisted of an n × mmatrix Y = (yij) where the n rows represent
tasks and them columns represent workers. For each simulated dataset, the corresponding
random effects model was fit, and, given that the true value of the parameters is known, the
mean squared error (MSE) for each parameter of the model was estimated by calculating
the mean over all replicates of the squared difference between the estimator and the true
value. However, the MSE was expected to generally decrease as the number of workers or
tasks (r), depending on the focus of the scenario, increased from 1 to 80. Thus, a utility
function based on cost was specified with the aim of selecting the minimum number of
workers or tasks required. Specifically, this function balances the accuracy of the estimates
(through theMSE) with a user-defined cost of prolonging the study, and its minimum pro-
vides the optimal number of workers or tasks required to estimate themodel parameters. In
paid crowdsourcing tasks, such as those through AMT, this cost may include the expected
increases in fees, as well as the additional time needed to collect a larger amount of data.

As recommended in [50], we employed an exponential utility function so that a unique
minimum could be identified. Specifically, we defined the utility function to be:

u(r) = −�MSE + (exp(ωr) − 1), (6)

where exp(ωr) − 1 is the penalty associated with increased costs, r is the number of work-
ers or tasks, and ω is an imposed weight representing the cost of additional units. The
quantity �MSE is the difference in average MSE when r is increased by one unit, i.e.
�MSE = MSEr − MSEr−1 for the fit of the random effect model. Thus, the utility func-
tion has a similar structure as an information criterion measure, i.e. accuracy of the model
(in this case, �MSE) plus a penalty term (in this case, exp(ωr) − 1). The utility function
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Table 1. Parameters used in the simulation study for the mixed models (1) and (4). Scenarios labeled
through a four letter code. The first letter indicates whether the scenario is focused on calculating the
number of workers (w) or tasks (t), the second letter is the type of response—VAS (v) or binary (b), the
third letter indicates if the reliability is with regard to a single worker (w), i.e. ICCw(2,1) and κw , or task
(t), i.e. ICCt(2,1) and κ t , and the last letter indicates the level of reliability—low (l), medium (m), and high
(h).

Parameters

Scen. Focus Response μ σα σβ σy Reliability

wvtl Worker VAS 0.593 0.267 0.098 0.224 0.074
wvtm 0.250 0.025 0.100 0.075 0.615
wvth 0.250 0.010 0.100 0.010 0.980
wvwl 0.650 0.150 0.350 0.050 0.153
wvwm 0.593 0.267 0.098 0.224 0.544
wvwh 0.250 0.150 0.010 0.050 0.896
wbtl Binary −1.043 2.827 1.055 0.054
wbtm −1.043 0.925 2.025 0.454
wbth −1.043 0.425 3.675 0.795
wbwl −1.043 1.025 0.825 0.131
wbwm −1.043 2.827 1.055 0.408
wbwh −1.043 4.325 0.150 0.811
tvtl Task VAS 0.593 0.267 0.098 0.224 0.074
tvtm 0.250 0.025 0.100 0.075 0.615
tvth 0.250 0.010 0.100 0.010 0.980
tvwl 0.650 0.150 0.350 0.050 0.153
tvwm 0.593 0.267 0.098 0.224 0.544
tvwh 0.250 0.150 0.010 0.050 0.896
tbtl Binary −1.043 2.827 1.055 0.054
tbtm −1.043 0.925 2.025 0.454
tbth −1.043 0.425 3.675 0.795
tbwl −1.043 1.025 0.825 0.131
tbwm −1.043 2.827 1.055 0.408
tbwh −1.043 4.325 0.150 0.811

depends on the incremental change in MSE when a new rater or task is included in the
study, rather than the value of theMSE itself, in order to compare the gain in goodness-of-fit
with the cost of including a new rater or task.

3.3. Simulation results

The simulation study provides insight into the adequacy of model fit, as well as the opti-
mal number of workers and/or tasks required to provide accurate parameter estimates
under various conditions. For the simulated data, the random effects model was able to
adequately recover the true parameter values. A summary of theMSE across all 24 simula-
tion scenarios is provided in Appendix A.1 (Tables A1 to A4). The averageMSE values over
the scenarios focusing on the number of workers ranged from 0.0035 (n=10) to 0.0011
(n=100) for VAS response data, and from 0.3341 (n=10) to 0.0684 (n=100) for binary
response data indicating goodmodel fit. The averageMSE values over the scenarios focus-
ing on the number of tasks were generally higher than for the scenarios focusing on the
number of workers, ranging from 0.0072 (n=10) to 0.0029 (n=100) for VAS response
data, and from 0.4003 (n=10) to 0.0573 (n=100) for binary response data.

In general, the MSE was higher for binary response data than for the corresponding
scenario with VAS response data. This difference was largest in the scenarios where the
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responses were generated to have low reliability and for small sample sizes (n = 10, m =
10). This difference may be due to a loss of information from the binary categorization
process of the underlying continuous trait.

Figures 1 shows the empirical MSE for VAS response data (scenarios wvtl, wvtm and
wvth) and binary response data (scenarios wbtl, wbtm and wbth) when varying the num-
ber m of workers over different reliability levels with regard to a single task. Similarly,
Figure 2 shows the empirical MSE for VAS response data (scenarios tvwl, tvwm and tvwh)
and binary response data (scenarios tbwl, tbwm and tbwh) when varying the number n of
tasks over different reliability levels with regard to a single worker. As expected, the MSE
generally decreased as the number of workers,m, the number of tasks, n, or the reliability
increased.

