
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0000-0000 |eissn 0000-0000 |00 |0000 |0001
doi 10.1287/xxxx.0000.0000

©

Full Characterization of Adaptively Strong
Majority Voting in Crowdsourcing

Margarita Boyarskaya, Panos Ipeirotis
New York University

{mboyarsk, panos}@stern.nyu.edu

A commonly used technique for quality control in crowdsourcing is to task the workers with examining an

item and voting on whether the item is labeled correctly. To counteract possible noise in worker responses,

one solution is to keep soliciting votes from more workers until the difference between the numbers of

votes for the two possible outcomes exceeds a pre-specified threshold δ. We show a way to model such

δ-margin voting consensus aggregation process using absorbing Markov chains. We provide closed-form

equations for the key properties of this voting process — namely, for the quality of the results, the expected

number of votes to completion, the variance of the required number of votes, and other moments of the

distribution. Using these results, we show further that one can adapt the value of the threshold δ to achieve

quality-equivalence across voting processes that employ workers of different accuracy levels. We then use this

result to provide efficiency-equalizing payment rates for groups of workers characterized by different levels

of response accuracy. Finally, we perform a set of simulated experiments using both fully synthetic data as

well as real-life crowdsourced votes. We show that our theoretical model characterizes the outcomes of the

consensus aggregation process well.

Key words : crowdsourcing, labeling aggregation, majority voting, data quality control, fair remuneration,

Markov random walk

History : Last edit November 12, 2021

1. Introduction

Businesses are increasingly turning to crowdsourcing as a means of obtaining knowledge, labour,

and creativity from groups of distributed workers. Workers in crowdsourcing are rarely perfect,

and the literature is abundant with papers that put forth various vote aggregation schemes to

ensure quality control for the crowdsourced labels (e.g., Chilton et al. (2013), Dai et al. (2013),

Mortensen et al. (2013)). In practice, though, simple aggregation schemes, such as majority voting

or its variations that require a stronger majority, are widely used, mainly due to their simplicity.

A commonly encountered variation of majority voting asks for multiple votes, until the positive

votes are δ votes more than the negatives (or vice versa). We will refer to this process as δ-margin
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majority voting.1 While this consensus schemes of “δ-margin voting” is salient in practice, the

process tends to be perceived as heuristic and adhoc, lacking a solid theoretical foundation that

describes its properties.

In this work, we show that a δ-margin voting process can be easily modeled with well-established

mathematical tools (namely, Markov chains with absorbing states). Our research contribution is

simple: We provide a thorough theoretical description of key properties of δ-margin voting, allowing

decision-makers to give ex-ante answers to some of the more pervasive questions in crowdsourced

experiment design: How to structure a crowdsourced voting process to achieve a given label accuracy?

What is the cost of running such a process? Can the same accuracy be achieved by a pool of lower

accuracy workers? We provide closed-form theoretical results that quantify the quality and cost of

the results.

The organization of this paper is as follows. Section 2 introduces the Markov chain formalism for

the δ-margin voting process. Section 3 overviews existing work on consensus aggregation design

and quality assurance, highlighting both the novelty and relevance of our theoretical presentations.

Section 4 derives the theoretical equations for key characteristics of the δ-margin voting process:

quality of the results, expected value and variance of the number of votes required to reach consensus,

and the overall distribution for time to completion. Section 5 expands these results to demonstrate

that δ-margin processes with workers of different quality can have equivalent quality of results,

and we further elaborate on this equivalence to propose a quality-sensitive payment scheme that

connects result quality with worker accuracy. Section 6 presents experimental validation with real

data comparing the theoretical predictions against results from real processes. Finally, Section 7

discusses both the immediate and the more involved research developments that can be built upon

this work.

2. Markov chain model of δ-margin majority voting

Consider the problem of labeling items on a crowdsourcing platform using δ-margin voting. For

every item that needs to be assigned a binary label. We solicit binary votes from workers who assign

the correct label with a probability p and the incorrect label with probability 1− p. We keep asking

workers to assign labels to an item, until the absolute difference between the number of votes for

the two classes exceeds a predefined consensus threshold δ.

Example. Set δ= 2. Then, the process will stop when the vote-count tuples 〈ncorrect, nincorrect〉
reach one of the following stages: 〈2,0〉, 〈0,2〉, 〈3,1〉, 〈1,3〉, 〈4,2〉, 〈2,4〉, and so on. A consensus

1 We use the term margin in its colloquial meaning – an amount beyond the minimum necessary (as opposed to its
usage in statistics, where it typically connotes an idea of proportion and not difference).
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Figure 1 A Markov chain diagram illustrating state transitions for δ-margin majority voting on a single item.

Node labels indicate the difference between the numbers of correct (n1) and incorrect (n0) votes, n1 −n0.

Consensus is reached in absorbing states δ and −δ, the former resulting in a correct resolution, and the

latter resulting in an incorrect resolution.

vote obtained in one of the states {〈2,0〉, 〈3,1〉, 〈4,2〉, ...} is correct, while a consensus vote obtained

in one of the states {〈0,2〉, 〈1,3〉, 〈2,4〉, ...} is incorrect.

Since the only desideratum for consensus is the difference between the two types of votes, the

process can be modeled as a Markov random walk. Define the current state as the difference between

the numbers of correct and incorrect votes. If the difference is δ or −δ, the process terminates, the

former resulting in a correct consensus label, and the latter in an incorrect one. In all other states,

we procure an additional vote, which will be correct with probability p, which corresponds to a

transition from state i to state i+ 1; or it can be an incorrect vote with probability 1− p, which

makes for a transition from state i to state i− 1.

This process has a state diagram illustrated in Figure 1 and is also known as Gambler’s Ruin

model. The model is a common introductory example for random walks and describes the probability

of a gambler winning a certain amount in a game of chance, vs. the probability of losing her

entire gaming budget.2 Surprisingly, this model has not been used to describe the process for

label aggregation in crowdsourcing, and we are not aware of anyone providing results about label

aggregation quality and number of votes required, for this process in crowdsourcing. Before providing,

in Section 4, the analytical results that describe in closed form several key characteristics of δ-margin

voting, we provide next, in Section 3 an overview of the related literature.