To obtain the minimum number of workers or tasks, a utility convex function, as
described above, was optimized. Figure 3 provides an illustrative example of the utility
function for scenarios wvtl (left graph), wbwh (middle graph), and wbwh (right graph) at
different number of workers and tasks. The results obtained depended on the exact speci-
fication of the weight in the utility functionWe tested the impact of weight in a range from
ω ∈ (0, 2), from no influence of the cost (ω = 0) to high influence (ω = 2, which results
in an increase of the effect of the penalty by a exp(2r) factor for each unit increase of a
task or a worker). We also note here that we intentionally chose positive weights because
they represent the cost, which are always positive. The impact of setting different weights
did not lead to largely different results. In this simulation study and the application below,

Figure 1. Simulation study. Number of workers: MSE of the worker effect estimator {βj} as a function
of the number of workers at different single-task reliability levels for VAS responses (top) and binary
responses (bottom) across 10, 25, 50 and 100 tasks.
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Figure 2. Simulation study. Number of tasks: MSE of the task effect estimator {αi} as a function of the
number of tasks at different single-worker reliability levels for VAS responses (top) and binary responses
(bottom) across 10, 25, 50 and 100 workers.

Figure 3. Utility function: Utility functions for scenarios wvtl (left graph) and wbwh (middle graph) at
different number of workers n. Utility functions at n= 50 across different cost weights ω for scenario
wbwh (right graph).
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Table 2. Number ofworkers and tasks required for VAS andbinary scales. The first half of the table shows
the number of workersm at different number of tasks n. The second half shows the number of tasks n at
different number of workersm.

Number of Workers Required (m)

Scenario Focus Response n = 10 n = 25 n = 50 n = 100

wvtl Worker VAS 39 37 35 26
wvtm 32 30 21 13
wvth 19 15 9 8
wvwl 44 39 38 35
wvwm 34 33 32 31
wvwh 31 29 26 25
wbtl Binary 41 39 37 30
wbtm 36 32 24 15
wbth 22 18 15 11
wbwl 43 40 39 37
wbwm 36 34 33 33
wbwh 29 28 27 25

Number of Tasks Required (n)

Scenario Focus Response m = 10 m = 25 m = 50 m = 100

tvtl Task VAS 67 59 53 57
tvtm 59 53 40 33
tvth 28 23 21 18
tvwl 62 58 52 47
tvwm 58 55 52 45
tvwh 39 35 31 28
tbtl Binary 66 55 54 52
tbtm 61 51 38 32
tbth 31 25 23 20
tbwl 65 60 57 50
tbwm 61 58 49 41
tbwh 36 32 27 25

median of 32.5. Similarly, the number of tasks required depends on the response mecha-
nism, the number of workers hired, and the reliability of each worker and each task. For
VAS response data, the number of tasks required ranged from 18 to 62 with a median of
42.5. For binary response data, the number of tasks required ranged from 20 to 66 with a
median of 49.5.

4. Application: /r/ misarticulation in children

Speech sound disorders in childhood can pose a barrier to participation in social and
academic activities [29], which may have negative ramifications that can persist through-
out their lifespan [43]. Developmental speech errors typically resolve by the time children
reach eight or nine years of age, but errors persist past this point in a subset of children [59].
One of the most common residual errors is misarticulation of the North American English
rhotic /r/ [55]. These persisting errors pose a particular challenge for speech-language
pathologists, who have called for novel and improved treatment methods for use with this
population. In order to arrive at improved treatment methods, it is essential to be able to
obtain precise measurements documenting changes in children’s productions of /r/ over
time.
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Recent research has shown promising results from the use of crowdsourcing to collect
non-expert ratings for the study of children’smisarticulated /r/ sounds (see e.g. [26,40,41]),
in particular when the non-expert listeners were recruited through Amazon Mechanical
Turk (AMT). These studies have investigated the utility of both continuous and binary
response mechanisms, and the subsequent gradient measures that may be derived from
the ratings obtained. In order to illustrate the application of the model-based approaches
introduced in Section 2, a crowdsourced data set was analyzed containing n=23,280 rat-
ings collected on I=40 speech tokens (tasks) consisting of single words produced by 12
children at varying stages in the process of remediation for misarticulation of the North
American English rhotic /r/. The ratings were obtained from J=291 AMT non-expert
raters (workers) who each rated the stimulus set twice, once using VAS and once using a
binary responsemechanism. The VASmechanism consisted of a continuous line anchored
on one side with the label ‘correct /r/’ and on the other with ‘incorrect /r/’. The binary task
used two buttons, with the same labels that anchored the VAS task, resulting in a forced
choice of one category over another. Data collection was completed in 21.4 hours and cost
$722, including Amazon fees. Originally, a total of J=726 workers were recruited, but
287 participants did not meet all demographic criteria (e.g. native speaker of American
English), 136 participants did not exceed chance-level performance on attentional catch
trials, and 12 participants had missing or otherwise unusable data. The final set of J=291
participants had a mean age of 32.4 years, with a standard deviation of 9.8 years.

This dataset was previously analyzed to compare the results of binary versus VAS rating
scales when aggregating responses over a large number of non-expert listeners recruited
via crowdsourcing [41]. The previous study found that both VAS and binary response
mechanisms provided valid gradient measures, but showed high levels of variability in the
response styles and levels of performance of the AMT workers. However, this study did
not account for these differences across workers in the computation of the token estimates.
Therefore, the present study extends the methodology previously used from simple means
to random effect models.

The random effect model formulated in Equation (1) was fit to the 11,640 ratings
obtained through the VAS response mechanism. The model was fit using restricted
maximum likelihood [28,48,54,66] to avoid bias on the variance components estimates
and was numerically optimized through a penalized iteratively reweighted least squares
algorithm [2]. Similarly, the non-nested logistic multilevel regression model formulated in
Equation (4) was fit to the 11,640 ratings obtained through the binary responsemechanism
via the numerical optimization of the likelihood function based on the Laplace approxima-
tion [36,61]. All statistical models were fit using the lme4 package [3] in R version 3.2.3
[51]. A glossary of the commands used is provided in Appendix 2.

An acoustic measure of rhoticity, F3-F2 distance, was also collected on the 40 speech
tokens. Previous research has reported that the North American English rhotic /r/ can
be distinguished from other sonorant phonemes by the low height of the third formant
(F3) [16,24] and a relatively high second formant (F2) [16,19], which brings F2 and F3
particularly close together [6,14]. Thus, the difference between these formants, F3-F2, is a
commonly used acoustic measure of /r/ quality or rhoticity, with lower values indicating a
higher degree of rhoticity [19]. Previous studies investigating the utility of crowdsourced
ratings collected via AMT, including [26,40,41], have shown that both the mean VAS click
location across listeners and the proportion of listeners marking a token as correct are
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highly correlated with F3-F2 distance. Thus, F3-F2 distance in Hz may be considered as a
gold standard for the purpose of this example. Therefore, this measure was used to deter-
mine the appropriateness of the model fit by calculating the Spearman’s rank correlation
coefficient between the token-level estimates produced by themodel and the gold standard,
F3-F2 distance.

Token effect estimates derived from ratings obtained from both the VAS and binary
response mechanisms are presented in Figure 4. Figure 4 shows the relationship between
the token effects estimated from the VAS and binary models respectively, and the acoustic
measure, F3-F2. In both cases, the Spearman’s rank correlation coefficient, ρ, indicates a
strong correlation between the crowdsourced and acoustic measures (ρ = 0.81, 0.80). The
high values of these correlation coefficients indicate that the estimates produced from the
random effects model are strongly related to the gold-standard, thus, confirmingmodel fit.
Furthermore, these correlations are slightly higher than those previously found in McAl-
lister Byun et al. [41], indicating that the more sophisticated approach to modeling used
in this study may have improved the validity of the token effects obtained. Similarly, the
relationship between the token effect estimates derived from ratings obtained from the
VAS and binary response mechanisms are compared in rightmost subfigure of Figure 4,
indicating near perfect agreement (ρ = 0.98).

Results from the model fit to the VAS ratings showed high levels of variation among the
speech tokens (σ̂α = 0.267), and low levels of variation among the raters (σ̂β = 0.098) with
a residual standard deviation of σ̂y = 0.224. Thus, the reliability of ratings obtained from
a single worker was moderate (ICCw(2, 1) = 0.544), but when aggregated over the set of
all workers, the reliability increased to ICCw(2, 291) = 0.997. Similarly, the reliability of
a single task for predicting a given worker effect was extremely low (ICCt(2, 1) = 0.074),
but increased to ICCt(2, 40) = 0.762 when the mean of all the tokens was used. In order
to check the robustness of the model fit, we note that the parameter estimates obtained
in this example were intentionally chosen as one of the simulated scenarios (wvtl). As
shown in Table A1 in Appendix A.1, the simulation study shows proper recovery of the
true parameter values.

Similarly, the model fit to the binary ratings resulted in estimated variance components
of σ̂ logit

α = 2.827, and σ̂
logit
β = 1.055 on the logit scale, with corresponding standard devi-

ations of σ̂α = 0.707 and σ̂β = 0.264 on the probability scale for the speech tokens and

Figure 4. Misarticulation of Phoneme /r/ in Children: Correlation between between token effects in VAS
model (Equation (1)) and F3-F2 distance (left graph), token effects in binary model (Equation (4)) and
F3-F2 distance (middle graph), and token effects in VAS model and binary model (right graph).
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raters, respectively [20, Section 5.2]. The reliability of the ratings obtained from a single
worker and a single task are κw = 0.408 and κ t = 0.054. Aswith theVAS ratings, themodel
fit in this example can be confirmed through the simulation study within scenario wbtl.

To assess the appropriateness of the models fit to the data, the conditional R2 statistic
was calculated. Although there are several approaches to calculatedR2 statistics for random
effects models (see e.g. [10,17,37,46]), recently Nakagawa (2013) [45] derived an easily
interpretable conditional R2 (R2c ) measure, which describes the proportion of variance
explained by fixed and random factors. This measure is ‘less susceptible to the common
problems that plague alternative measures of R2’ [45]. The R2c statistic was calculated using
the MuMIn package [1]. The values of the R2c for the VAS and binary models were 0.618
and 0.735, respectively, which show that the binary model fit better the data than the VAS
model, and but both models adequately fit the data at hand.

Lastly, to assess the minimum number of non-expert raters required to achieve opti-
mal performance, a bootstrap analysis was conducted varying the number of raters from
m=3 to m=80. For each level of m, 1000 bootstrap resamples of the AMT raters were
drawn and a random effects model was fit. From each model fit, Spearman’s rank corre-
lation was calculated between the token random effects and the acoustic measure, F3-F2
distance. Figure 5 shows the mean correlation obtained, with a 95% empirical pointwise
confidence intervals, for both VAS and binary ratings, along with the results obtained from
the full sample of raters. For VAS ratings, the correlation obtained from the full set of raters
(ρ = 0.81) falls within the 95% bootstrapped CI when the number of workers exceeds 34.
For binary ratings, the correlation obtained from the full set of raters (ρ = 0.80) falls within
the 95%bootstrappedCIwhen the number of workers exceeds 36. These values are roughly
equivalent to those obtained from the corresponding simulation scenarios when using the
utility function approach (wvtl and wbtl, respectively). However, these recommendations
are significantly larger than the recommendations ofm=9 found in the literature [26,40].
This can be attributed to differing standards for equivalent results, or in other words, a dif-
ferent measure of how costly additional workers are. For practicality in clinical application,

Figure 5. Bootstrap analysis: Mean Spearman’s correlation and 95% CI between F3–F2 distance and
token effects in VAS model (Equation (1)) (left graph), and token effects in binary model (Equation (4))
(right graph) over 1000 bootstrap resamples, form= 1 tom= 80workers. Horizontal line indicates value
obtained from the full set ofm = 291 workers.
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these previous studies aimed to find the absolute minimum number of workers required to
obtain results roughly equivalent to norms found in the existing literature. Therefore, it can
be concluded that the guidelines presented in this paper can be adjusted if any expected
loss in performance is within an acceptable tolerance for the application in question.

5. Discussion

Crowdsourcing allows researchers to collect data more efficiently than traditional labora-
tory settings. By capitalizing on crowdsourcing platforms such as AMT, researchers can
draw workers from anywhere in the world to contribute ratings to micro-tasks. How-
ever, the varying quality and attentiveness of these workers, as well as the different skill
sets required to complete each task, result in noisy data that must be summarized to
obtain estimates of the parameters of interest. Random effects models provide a simple and
natural solution that accounts for the different potential sources of variability while pro-
viding estimates of task- and worker-level parameters. This paper explored some statistical
considerations when applying random effects models to crowdsourced datasets.