3. Literature review

In this section, we provide a brief overview of related work in label aggregation in crowdsourcing

(Section 3.1) and then provide pointers to related work regarding δ-margin voting, in particular

(Section 3.2). To the best of our knowledge, there does not yet appear to be work that focuses on

presenting theoretical results for ex-ante cost and quality estimation for δ-margin voting.

2 See (Feller 1968, page 344) for details.



Author: Full Characterization of Adaptively Strong Majority Voting in Crowdsourcing
4 00(0), pp. 000–000

3.1. Literature on quality control in label aggregation

A sizable proportion of literature on crowdsourcing proposes various quality controls for aggregating

worker expertise. The majority of such work, however, is experimental (Kazai et al. 2011, Hansen et al.

2013, Yin et al. 2014), while the proposed quality control mechanisms are often ad-hoc. Although

informed by empirical intuition, such quality control interventions lack theoretical guarantees

(Kucherbaev et al. 2016, De Boer and Bernstein 2017, Dai et al. 2013). Moreover, a significant

fraction of this literature relies on availability of accurate priors on some of the key process or

workforce parameters (Abassi and Boukhris 2017, Tao et al. 2018, Heer and Bostock 2010, Dalvi

et al. 2013, Laureti et al. 2006, Jung and Lease 2011, Rutchick et al. 2020), which are costly to

obtain (De Boer 2017, Bonald and Combes 2016).

Within the larger domain of literature concerned with the quality of the outcomes and process

costs in crowdsourcing, a small but notable subspace of work offers theoretical guarantees. The

work of Berend and Kontorovich (2014) presents accuracy bounds for the weighted majority voting

scheme. Khetan and Oh (2016) formulate a theoretical bound that describes the trade-off between

budget and accuracy in voting processes with adaptive task assignment (i.e., tasks are assigned

based on the data collected up until the moment of assignment, Barowy et al. (2012)). The authors

introduce an adaptive assignment scheme that attains the formulated fundamental limit. Similarly,

Manino et al. (2018) consider adaptive assignment of the next worker to an item. The authors’

theoretical formulation of the accuracy gap between the uniform allocation of workers (Karger et al.

2014), an adaptive one, and an assignment that maximizes information gain (Simpson and Roberts

2015). They derive tight yet not exact bounds on the accuracy of these assignment policies. Livshits

and Mytkowicz (2014) is an example of a theoretical work that considers costs of voting completion:

the authors use power analysis to obtain ex-ante estimates for the number of votes required to

resolve each item with a certain level of statistical significance.

In contrast with these papers, our work focuses on the δ-margin consensus rule and provides

an exact expression of probability of error, expected time until consensus as well as its variance,

enabling a more nuanced consideration of the requesters’ utility – one that considers worker wages.

While the latter is seldom addressed in the literature, a notable counterexample is the work of

Singer and Mittal (2013). The authors present incentives-compatible mechanisms for maximizing

the number of tasks subject to budget constraints, as well as for minimizing worker payments given

a fixed number of tasks.

3.2. Literature on δ-margin voting

Literature on group decision-making and voting mechanisms recognizes two types of majority

consensus vote: simple majority and absolute majority. The former is attained when the number
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of votes for option A is greater than the number of votes for the alternative option B (sA > sB),

while the latter requires that the number of votes for option A is greater than half of all votes

(sA >
n
2
) (Laruelle and Valenciano 2011).3 In the case of binary (or dichotomic) voting, the distinction

between simple and absolute majorities only exists when some voters abstain or vote neutrally.

While the δ-margin voting aggregation method is a salient choice among practitioners, crowd-

sourcing literature typically involves δ-margin voting only in empirical or experimental settings,

missing a chance for ex-ante theoretical evaluation of its benefits.4

In experimental comparisons of prototypical crowdsourcing tasks, De Boer (2017) remarks that

while the δ-margin method (called ‘Beat-By-K’ following Goschin (2014)) yields very accurate

results for relatively high values of δ, it is expensive to run in settings that prioritize utility without

any budget constraints.

Several consensus aggregation methods in the literature capture a different but similar idea to

δ-margin voting – namely, requiring a stronger, more confident agreement among the workers. For

example, in the ‘Automan’ scheme (Barowy et al. 2012) the requester continues sampling votes

until a given statistical confidence value is attained by the voting process.

Dietrich and List (2007) generalize majority voting to a larger family of ‘quota rules’ (also known

as ‘k-unanimity’ or ‘k-majority’ in cybernetics and discrete mathematics (Alon et al. 2006, Scheidler

et al. 2015)), in which an item is assigned a certain label if and only if the number of workers

voting for that label exceeds a given threshold k. In a situation of simultaneous vote by all workers

within a fixed size workforce, the quota scheme becomes similar to δ-margin voting, with two major

differences: (a) there is no guarantee that at the end of the voting the margin will be satisfied, and

(b) the process may accumulate more votes than necessary, a disadvantage when every vote has an

associated cost (as in the case of paid crowdsourcing).

4. Theoretical characteristics of δ-margin voting processes

In this section, we provide closed-form theoretical formulations of key characteristics of the δ-margin

voting process. In particular, we employ well-known results from theory of Markov Chains to

provide:

• a characterization of resulting label quality for δ-margin majority crowdsourcing processes;

• the expected number of votes to reach consensus is attained (i.e., expected time until consensus);

• the variance of number votes to reach consensus;

• an expression for the pdf of time until consensus.

3 Alternatively, the strength of majority condition is defined as a multiplier k on the required inequality requirements
that are modified to sA >k · sB for k > 1, and sA >k ·n for 1

2
≤ k≤ 1. .

4 Symptomatically, even outside of the crowdsourcing literature field the more notable papers that overview some
of the theoretical properties of this consensus scheme refer to δ-margin majority voting as ‘the forgotten decision
rule’ (Llamazares 2006, Garćıa-Lapresta and Llamazares 2001). Some of the earliest – albeit brief – acknowledgements
of the δ-margin voting scheme can be found in Fishburn (2015) and Saari (1990).
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4.1. Quality of the consensus vote

The first quantity of interest is the quality of the final consensus votes. The process always starts at

state 0 (no votes). Let’s denote as 1C a random variable indicator of whether the consensus vote

(in the event that it was reached) corresponds to the ground truth correct label of an item. We

want to calculate the probability Q := P (1C = 1) of reaching terminal state δ (i.e., voters reach

consensus, and the correct label is assigned) vs. reaching terminal state −δ (voters reach consensus,

and the incorrect label is assigned, i.e. 1C = 0). In all other states, the voting continues.