Section 3 presented a simulation study that assessed the performance of random effects
models in estimating both worker quality and task accuracy in a variety of circumstances.
These simulations yield preliminary guidelines for the numbers of workers and tasks
required to ensure adequate parameter recovery under differing levels of reliability. The
number of workers required to obtain optimal parameter estimates decreased as the num-
ber of tasks assigned increased, and as the reliability of the worker or task increased.
Similarly, the number of tasks required to obtain optimal parameter estimates decreased as
the number or reliability of the workers increased. Furthermore, in comparable scenarios,
ratings obtained from binary response mechanisms showed higher levels of uncertainty
than ratings obtained from VAS response mechanisms. This indicates that, in this case,
binary response mechanisms require a larger number of workers and/or tasks to obtain
equivalent results.

The exact results of the simulation study depended on the application of an exponen-
tial utility function. This family of utility functions is well-known and provides an easy
interpretation for practitioners because it creates a trade-off between cost (penalty) and
accuracy (�MSE). However, researchers may choose different utility functions that bet-
ter suit their needs, such as power utility functions [68]. The choice of utility function
will depend on the specific features of a crowdsourcing experiment, e.g. whether each new
worker or task is very costly. The application of alternative utility functions and an assess-
ment of the implications of each choice is left beyond the scope of this paper and may be
investigated as future work.

Section 4 showed how random effects models may be applied to real data sets, and
Appendix 2 provides a description of the commands inR that can be used to reproduce our
results. While other research has focused on achieving optimal efficiency, the algorithms
proposed are often complicated and fall beyond the scope of what quantitative researchers
who lack specific programing or statistical knowledge may be able to implement indepen-
dently. Since one goal of crowdsourcing is to empower researchers to run experiments
or collect data without the hurdles that limit traditional methods, random effects models
may provide a framework that is both adequate and simple to use. Furthermore, the mod-
els implemented in this paper may be easily extended to answer other questions that are
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important to researchers by including worker-level or task-level covariates, such as the age
or gender of the worker or the speaker producing each task, or allowing for heteroscedas-
ticity in the variance of the random effects to estimate different levels of Gaussian noise for
each worker or task.

Crowdsourcing provides a novel opportunity for researchers to collect data in an effi-
cient manner. However, the statistical community has given relatively little attention to
potential problems that may arise when crowdsourcing is used. This paper provides some
statistical considerations regarding the numbers of workers and tasks that are required, and
the types of models that may be appropriate for analyzing crowdsourced data.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Moore-Sloan Data Sciences Environment grant from New York
University, the New York University Research Challenge Fund Program, the National Institute of
Health (R03DC 012883), and by the Marsden grant number E2987-3648 from the Royal Society of
New Zealand.

ORCID

Daniel Fernández http://orcid.org/0000-0003-0012-2094
Daphna Harel http://orcid.org/0000-0001-7015-5989

References

[1] K. Bartoń, Mumin: Multi-model inference. r package version 1.9.13, The Comprehensive R
Archive Network (CRAN), Vienna, Austria (2013).

[2] D. Bates, Linear mixed model implementation in lme4, Manuscript, University of Wisconsin 15
(2007).

[3] D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using lme4,
J. Stat. Softw. 67 (2015), pp. 1–48.

[4] T.S. Behrend,D.J. Sharek,A.W.Meade, andE.N.Wiebe,The viability of crowdsourcing for survey
research, Behav. Res. Methods 43 (2011), pp. 800–813.

[5] A.J. Berinsky, G.A. Huber, and G.S. Lenz, Evaluating online labor markets for experimental
research: Amazon.com’s mechanical turk, Polit. Anal. 20 (2012), pp. 351–368.

[6] S. Boyce and C.Y. Espy-Wilson, Coarticulatory stability in american english/r, J. Acoust. Soc.
Am. 101 (1997), pp. 3741–3753.

[7] D.C. Brabham, Crowdsourcing as a model for problem solving an introduction and cases,
Convergence 14 (2008), pp. 75–90.

[8] M. Buhrmester, T. Kwang, and S.D. Gosling, Amazon’s mechanical turk a new source of
inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6 (2011), pp. 3–5.

[9] J. Chandler, P. Mueller, and G. Paolacci, Nonna"ıveté among amazon mechanical turk work-
ers: Consequences and solutions for behavioral researchers, Behav. Res. Methods. 46 (2014), pp.
112–130.

[10] J. Cheng, L.J. Edwards, M.M. Maldonado-Molina, K.A. Komro, and K.E. Muller, Real longitu-
dinal data analysis for real people: Building a good enough mixed model, Stat. Med. 29 (2010),
pp. 504–520.

[11] J. Cohen,A coefficient of agreement for nominal scale, Educ. Psychol.Meas. 20 (1960), pp. 37–46.

http://orcid.org/0000-0003-0012-2094
http://orcid.org/0000-0001-7015-5989


16 D. FERNÁNDEZ ET AL.

[12] J. Cohen,Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial
credit, Psychol. Bull. 70 (1968), p. 213.

[13] M.J. Crump, J.V. McDonnell, and T.M. Gureckis, Evaluating Amazon’s mechanical turk as
a tool for experimental behavioral research, PLoS One 8 (2013), p. e57410. Available at
http://dx.doi.org/10.1371%2Fjournal.pone.0057410.

[14] R.M. Dalston, Acoustic characteristics of english/w, r, l/spoken correctly by young children and
adults, J. Acoust. Soc. Am. 57 (1975), pp. 462–469.

[15] A.P. Dawid and A.M. Skene, Maximum likelihood estimation of observer error-rates using the
EM algorithm, Appl. Stat. 1 (1979), pp. 20–28.

[16] P. Delattre andD.C. Freeman,A dialect study of american r’s by x-raymotion picture, Linguistics
6 (1968), pp. 29–68.

[17] L.J. Edwards, K.E. Muller, R.D.Wolfinger, B.F. Qaqish, and O. Schabenberger,An r2 statistic for
fixed effects in the linear mixed model, Stat. Med. 27 (2008), pp. 6137–6157.

[18] J.L. Fleiss,Measuring nominal scale agreement among many raters., Psychol. Bull. 76 (1971), p.
378.

[19] P. Flipsen, L.D. Shriberg, G. Weismer, H.B. Karlsson, and J.L. McSweeny, Acoustic phenotypes
for speech–genetics studies: Reference data for residual /3/distortions, Clin. Linguist. Phon. 15
(2001), pp. 603–630.

[20] A. Gelman and J. Hill, Data Analysis using Regression and Multilevel/hierarchical Models,
Cambridge University Press, New York, 2006.

[21] A. Ghose, P.G. Ipeirotis, and B. Li, Designing ranking systems for hotels on travel search engines
by mining user-generated and crowdsourced content, Marketing Sci. 31 (2012), pp. 493–520.

[22] J.K. Goodman, C.E. Cryder, and A. Cheema, Data collection in a flat world: The strengths and
weaknesses of mechanical turk samples, J. Behav. Decis. Mak. 26 (2013), pp. 213–224. Available
at http://dx.doi.org/10.1002/bdm.1753.

[23] G. Graham, J. Cox, B. Simmons, C. Lintott, K. Masters, A. Greenhill, and K. Holmes, How
is success defined and measured in online citizen science: A case study of zooniverse projects,
Comput. Sci. Eng. 99 (2015), p. 22.

[24] R. Hagiwara, Acoustic realizations of American/r/as produced by women and men, Vol. 90,
Phonetics Laboratory, Dept. of Linguistics, UCLA, 1995.

[25] P.R. Hahn, I. Goswami, and C.F.Mela,A bayesian hierarchical model for inferring player strategy
types in a number guessing game, Ann. Appl. Stat. 9 (2015), pp. 1459–1483.

[26] D. Harel, E.R. Hitchcock, D. Szeredi, J. Ortiz, and T. McAllister Byun, Finding the experts in the
crowd: Validity and reliability of crowdsourced measures of children’s gradient speech contrasts,
Clin. Linguist. Phon. 31 (2017), pp. 104–117.

[27] J.P. Harris, J.P. Anderson, and R. Novak,An outcomes study of cochlear implants in deaf patients.
Audiologic, economic, and quality-of-life changes, Arch. Otolaryngol. Head Neck Surg. 121
(1995), pp. 398–404.

[28] D.A. Harville,Maximum likelihood approaches to variance component estimation and to related
problems, J. Am. Stat. Assoc. 72 (1977), pp. 320–338.

[29] E.R. Hitchcock, D. Harel, and T. McAllister Byun, Social, emotional, and academic impact of
residual speech errors in school-aged children: A survey study, Semin. Speech. Lang. 36 (2015),
pp. 283–294.

[30] J.J. Horton, D.G. Rand, and R.J. Zeckhauser, The online laboratory: Conducting experiments in
a real labor market, Exp. Econ. 14 (2011), pp. 399–425.

[31] J. Howe, The rise of crowdsourcing, Wired Mag. 14 (2006), pp. 1–4.
[32] P.G. Ipeirotis,Demographics ofmechanical turk (2010). Available at http://hdl.handle.net/2451/29585.
[33] P.G. Ipeirotis, F. Provost, V.S. Sheng, and J.Wang,Repeated labeling usingmultiple noisy labelers,

Data. Min. Knowl. Discov. 28 (2014), pp. 402–441.
[34] P.G. Ipeirotis, F. Provost, and J. Wang, Quality management on amazon mechanical turk, Pro-

ceedings of the ACM SIGKDD Workshop on Human Computation, ACM, Washington DC,
DC, USA – July 25–28, 2010, pp. 64–67.

[35] K.L. Lansford, S.A. Borrie, and L. Bystricky,Use of crowdsourcing to assess the ecological validity
of perceptual-training paradigms in dysarthria, Am. J. Speech Lang. Pathol. 25 (2016), pp. 1–7.

http://dx.doi.org/10.1371{%}2Fjournal.pone.0057410
http://dx.doi.org/10.1002/bdm.1753
http://hdl.handle.net/2451/29585


JOURNAL OF APPLIED STATISTICS 17

[36] Y. Lee and J.A. Nelder, Hierarchical generalised linear models: A synthesis of generalised linear
models, random-effect models and structured dispersions, Biometrika 88 (2001), pp. 987–1006.

[37] H. Liu, Y. Zheng, and J. Shen, Goodness-of-fit measures of r 2 for repeated measures mixed effect
models, J. Appl. Stat. 35 (2008), pp. 1081–1092.

[38] M.A. Luengo-Oroz, A. Arranz, and J. Frean, Crowdsourcing malaria parasite quantification: An
online game for analyzing images of infected thick blood smears, J. Med. Internet. Res. 14 (2012),
p. e167.

[39] E. Maas and K.A. Farinella, Random versus blocked practice in treatment for childhood apraxia
of speech, J. Speech Lang. Hear. Res. 55 (2012), pp. 561–578.

[40] T. McAllister Byun, P.F. Halpin, and D. Szeredi, Online crowdsourcing for efficient rating of
speech: A validation study, J. Commun. Disord. 53 (2015), pp. 70–83.

[41] T. McAllister Byun, D. Harel, P.F. Halpin, and D. Szeredi, Deriving gradient measures of child
speech from crowdsourced ratings, J. Commun. Disord. 64 (2016), pp. 91–102.

[42] T. McAllister Byun and E.R. Hitchcock, Investigating the use of traditional and spectral biofeed-
back approaches to intervention for/r/misarticulation, Am. J. Speech Lang. Pathol. 21 (2012),
pp. 207–221.

[43] J. McCormack, S. McLeod, L. McAllister, and L.J. Harrison, A systematic review of the associ-
ation between childhood speech impairment and participation across the lifespan, Int. J. Speech.
Lang. Pathol. 11 (2009), pp. 155–170.