Theorem 1. For a δ-margin voting process, with worker accuracy p and a consensus thresh-
old δ, the probability Q(ϕ, δ) that the consensus vote c is correct, is:

Q(ϕ, δ) := P (1C = 1) =
ϕδ

1 +ϕδ
, (1)

where ϕ= p
1−p are the odds of a single worker classifying the item correctly.

The proof is readily available in many introductory texts on Markov Chains (e.g., in (Feller 1968,

page 344)) and we also provide it below, for completeness, and to also introduce notation that we

use later in this paper.

Proof. Consider an asymmetric Gambler’s Ruin model, where a gambler begins with the amount

k of money and proceeds to gamble until she is either bankrupt, or wins the amount N >k. Let us

formalize this model in the following way. Consider a series of random variables Xt, t ∈N0,Xt =

k+ ξ1 + ...+ ξt, where

ξt =

{
1 with probability p.

0 with probability 1− p.
We shall denote the time of termination of the game of a gambler who began with k amount of

money (or k vote difference) as Tk := inf t, t≥ 0 :Xt ∈ {0,N}. Consider the following identity:

E[SXt |Xt−1,Xt−2, ...,X1] = pSXt−1+1 + (1− p)SXt−1−1.

A martingale is a process such that:

E[Zt|Zt−1, ...,Z1] =Zt−1.

Let us choose S such that {SXt}t≥0 is a martingale. Namely, take S = 1−p
p

(note that the solution

S = 1 is trivial). Using the fact that any martingale satisfies E[Zt] =E[Z0], we obtain the equality

E[SXt ] =E[SX0 ] = Sk.

In particular, E[SXTk ] = Sk. At the same time,
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Figure 2 Theoretical values of quality Q of consensus vote (Theorem 1) as a function of the probability of a correct

answer p, for a fixed consensus threshold δ.

E[SXTk ] = SNP (XTk = N) + S0(1 − P (XTk = N)) = SNP (XTk = N) + (1 − P (XTk = N)) (2)

Therefore,

P (XTk =N) =
Sk− 1

SN − 1
when p 6= 1/2. (3)

In the context of a symmetric voting process, the initial value k is set equidistantly apart from

the ruin value of zero and from the winning value N . The number of votes needed for either a

consensus for the incorrect answer (ruin) or a consensus for the correct answer (winning) is δ. Thus,

substituting δ for k and 2δ for N while recalling our choice of S = 1−p
p

= 1
ϕ

, we obtain the statement

of the theorem. �

Figure 2 plots the dependence of consensus vote quality Q on worker accuracy p for δ ∈ {2,3,4,5}.
Discussion: Note that the parameter δ plays a significant role in the quality of the consensus

vote: Based on Equation 1, the odds of the consensus vote being correct, are ϕδ. Therefore by

increasing δ, we increase exponentially the odds that the consensus vote is correct. For example,

consider a pool of workers with accuracy p= 0.75 (i.e., ϕ= 0.75
1−0.75 = 3). If we set δ = 2, the expected

quality of the overall classification will be Q(3,2) = 0.9 (i.e., odds 9 to 1 being correct). If we increase

δ to δ = 3, Q(3,3) = 0.964 (ie., odds 27 to 1), and if we increase to δ = 4, then Q(3,4) = 0.9878 (i.e.,

odds 81 to 1). Next, we discuss how the cost of the process changes when we change δ, and we show

that we achieve exponential improvements in quality with a mostly linear increase in cost.

4.2. Expected time until consensus

The next question is whether the process is guaranteed to terminate, and how many votes do

we expect to collect until reaching a consensus (in other words, what is the expected time until

consensus is reached). We can estimate the number of votes it takes to reach state δ or state −δ
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in terms of transitions in the Markov chain as follows. The number of remaining steps E0 from

state 0 is one step it takes to reach the next state (i.e., state 1 with probability p or state -1 with

probability 1− p) plus the number of remaining steps from this resulting node. By solving, we get:

Theorem 2. The expected number of votes nvotes it takes to reach a (correct or incorrect)
consensus when classifying an item using a δ-margin voting scheme with worker accuracy p
and consensus threshold δ is:

E[nvotes|ϕ, δ] = δ · ϕ+ 1

ϕ− 1
· ϕ

δ − 1

ϕδ + 1
, (4)

where ϕ= p
1−p is the odds of a single worker classifying the item correctly.

Proof. Note that the expected number of votes needed to reach consensus when beginning at

state k of a Markov chain is nothing but E[Tk] in our earlier notation. Consider the equation

E[XTk ] = P (XTk =N) ·N + (1−P (XTk =N)) · 0 =N ·P (XTk =N). (5)

Using Wald’s equation for the expectation of a sum of random number of random variables, we

obtain:

E[XTk ] = k+E

[
Tk∑
i=1

ξi

]
= k+E[Tk]E[ξi] = k+ (E[Tk]) (p− (1− p)). (6)

Combining (5) with (6) we get:

E[Tk] =
N

2p− 1
P (XTk =N)− k

2p− 1
.

The statement of the theorem follows from making use of Equation 3 and the identity 2p−1 = ϕ−1
ϕ+1

,

as well as performing the familiar substitutions: N = 2δ and k= δ. �

Discussion: Note that the expected cost increases mostly linear with δ. When ϕ gets close

to 1 (i.e., mostly random workers), then the expected time to termination peaks at δ2. Figure 3

illustrates the dependence (4) of time until voting termination E(nvotes) on worker accuracy p, for a

given consensus threshold δ.

4.3. Variance of time until consensus

While the expected number of votes to completion is a useful metric for characterizing the voting

process, it describes just the average across runs. In addition to the expectation, in reality we also

want to know the robustness of a process and how reliably it will finish within the expected time

frame. For this reason, it is important to know the variance of the process in terms of number

of votes required to completion and, more generally, the overall pdf of the distribution. To derive

these values, we rely on results from the theory of Markov Chains with absorbing states.
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Figure 3 Expected time to voting termination as a function of probability of correct answer p, for a fixed consensus

threshold δ.