[44] B. Munson, J.M. Johnson, and J. Edwards, The role of experience in the perception of pho-
netic detail in children’s speech: a comparison between speech-language pathologists and clinically
untrained listeners, Am. J. Speech Lang. Pathol. 21 (2012), pp. 124–139.

[45] S. Nakagawa and H. Schielzeth, A general and simple method for obtaining r2 from generalized
linear mixed-effects models, Methods Ecol. Evol. 4 (2013), pp. 133–142.

[46] J.G. Orelien and L.J. Edwards, Fixed-effect variable selection in linear mixed models using r2
statistics, Comput. Stat. Data Anal. 52 (2008), pp. 1896–1907.

[47] G. Paolacci, J. Chandler, and P.G. Ipeirotis, Running experiments on amazon mechanical turk,
Judgm. Decis. Mak. 5 (2010), pp. 411–419.

[48] H.D. Patterson and R. Thompson, Recovery of inter-block information when block sizes are
unequal, Biometrika 58 (1971), pp. 545–554.

[49] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller, Tuned models of peer assessment in
moocs, preprint (2013). Available at arXiv:1307.2579.

[50] J.W. Pratt, Risk aversion in the small and in the large, Econometrica 32 (1964), pp. 122–136.
[51] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, Austria (2015). Available at https://www.R-project.org/.
[52] V.C. Raykar, S. Yu, L.H. Zhao, A. Jerebko, C. Florin, G.H. Valadez, L. Bogoni, and L. Moy,

Supervised learning from multiple experts: Whom to trust when everyone lies a bit, Proceedings
of the 26thAnnual International Conference onMachine Learning,Montreal, QC,ACM, 2009,
pp. 889–896.

[53] V.C. Raykar, S. Yu, L.H. Zhao, G.H. Valadez, C. Florin, L. Bogoni, and L. Moy, Learning from
crowds, J. Mach. Learn. Res. 11 (2010), pp. 1297–1322.

[54] G.K. Robinson, That blup is a good thing: The estimation of random effects, Stat. Sci. 6 (1991),
pp. 15–32.

[55] D.M. Ruscello, Visual feedback in treatment of residual phonological disorders, J. Commun.
Disord. 28 (1995), pp. 279–302.

[56] S.K. Schellinger, B. Munson, and J. Edwards, Gradient perception of children’s productions of /s/
and /?/: A comparative study of rating methods, Clin. Linguist. Phon. (2016), pp. 1–24. Available
at http://dx.doi.org/10.1080/02699206.2016.1205665, PMID: 27552446.

[57] W. Scott, Reliability of content analysis: The case of nominal scale coding, Public Opin. Q. 19
(1955), p. 321.

[58] V.S. Sheng, F. Provost, and P.G. Ipeirotis, Get another label? Improving data quality and data
mining using multiple, noisy labelers, Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2008, pp. 614–622.

http://https://www.R-project.org/
http://dx.doi.org/10.1080/02699206.2016.1205665


18 D. FERNÁNDEZ ET AL.

[59] L.D. Shriberg, F.A. Gruber, and J. Kwiatkowski,Developmental phonological disorders III: Long-
term speech-sound normalization, J. Speech Lang. Hear. Res. 37 (1994), pp. 1151–1177.

[60] P. Shrout and J. Fleiss, Intraclass correlations: Uses in assessing rater reliability., Psychol. Bull. 86
(1979), p. 420.

[61] Z. Shun, Another look at the salamander mating data: A modified laplace approximation
approach, J. Am. Stat. Assoc. 92 (1997), pp. 341–349.

[62] A. Sorokin and D. Forsyth, Utility data annotation with amazon mechanical turk, First IEEE
Workshop on Internet Vision at CVPR’08, 2008, 51 (2008), p. 820.

[63] J. Sprouse, A validation of amazon mechanical turk for the collection of acceptability judgments
in linguistic theory, Behav. Res. Methods 43 (2011), pp. 155–167.

[64] S. Suri and D.J. Watts, Cooperation and contagion in web-based, networked public goods
experiments, PLoS One 6 (2011), p. e16836.

[65] M. Swan, Crowdsourced health research studies: an important emerging complement to clinical
trials in the public health research ecosystem, J. Med. Internet. Res. 14 (2012).

[66] R. Thompson,Maximum likelihood estimation of variance components, Statistics 11 (1980), pp.
545–561.

[67] A.M. Turner, K. Kirchhoff, and D. Capurro, Using crowdsourcing technology for testing multi-
lingual public health promotion materials, J. Med. Internet. Res. 14 (2012), p. e79.

[68] P.P. Wakker, Explaining the characteristics of the power (crra) utility family, Health. Econ. 17
(2008), pp. 1329–1344.

[69] J. Wang, P.G. Ipeirotis, and F. Provost, Quality-based pricing for crowdsourced workers (2013).
NYUCBAWorking Paper CBA-13-06. Available at http://hdl.handle.net/2451/31833.

[70] P. Welinder, S. Branson, P. Perona, and S.J. Belongie, The multidimensional wisdom of crowds,
Advances inNeural InformationProcessing Systems,Vancouver, Canada, 2010, pp. 2424–2432.

[71] P. Welinder and P. Perona,Online crowdsourcing: Rating annotators and obtaining cost-effective
labels. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Com-
puter Society Conference (pp. 25–32). IEEE.

[72] J. Whitehill, T.F. Wu, J. Bergsma, J.R. Movellan, and P.L. Ruvolo, Whose vote should count
more: Optimal integration of labels from labelers of unknown expertise, Advances in Neural
Information Processing Systems, Vancouver, Canada, 2009, pp. 2035–2043.

[73] Y. Zhang, X. Chen, D. Zhou, and M.I. Jordan, Spectral methods meet EM: A provably optimal
algorithm for crowdsourcing, Advances in Neural Information Processing Systems, Montreal,
Canada, 2014, pp. 1260–1268.

Appendix 1. Results simulation study

A.1 VAS responses

The following tables provide detailed results from the simulation study in Section 3. Tables A1
and A2 provide the estimates and MSE for the parameters of the model formulated in (1) for VAS
responses focused on number of workers and tasks, respectively.

A.2 Binary responses

The following tables provide detailed results from the simulation study in Section 3. Tables A3
and A4 provide the estimates andMSEf for the parameters of the model formulated in (4) for binary
responses focused on number of workers and tasks, respectively.

Appendix 2. Glossary of commands in R

The following appendix provides the commands used to fit the models in Section 4.We fit the linear
mixed-effects model (1) to the VAS rating data using the command lmer from the R package lme4
[3] as follows:

http://hdl.handle.net/2451/31833
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fmVAS <- lmer(VAS ~ (1|token) + (1 | rater), data=VASdata)

where VASdata is the data set consisting of 40 columns representing the speech token and 291
rows representing the rater.

Similarly, we fit the generalized linear mixed-effects model (4) to the binary rating data using the
command glmer from the same R package lme4 as follows:

fmBIN <- glmer(Binary ~ (1|token) + (1 | rater),
family = binomial("logit"), data=BINdata)

Table A1. Simulation study: VAS responses.Workers: Estimates andMSE of the interceptμ and variance
components σα , σβ , and σy of the model formulated in (1). Scenarios shown are those from Table 1
focused on calculating the number of workers at different reliability levels (low, medium, and high) with
regard to a single task (wvtl, wvtm, and wvth) or worker (wvwl, wvwm, and wvwh) for VAS responses.
The results are averaged over all replicates.

True n= 10 n= 25 n= 50 n= 100

Scen. param. Estim. MSE Estim. MSE Estim. MSE Estim. MSE

wvtl μ = 0.593 0.559 0.005 0.559 0.003 0.555 0.002 0.573 0.001
σα = 0.267 0.279 0.010 0.279 0.009 0.275 0.008 0.273 0.008
σβ = 0.098 0.090 0.002 0.093 0.001 0.094 0.001 0.099 0.002
σy = 0.224 0.222 0.002 0.222 0.002 0.222 0.002 0.221 0.002

wvtm μ = 0.250 0.269 0.001 0.273 0.001 0.254 0.000 0.251 0.000
σα = 0.025 0.022 0.000 0.023 0.000 0.023 0.000 0.024 0.000
σβ = 0.100 0.074 0.001 0.104 0.000 0.093 0.000 0.100 0.000
σy = 0.075 0.074 0.000 0.073 0.000 0.073 0.000 0.073 0.000

wvth μ = 0.250 0.245 0.000 0.254 0.000 0.245 0.000 0.251 0.000
σα = 0.010 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.000
σβ = 0.100 0.098 0.000 0.091 0.000 0.098 0.000 0.099 0.000
σy = 0.010 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.000

wvwl μ = 0.650 0.532 0.015 0.587 0.027 0.676 0.015 0.631 0.007
σα = 0.150 0.086 0.005 0.098 0.004 0.143 0.012 0.147 0.006
σβ = 0.350 0.264 0.036 0.337 0.047 0.335 0.032 0.355 0.014
σy = 0.050 0.063 0.002 0.064 0.002 0.054 0.002 0.054 0.002

wvwm μ = 0.593 0.527 0.005 0.525 0.005 0.558 0.006 0.589 0.004
σα = 0.267 0.262 0.013 0.265 0.012 0.265 0.011 0.269 0.004
σβ = 0.098 0.062 0.002 0.073 0.001 0.088 0.001 0.092 0.002
σy = 0.224 0.217 0.000 0.219 0.000 0.218 0.000 0.219 0.000

wvwh μ = 0.250 0.301 0.004 0.286 0.002 0.268 0.002 0.258 0.002
σα = 0.150 0.139 0.002 0.146 0.001 0.148 0.001 0.149 0.001
σβ = 0.010 0.011 0.000 0.010 0.000 0.010 0.000 0.010 0.000
σy = 0.050 0.053 0.000 0.051 0.000 0.048 0.000 0.049 0.000



20 D. FERNÁNDEZ ET AL.

Table A2. Simulation study: VAS responses. Tasks: Estimates and MSE of the intercept μ and variance
components σα , σβ , andσy of the model formulated in (1). Scenarios shown are those from Table 1
focused on calculating the number of tasks at different reliability levels (low, medium, and high) with
regard to a single task (tvtl, tvtm, and tvth) or worker (tvwl, tvwm, and tvwh) for VAS responses. The
results are averaged over all replicates.

True m= 10 m= 25 m= 50 m= 100

Scen. param. Estim. MSE Estim. MSE Estim. MSE Estim. MSE

tvtl μ = 0.593 0.511 0.008 0.609 0.001 0.571 0.003 0.586 0.001
σα = 0.267 0.256 0.013 0.270 0.010 0.126 0.011 0.265 0.011
σβ = 0.098 0.093 0.002 0.090 0.002 0.095 0.001 0.096 0.001
σy = 0.224 0.227 0.001 0.229 0.002 0.223 0.002 0.223 0.002

tvtm μ = 0.250 0.260 0.001 0.246 0.001 0.254 0.000 0.252 0.000
σα = 0.025 0.021 0.000 0.022 0.000 0.023 0.000 0.025 0.000
σβ = 0.100 0.091 0.001 0.093 0.000 0.094 0.000 0.096 0.000
σy = 0.075 0.073 0.000 0.073 0.000 0.073 0.000 0.074 0.000

tvth μ = 0.250 0.253 0.001 0.250 0.000 0.249 0.000 0.248 0.000
σα = 0.010 0.009 0.000 0.011 0.000 0.008 0.000 0.009 0.000
σβ = 0.100 0.094 0.001 0.097 0.000 0.097 0.000 0.098 0.000
σy = 0.010 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.000

tvwl μ = 0.650 0.632 0.015 0.659 0.008 0.654 0.009 0.653 0.009
σα = 0.150 0.175 0.006 0.162 0.008 0.150 0.009 0.149 0.006
σβ = 0.350 0.362 0.016 0.312 0.015 0.336 0.007 0.344 0.008
σy = 0.050 0.039 0.028 0.044 0.018 0.046 0.019 0.046 0.017