We showed that a δ-margin voting process can be modeled as a Markov random walk. In particular,

a δ-margin voting process with a consensus threshold δ corresponds to a Markov chain process

with two absorbing states and 2(δ− 1) + 1 transient states. If one enumerates the states such that

the two absorbing states come last, then the transition matrix of this process has the canonical

form (Grinstead and Snell 1997):

M =

(
Ttr TA
0 I2

)
Here Ttr is a matrix of size (2δ− 1)× (2δ− 1) containing the probabilities of transitioning from a

transient state i into a transient state j:

Ttr =



0 p 0 0 ··· 0
q 0 p 0 ··· 0
0 q 0 p ··· 0
0 0 q 0 ··· 0
... ... ... ... ... ...
0 0 0 0 q 0

 ;

TA is a (2δ− 1)× 2 matrix of transition probabilities from transient into absorbing states:

TA =
(
q 0 0 ··· 0 0
0 0 0 ··· 0 p

)>
;

I2 is a 2× 2 identity matrix, and 0 is a 2× ((2δ− 1) + 1) null matrix. Using the above, we define

the fundamental matrix of this absorbing matrix chain as:

N :=
∞∑
k=0

(Ttr)
k

It can be proven (Grinstead and Snell 1997) that:

N = (I2δ−1−Ttr)
−1
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The elements of N correspond to the expected number of visits to the state j, given that the initial

state was i. The expected number of steps before consensus, when starting in transient state i, is

the i-th element of the vector

t = N ·1

where 1 is vector of ones of length 2δ− 1. Finally, we have:

Proposition 1. The variance on the number of steps required to reach consensus when
starting in a state i is the i-th entry of vector

v̄= (2N− It)t− tsq,

where tsq is the vector of squared elements of t.

Applying this known result to our model for δ-margin voting, we offer a closed-form expression

for the variance of time until consensus:

Theorem 3. Variance of the number of votes it takes to reach consensus using δ-margin
voting process is:

V ar(nvotes) = 4δϕ

(
ϕ+ 1

ϕδ + 1

)2
[
h(δ) ·ϕδ−2 +

δ−2∑
i=1

(
h(δ− i)(ϕδ+i−2 +ϕδ−i−2)

)]
, (7)

where coefficients h are defined using the floor function:

h(z) :=

⌊
z2

4

⌋
.

Stated differently,

h(z) =

{
z2

4
, if z is even

z−1
2
· z+1

2
, if z is odd.

The sequence of coefficients defined by h(z) is also known as the quarter squares sequence and can

be defined as the interleaving of square numbers and pronic numbers (Losanitsch 1897, Sloane 2019)

(the latter defined as the product of two consecutive integers).

Equation 7 offers a simplification of the formula proposed by Anděl and Hudecová (2012), while

agreeing with it numerically. Moreover, once the polynomial in square brackets is formulated for a

given value of δ, one can observe a simple and intuitive ‘pyramidal’ pattern that governs coefficient

generation.

In order to provide the reader with intuition on the look of the polynomial in Equation 7, we list

explicit formulas for V ar(nvotes) for the first few values of δ in Table 1.
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δ Var(nvotes)

2 8ϕ
(
ϕ+1
ϕ2+1

)2

3 12ϕ
(
ϕ+1
ϕ3+1

)2

(ϕ2 + 2ϕ+ 1)

4 16ϕ
(
ϕ+1
ϕ4+1

)2

(ϕ4 + 2ϕ3 + 4ϕ2 + 2ϕ+ 1)

5 20ϕ
(
ϕ+1
ϕ5+1

)2

(ϕ6 + 2ϕ5 + 4ϕ4 + 6ϕ3 + 4ϕ2 + 2ϕ+ 1)

6 24ϕ
(
ϕ+1
ϕ6+1

)2

(ϕ8 + 2ϕ7 + 4ϕ6 + 6ϕ5 + 9ϕ4 + 6ϕ3 + 4ϕ2 + 2ϕ+ 1)

7 28ϕ
(
ϕ+1
ϕ6+1

)2

(ϕ10 + 2ϕ9 + 4ϕ8 + 6ϕ7 + 9ϕ6 + 12ϕ5 + 9ϕ4 + 6ϕ3 + 4ϕ2 + 2ϕ+ 1)

Table 1 Particular values of variance on the number of votes until consensus

Figure 4 Left: V ar(nvotes) (left) and V ar(nvotes)/E(nvotes) (right) as a function of probability of correct answer p,

for a fixed consensus threshold δ (d).

Formulation in Equation 7 allows us to elaborate upon the plots in Figure 3 by adding bands of

the size 2
√
V ar(nvotes) to each trajectory of E[nvotes]. Detailed plots for selected values of δ are

shown in Figure 5.

4.4. Distribution of the time to consensus

Using the matrix notation used in the previous subsection, as well as known results about discrete

phase-type distributions from queuing theory Neuts (1994), Latouche and Ramaswami (1999), we

can fully describe the probability density function f(k) of time until consensus in δ-margin voting.

Remark 1. The event that a δ-margin majority voting process will terminate after casting
exactly m votes when starting from zero votes is characterized by the following probability
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Figure 5 Expected time until reaching consensus, with standard deviation bounds, for selected values of δ.

Figure 6 Probability density of reaching consensus in exactly m steps (i.e., any consensus, correct or incorrect)

f(Tδ =m) for δ= 4, as a function of the number of votes m, for varying worker odds ϕ.

density function:
f(Tδ =m) = z · (Ttr)

m−1 · (TA) (8)

where z is a vector of length 2δ−1 that encodes the initial state of the process. Since we mainly
care for the case where we start with no votes, we set z := (z1, z2, ..., z2δ−1) with zδ = 1 and
zi = 0 for i 6= δ.

The expression specifies separately the probability densities of the voting process terminating in

each one of the two absorbing states – i.e., reaching a consensus with a correct label, as well as with

an incorrect one. Using our derived expression for the probability of label correctness (Equation 1),

one may sum the values in the matrix expression of f(Tδ =m) in Equation 8, weighted by the

respective probabilities of the consensus vote being correct/incorrect. Figure 6 visualizes a result of

this computation for a fixed selected threshold level δ= 4 and for various values of ϕ.



Author: Full Characterization of Adaptively Strong Majority Voting in Crowdsourcing
00(0), pp. 000–000 13

5. Equivalence conditions for two δ-margin voting processes

In this section, we build in the results presented above, to explore the following questions:

• If we have two sets of workers, one with accuracy p1 and the other with accuracy p2, how

should we configure the voting process to generate results of similar aggregate quality? (Section 5.1)

• If we have two sets of workers, one with accuracy p1 and the other with accuracy p2, how

should we vary the worker payment, so that we get the same quality while keeping the overall cost

the same? (Section 5.2)

• If workers can vary their effort, and therefore the time invested and the resulting quality,

what type of effort-quality curves result in unique payment-maximizing points, and what type of

effort-quality curves make workers indifferent to the quality-sensitive payment scheme? (Section 5.3)

5.1. Quality equivalence for processes with different values of δ

Suppose that we have two sets of workers, one with accuracy p1 and another with accuracy p2.

The first set of workers operate a δ-margin majority voting scheme with threshold parameter δ1.

Assuming, for now, that the employer only cares about the quality of the resulting work, what is

the value of δ2, so that the set of workers with accuracy p2 generate the same quality of the results?

Corollary 1. If an item is classified by workers with accuracy p1 and threshold δ1, we can
achieve the same quality of results by a set of workers with accuracy p2 if we set the threshold
δ2 to be:

δ2 = δ1 ·
lnϕ1

lnϕ2

, (9)

where ϕ1 = p1
1−p1

and ϕ2 = p2
1−p2

are the odds of a single worker classifying the item correctly.
The result is obtained by setting Q(ϕ1, δ1) =Q(ϕ2, δ2) (from Equation 1) and solving for δ2.

5.2. Worker Pay Equivalence

Assume that workers with accuracy ϕ are paid pay(ϕ) per vote. Then a reasonable notion of cost

associated with labeling a single example is simply:

Cost(ϕ, δ) = pay(ϕ) ·nvotes(ϕ, δ),

where pay(ϕ) is constrained to take only non-negative values. Then, using Equation 2, the expected

cost of classifying an item is:

E[Cost|ϕ, δ] = pay(ϕ) · δ · ϕ+ 1

ϕ− 1
· ϕ

δ − 1

ϕδ + 1
(10)

For now, we assume that an employer is risk-neutral and cares only about the expected quality

of the result and the expected cost.5 A risk-neutral employer would like to pay teams of workers

5 It is reasonably easy to extend the results to the case of risk-averse requesters, by using our results for the variance
of time until consensus (which is a proxy for the cost of the process).
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with different accuracies p1 and p2 in a way that is fair: as long as the teams can generate results of

equal utility to the requester, they should be paid the same total amount.

From Section 5.1, we can set δ2 to adjust for the different worker accuracy p2, thereby assuring

that the quality of results is the same: Q(ϕ1, δ1) =Q(ϕ2, δ2). Of course, as shown in Section 4.2,

a different consensus threshold δ2 also changes the expected number of votes required to reach

consensus. When δ2 = δ1 · lnϕ1
lnϕ2

, we have results of equal quality, we can ensure equal costs by setting:

E[Cost|ϕ1, δ1] = E[Cost|ϕ2, δ2]

E[Cost|ϕ1, δ1] = E[Cost|ϕ2, δ1 ·
lnϕ1

lnϕ2

]

pay(ϕ1) · δ1 ·
ϕ1 + 1

ϕ1− 1
· ϕ

δ1
1 − 1

ϕδ11 + 1
= pay(ϕ2) · δ1 ·

lnϕ1

lnϕ2

· ϕ2 + 1

ϕ2− 1
· ϕ

δ1·
lnϕ1
lnϕ2

2 − 1

ϕ
δ1·

lnϕ1
lnϕ2

2 + 1

(11)

Given that ϕ
δ1·

lnϕ1
lnϕ2

2 =ϕδ11 , we get the following corollary:

Corollary 2. If workers with response accuracy ϕ1 are paid pay(ϕ1) per vote, then workers
with accuracy ϕ2 will generate results of the same quality and cost if the ratio of the payments
is:

pay(ϕ1)

pay(ϕ2)
=

lnϕ1

lnϕ2

· ϕ2 + 1

ϕ1 + 1
· ϕ1− 1

ϕ2− 1
, (12)

where ϕi = pi
1−pi

are the odds that a worker belonging to pool i classifies an item correctly.

5.3. Iso-payment effort function

Using the results of corollary 3, we can further investigate the relationship between payment per

item and the per-item effort made by a worker. Consider that for a given worker, an unknown

function p= g(ψ) governs the relationship between the effort ψ expended by the worker on an item

and the accuracy p of the response given. (One possible measurable proxy for the level of effort is

the amount of time spent working on an item.) Given our understanding of the relative amounts of

payment, given in (12), we can connect payment to effort for a given function g(ψ).

For example, assume that the relationship between a worker’s effort expended and accuracy of

the answers is p= eψ − 1. This particular accuracy-effort function is represented with the x-marked

line on the left panel of Figure 7. Since we are interested in relative adjustments to payment rate,

set pay(ϕ2) in equation (12) to be equal to 1. We then get pay(ϕ) = c0 · ln(ϕ) · ϕ−1
ϕ+1

, where c0 is a

constant, and ϕ is equal to p
1−p as before. We can now connect worker effort to the level of payment

per unit of effort pay(ϕ)/ψ (if we continue our example of effort measured as time spent per item,



Author: Full Characterization of Adaptively Strong Majority Voting in Crowdsourcing
00(0), pp. 000–000 15

Figure 7 Properties of various accuracy-effort curves, plotted for a range of accuracy values 0.51 ≤ p≤ 0.98. Left:

sample iso-payment accuracy curves, contrasted with two accuracy functions chosen without iso-payment

considerations: p= eψ − 1 and p∼ tanh(ψ). Right: visual demonstration of the iso-payment property.

this last quantity would represent hourly wage). The x-marked line on the right panel of Figure 7

represents the relationship for our particular chosen function p= g(ψ) = eψ − 1.