tvwm μ = 0.593 0.563 0.004 0.574 0.005 0.589 0.004 0.596 0.003
σα = 0.267 0.225 0.020 0.294 0.018 0.262 0.015 0.269 0.012
σβ = 0.098 0.086 0.007 0.092 0.008 0.098 0.008 0.097 0.007
σy = 0.224 0.214 0.000 0.217 0.000 0.228 0.000 0.225 0.000

tvwh μ = 0.250 0.290 0.007 0.289 0.007 0.256 0.003 0.247 0.002
σα = 0.150 0.122 0.001 0.135 0.002 0.143 0.003 0.153 0.001
σβ = 0.010 0.008 0.000 0.010 0.000 0.010 0.000 0.010 0.000
σy = 0.050 0.050 0.000 0.050 0.000 0.050 0.000 0.050 0.000
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Table A3. Simulation study: Binary responses. Workers: Estimates and MSE of the intercept μ and vari-
ance components σα and σβ of the model formulated in (4). Scenarios shown are those from Table 1
focused on calculating the number of workers at different reliability levels (low, medium, and high) with
regard to a single task (wbtl, wbtm, andwbth) or worker (wbwl, wbwm, andwbwh) for binary responses.
The results are averaged over all replicates.

True n= 10 n= 25 n= 50 n= 100

Scen. param. Estim. MSE Estim. MSE Estim. MSE Estim. MSE

wbtl μ = −1.043 −1.014 0.379 −0.789 0.206 −1.108 0.095 −1.082 0.031
σα = 2.827 2.489 0.348 2.728 0.139 2.762 0.047 2.833 0.034
σβ = 1.055 0.999 0.042 1.018 0.012 0.999 0.008 1.058 0.003

wbtm μ = −1.043 −1.218 0.083 −1.213 0.047 -1.109 0.029 −1.029 0.009
σα = 0.925 0.852 0.058 0.886 0.019 0.895 0.008 0.933 0.005
σβ = 2.025 1.792 0.093 1.861 0.042 1.963 0.014 1.996 0.007

wbth μ = −1.043 −1.313 0.108 −0.747 0.098 −1.125 0.036 −1.064 0.018
σα = 0.425 0.552 0.058 0.486 0.019 0.465 0.008 0.433 0.005
σβ = 3.675 3.492 0.093 3.561 0.042 3.563 0.014 3.676 0.007

wbwl μ = −1.043 −1.376 0.378 −1.088 0.191 −0.919 0.022 −1.041 0.085
σα = 1.025 0.921 0.155 0.989 0.029 1.014 0.052 1.022 0.004
σβ = 0.825 0.967 0.053 0.931 0.025 0.832 0.003 0.915 0.021

wbwm μ = −1.043 −0.976 0.056 −1.001 0.026 −1.073 0.089 −0.962 0.009
σα = 2.827 2.576 0.101 2.734 0.094 2.793 0.059 2.811 0.041
σβ = 1.055 0.868 0.028 0.943 0.014 0.991 0.011 1.018 0.003

wbwh μ = −1.043 −1.272 0.133 −0.767 0.095 −1.141 0.022 −1.038 0.015
σα = 4.325 4.209 0.194 4.083 0.107 4.162 0.059 4.292 0.011
σβ = 0.150 0.228 0.108 0.208 0.023 0.166 0.010 0.152 0.004

Table A4. Simulation study binary responses. Tasks: Estimates and MSE of the interceptμ and variance
components σα and σβ of the model formulated in (4). Scenarios shown are those from Table 1 focused
on calculating the number of workers at different reliability levels (low, medium, and high) with regard
to a single task (tbtl, tbtm, and tbth) or worker (tbwl, tbwm, and tbwh) for binary responses. The results
are averaged over all replicates.

True m= 10 m= 25 m= 50 m= 100

Scen. param. Estim. MSE Estim. MSE Estim. MSE Estim. MSE

tbtl μ = −1.043 −1.163 0.146 −0.973 0.042 −1.073 0.011 −1.038 0.008
σα = 2.827 2.502 0.202 2.698 0.116 2.724 0.052 2.821 0.037
σβ = 1.055 0.819 0.038 1.002 0.027 1.041 0.012 1.050 0.006

tbtm μ = −1.043 −0.964 0.168 −0.917 0.064 −1.071 0.054 −1.012 0.016
σα = 0.925 0.627 0.088 1.238 0.034 0.814 0.015 0.921 0.007
σβ = 2.025 2.333 0.091 2.199 0.044 2.062 0.021 2.031 0.004

tbth μ = −1.043 −1.444 0.305 −0.817 0.128 −0.982 0.072 −1.034 0.018
σα = 0.425 0.689 0.098 0.500 0.031 0.435 0.014 0.425 0.004
σβ = 3.675 3.583 0.122 3.689 0.073 3.681 0.021 3.676 0.004

tbwl μ = −1.043 −0.998 0.152 −1.012 0.098 −1.036 0.021 −1.042 0.040
σα = 1.025 0.991 0.088 1.001 0.054 1.019 0.015 1.027 0.012
σβ = 0.825 0.815 0.072 0.821 0.023 0.835 0.011 0.834 0.004

tbwm μ = −1.043 −0.823 0.211 −0.875 0.203 −1.213 0.059 −1.109 0.036
σα = 2.827 3.209 0.119 2.901 0.112 2.855 0.023 2.838 0.018
σβ = 1.055 0.834 0.092 0.918 0.078 1.102 0.023 1.067 0.007

tbwh μ = −1.043 −1.289 0.166 −1.111 0.138 −1.098 0.042 −1.029 0.031
σα = 4.325 4.407 0.086 4.399 0.074 4.335 0.015 4.318 0.017
σβ = 0.150 0.122 0.042 0.123 0.031 0.162 0.010 0.149 0.005


	1. Introduction
	2. Methodology
	2.1. Random effects model for continuous responses
	2.2. Random effects model for binary responses

	3. Simulation study
	3.1. Simulation design
	3.2. Simulation statistics
	3.3. Simulation results

	4. Application: /r/ misarticulation in children
	5. Discussion
	Disclosure statement
	Funding
	ORCID
	References
	A.1. VAS responses
	A.2. Binary responses