We now ask: what relationship between a worker’s effort and the accuracy of her responses would

make her payment invariant to effort expended? In other words, we are looking for such g(ψ) that

the ‘hourly wage’ pay(ϕ)/ψ is independent of ψ. It is immediate that all such functions can be

defined by

ψ= c · lnϕ · ϕ− 1

ϕ+ 1
=: g−1iso(ϕ), (13)

where c is a constant. Figure 7 illustrates a sample of several functions p= gi(ψ), different only in

the chosen values of the constant factor c.

A more realistic hypothesis about a relationship between worker accuracy ϕ and her effort ψ

would incorporate an assumption of diminishing returns. Figure 7 also includes a plot of an accuracy

function p= 1
2

+ 2
5

tanh(ψ
4
), which conforms to this assumption6. Since a worker’s natural objective

is to maximize pay, the best strategy for a worker with this kind of a relationship between effort

and accuracy would be to choose the global maximum of their hourly wage curve, if the global

maximum is unique, and otherwise choose a global maximum corresponding to the lowest time

expenditure.

5.4. Utility-equalizing payments

We offered a way to set the pay rate for workers in each pool relative to the other pool, subject to

risk-neutral utility constraints. A risk-neutral approach would entail a utility function that would

only involve the expected cost of getting a consensus vote. However, a more nuanced notion of

6 The shape of a hyperbolic tangent is convenient for describing the natural assumption on the diminishing returns to
effort. The constants are chosen to scale tanh with accordance to our context.
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utility should consider not only the expected quality and expected number of votes required to

reach consensus, but also the variance of each. Thus, a risk-averse procedure for establishing an

appropriate equivalence for payment for a single item is as follows:

Q1(ϕ1, δ1) =Q2(ϕ2, x) =⇒ δ2 := x

Ui :=E[Q(ϕi, δi)]−payi(ϕi)E[nvotes,i|ϕi, δi]−λ ·
(√

V ar(Q(ϕi, δi)) + payi(ϕi)
√
V ar(nvotes,i)

)
{
U1 =U2

Q1 =Q2

⇐⇒ pay2 := pay1

E[nvotes,1|ϕ1, δ1] +λ
√
V ar(nvotes,1)

E[nvotes,2|ϕ2, δ2] +λ
√
V ar(nvotes,2)

(14)

A remark on notation: strictly, Q is not a random variable but a first moment of 1C . We use the

notation V ar(Q) to mean, more strictly, V ar(1C). Although computing the term V ar(Q(ϕi, δi)) is

not necessary for using the payment equivalence condition in Equation 14, it is worth mentioning

that the variance of the indicator of reaching a correct consensus is the variance of a Bernoulli

random variable: V ar(1C) =E[12
C ]− (E[1C ])2 = P (1C = 1)(1−P (1C = 1)) =Q(1−Q).

The plots in Figure 8 below visualize the following process: for every fixed value of utility

parameter λ and every triplet (p1, δ1, p2) (where 0.5 < p1 < 1,0.5 < p2 < 1), we compute δ2 that

guarantees Q1 =Q2. We then derive the ratio of payments pay2/pay1 for a given triplet, and we

visually organize the results by the values of corresponding ratios of expected times to completion,

E[nvotes(p1, δ1)]/E[nvotes(p2, δ2)]. The plots display the results for selected values of the utility

parameter: λ= 1, λ= 2, and λ= 10.

6. Experimental validation

The results provided above are theoretical and asymptotic. How good are they in approximating the

results of a real crowdsourced voting process with constrained resources? Obviously, in reality, some

of the assumptions of our model will be violated: workers will not have identical qualities and items

will have different degrees of difficulty. As the old adage states, “all models are wrong”, hence we

want to see if our model is actually useful in providing guidance on how to set up a crowdsourcing

process to achieve certain levels of quality for certain levels of cost.

We compare the theoretical results with those obtained from experiments. In particular, we

compare the theoretical values of quality, completion time, and variance thereof with two kinds of

simulations: δ-margin voting simulated as random walk ; and δ-margin voting simulated as random

draws from real-life crowdsourced data.
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Figure 8 Utility-equalizing ratio of payment rates pay(ϕ2)/pay(ϕ1) for workers on two voting processes (14), where

δ2 is derived in a way that satisfies the equal quality constraint. Top left: λ= 1. Top right: λ= 2. Bottom:

λ= 10.

6.1. Dataset description

We simulate a voting process using a dataset of real votes collected on a major crowdsourcing

platform. We used the Bluebirds dataset (Welinder et al. 2010), which contains binary labels for

108 unique images solicited from 39 workers, as well as ground truth labels for each item (with

a 44:56 size ratio of the True and False classes). The histogram in Figure 9 shows the empirical

distribution of individual accuracy among workers, computed as the frequency of labeling an item

correctly. The mean worker accuracy stands at 0.636. The distribution of computed per-item rates

of correct response suggests that a third of items are difficult (i.e., frequency of correct responses

across all workers for an item is below 0.5).

In the rest of this section, we simulate the δ-margin voting process using simulated random

walk as well as real life crowdsourced labels. We do so in order to both examine the asymptotic

properties of experimental process quality and time to completion, as well as (and chiefly) to compare

the experimental values with the theoretical results from Section 4. Indeed, a key assumption

underpinning the theoretical results presented in this paper is that individual worker accuracies are

distributed uniformly, with each worker having accuracy p. In real life crowdsourced data –as in the

Bluebirds dataset– response accuracy varies across workers as well as across items (some being

more difficult to classify). This is a deviation from our theoretical model, and the main purpose

of the experiments in this section is to examine the extent to which empirical quantities obtained

under such violations disagree with theoretical quantities.
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Figure 9 Descriptive statistics of the Bluebirds dataset. Left: a histogram of the response accuracy (as proportion

of correct answers) for all workers. Right: a histogram of the per-item response accuracy.

Figure 10 Relative error err(p) := Q−1
sim · (Qsim−Qth)) of the average (expected) consensus vote quality, as a

function of the probability of a correct answer p, for a range of fixed values of consensus threshold δ.

6.2. Theoretical quality vs. experimental quality of label aggregation

The first question of interest is how closely the theoretical quality in Equation 1 captures a real or

realistic process of δ-margin voting in a crowdsourcing labeling task.

We begin by comparing the theoretical value of quality in Equation 1 with the quality resulting

from random walk simulations of δ-margin voting with the same accuracy p. For each value of delta

δ ∈ [2,3, ..,7] and for each value of p, we simulate 100,000 random walk trials and record the average

correctness of the consensus vote. Figure 10 shows the relative error between the computed average

quality of the vote and the quality estimated from simulations, err(p) :=Q−1sim · (Qsim−Qth)) .

Next, we transition to comparing the theoretical values to estimations with observational data

experiments. As discussed, the Bluebirds dataset violates several of our modeling assumptions

(i.e., worker accuracy levels as well as item difficulty are not uniform). For this reason, estimating



Author: Full Characterization of Adaptively Strong Majority Voting in Crowdsourcing
00(0), pp. 000–000 19

quantities of interest using random draws from this data is an informative benchmark for assessing

real-life usefulness of presented theoretical formulations.

For a given δ ∈ [1,2, ..,11], the general procedure that we used for simulating δ-margin voting is

as follows. For a given item, we iteratively draw votes from labels given by a worker pool on this

item, until the agreement threshold δ is attained. We run r such simulations of the δ-margin voting

process for each item.

When examining quality and time to completion of experimental voting results in isolation, we

performed sampling without replacement, and we set the number of voting process repetitions per

item to r= 20. We additionally simulated a range of conditions on worker pool accuracy and item

difficulty. In other words, we ran δ-margin voting simulations as described above for a range of

pre-filtered versions of the Bluebirds dataset – subsets that included only items of certain maximum

levels of difficulty and workers with a certain minimum level of accuracy. In particular, we required

that the worker accuracy be above τw and the item accuracy be above τw (where pairs (τw, τi) take

all values on a lattice [0,0.1, ...,0.9]2). Thus, for each of the values of the consensus threshold δ

we run 20 experiments for each of the items that passed a given worker-item accuracy filter. Our

experimental process is described by the pseudocode procedure in Appendix A (Algorithm 1).

We first examine some of the asymptotic properties of quality estimates from our crowdsourced

data experiments. Figure 11 illustrates the resulting quality of the labels aggregated in our experi-

ments, summarized for all settings and grouped by levels of the filtering on the worker accuracy.

The reason that the processes do not attain the Q= 1 limit –even for the highest filtering thresholds

of worker pool accuracy– is likely that the quality is aggregated across experiments with various

settings of item accuracy, including settings where no minimum threshold for item ‘ease’ is set. Thus,

a non-negligible proportion of experiments (those without any filter on item accuracy) included

difficult items which get incorrect consensus votes even when solicited from top worker pools.

Next, we will benchmark the results from crowdsourced data experiments against the theoretical

values obtained from Equation 1. To obtain the experimental values for the comparison, we performed

sampling with replacement7 and used the entire Bluebirds dataset. For a given δ, we simulate

δ-margin voting and compare the resulting consensus labels with the ground truth. We record the

average correctness (frequency of matching the ground truth) of δ-margin consensus labels across

all items. This process of procuring consensus votes and aggregating their correctness across all

items is repeated 100 times for each value of δ, collecting 100 statistical quantities, each of which

7 This prevents termination of the voting process due to exhausting the total set of available votes for high values of δ.
Repeated exposure to items is also a realistic scenario in some crowdsourced tasks, although our voting simulation
necessitates that a worker always responds the same way to the same item.
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Figure 11 Correctness of resulting consensus vote, averaged across all experiments and all settings for a fixed

consensus threshold δ and fixed minimum worker accuracy threshold τw.

summarizes consensus quality for the full set of items. (We also record an average number of votes

it took to reach consensus for the full set of items – we discuss the results in subsequent sections.)

For each value of δ, we also compute the theoretical value of consensus vote quality from

Equation 1. To do this, we take the worker pool accuracy level p to be equal to the average of

accuracies among all workers recruited for the task (regardless of whether a vote was solicited from

them). For example, when recruiting the entire set of 39 workers to the task of labeling all 108

items using δ-margin voting with threshold δ = 3, the empirically sourced pool-level odds of correct

response in the Bluebirds dataset is ϕ≈ 0.6356
1−0.6356 ≈ 1.744, and hence the theoretical quality of the

voting process is Qth(ϕ, δ)≈ 1.7443

1+1.7443
≈ 0.841.

Finally, we compute the difference between the experimental and theoretical values of result

quality. The simulation process is described in Algorithm 2 in Appendix A.

Figure 12 demonstrates the results for the total, unfiltered pool of workers and items. Theoretical

quality makes for a reasonably small overestimation of the empirical results quality (with the

exception of δ= 2, where part of the experiments demonstrated better-than-theoretical quality).

The trend demonstrates that the gap between the theoretical quality derived earlier and the quality

of (quasi-)empirical results is widening as the consensus majority requirement becomes stronger,

however the variance of the difference becomes smaller. Figure 12 also includes an illustration of

the same quantities under an identical voting with replacement simulation, but with pre-set quality

filters on the pool of workers.

6.3. Theoretical vs. experimental time until completion

As before, we begin by comparing the theoretical value of time until consensus in Equation 4 with

the average time (i.e., number of votes) cast in 100,000 random walk simulations, for each pair (p, δ).
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Figure 12 Comparison between theoretical and empirical values of overall task result quality, for various values of

consensus threshold δ and a fixed (empirically derived) worker pool accuracy p. Each data point is an

average over 100 experiments. Top left: violin plot of distributions of the difference Qth−Qexp. Top right:

side-by-side comparison and difference Qth−Qexp. Bottom row: combined violin and point difference

plots, for pre-filtered datasets with worker quality τw > 0.5, τw > 0.7, and τw > 0.9 respectively.

Figure 13 demonstrates that the relative error errET (p) :=E−1sim[nvotes] · (Esim[nvotes]−Eth[nvotes]))

between the computed theoretical values and the quality estimated from random walk simulations

is small.

Again, we follow up by a comparison between theoretical and empirical data (as opposed to

theoretical vs. simulated data, above). We use the same procedure as described in the previous

section to compute the empirical values of the number of votes it took to reach consensus. We

estimate the empirical value of accuracy p the same way as above in order to compute the theoretical

value of expected number of votes using Equation 4.

The results of this comparison are illustrated in Figure 14. As one would intuitively expect,

increasing the value of τw (a lower bound on the accuracy of recruited workers) pushes the number

of votes required for consensus to be closer to the threshold δ. In other words, any sample of

workers is likely to agree, so a series of δ votes is likely to be enough to reach a δ majority. Also

unsurprisingly, the adherence to the Nvotes = δ line is tighter for smaller levels of δ, and the graph

begins to curve upwards for larger values of δ. Indeed, the violin plot on the right panel of Figure 14
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Figure 13 Relative error errET (p) := E−1
sim[nvotes] · (Esim[nvotes]−Eth[nvotes])) of the average (expected) time until

consensus, as a function of the probability of a correct answer p, for a range of fixed values of consensus

threshold δ.

Figure 14 Number of votes it took to reach consensus. Left: averaged across all experiments and all τi settings for

a fixed consensus threshold δ and fixed minimum worker accuracy threshold τw. Right: ‘violin plot’ of

nvotes distributions for a fixed δ across all settings of τw and τi, on a logarithmic scale.

illuminates the fact (which we confirmed directly by examining individual items in our computation)

that, for higher threshold values δ, only a few items within a given setting may occasionally take

an enormous number of votes to reach consensus, and such ‘outliers’ drive up the mean value of

Nvotes across all settings in the left panel for higher values of δ. We confirmed this fact explicitly by

examining the way time to completion was distributed across items in our computations.

6.4. Theoretical variance of time until completion vs. random walk simulations

First, we compare the variance of time to termination in a simulated random walk with two

absorbing states with the theoretical value of variance obtained as in Proposition 3. To obtain the

‘experimental’ variance, the first step is to simulate n trials of a Markov random walk with given

parameters p and δ defining the initial value in a chain with absorbing states at 0 and 2δ. We used
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Figure 15 Relative error `(p) := V ar−1
sim(nvotes) · (V arsim(nvotes)−V arth(nvotes)) of the variance values between

the theoretical and the simulated random walk experiments, as a function of the probability of a correct

answer p, for a fixed consensus threshold δ.

n= 100,000 trials for each pair of values (p, δ), recording the variance of the number of votes until

consensus for each pair.

We are interested in establishing for which values of p does the theoretical variance of time to

termination start diverging from the value obtained via random walk simulations. For a range

of values of the threshold δ, the plot in Figure 15 shows the relative error in the estimation of

variance of a simulated random walk versus the theoretical values in Formula 7 , as a function of

p∈ [0.51,0.93]: `(p) := V ar−1sim(nvotes) · (V arsim(nvotes)−V arth(nvotes)) .

7. Discussion and future work

Delta-margin majority voting is a frequent method of choice when aggregating worker votes on

crowdsourcing platforms. Adaptively requiring a strong enough majority —instead of requesting a

specific number of votes for consensus—, this method is favored in practice for promising higher

accuracy of results without casting too large a number of votes when it is not necessary to do so.

Yet wherever the preference for this method emerged ad hoc, a theoretical study of this method

remained lacking.

In this work, we propose a novel way to model the δ-margin voting process as a Markov process.

We use well-established probability theory and statistics results to put forth closed-form expressions

that quantify the expected quality of the consensus vote. We also formulate the PDF, expectation,

and variance of the number of votes one needs to cast in order to reach consensus. Furthermore,

we formulate a series of useful equivalences. The first of these is an equation that defines how one

ought to set the threshold parameter of a voting process in order to attain the same quality as that

of a process with different (given) accuracy and consensus threshold. The second equivalence defines
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a risk-neutral utility-equalizing ratio of payments for two workflows which differ in worker response

accuracies. In other words, it suggests hot to set the wage for the second process, relative to the

wage for the first one, in such a way that the two processes attain the same utility, defined here as

combining result quality and expected processing time (a proxy for process cost). We further refine

this result to a case of risk-averse cost function – one that considers both the expectation and the

variance of time until consensus.

We probed the reliability of our theoretical results in real-life scenarios. Indeed, one limitation

of our results is in making the assumption of uniform response accuracy among workers – an

assumption not likely to hold on crowdsourced platforms. However, comparing each of our theoretical

quantifications with corresponding simulations (random walk as well as, separately, draws from

real crowdsourced labels) suggested that our theoretical results are robust to violations of the

worker accuracy uniformity assumption. This is an encouraging finding for practitioners seeking

to design cost-optimal crowdsourced workflows: theoretical quantifications can be used to guide

process design ex ante, without having to tune the parameters of the voting process after a series of

costly trial-and-error runs.

While our experimental evaluations bode well for the applicability of the theoretical model as it

stands (i.e., with the assumption of a uniform accuracy of all workers for all items), one future work

direction would be to extend our model to formally handle worker and item heterogeneity. What are

the equivalent results to Theorems 1, 2 and the variance results in 4.3 that hold for voting tasks

where worker accuracies are not constant and equal to p, but follow a distribution with mean p?

A further challenge to applicability that stems from our assumption about worker accuracy p

is that the accuracy parameter is seldom fully observed in practice. The question of interest to

practitioners is that of an inverse problem: can our theoretical results be used to infer the accuracy

distribution of a pool of workers, given limited or no access to ground truth labels? In future

work, powerful statistical packages such as TensorFlow may be employed to solve an inferential

version of the workflow problem with real-life crowdsourced task data and unknown worker accuracy

parameters.

Another limitation of our work is its focus on binary classification. A natural direction of future

work is to derive corresponding results that hold for non-binary classification tasks8 A further

extension of this work could attempt to provide theoretical quality and cost estimates for continuous

(regression) tasks.

Finally, in a broader outlook on future work, we plan on extending the analysis herein onto

other types of processes, with a focus on understanding the interplay between quality, time to

8 This question appears to be easily addressed by representing multi-class tasks as binary ones by pooling all but the
correct class labels together.
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completion, and payment costs. Ultimately, our goal is to have a set of ‘modular’ analyses that

allow practitioners to take as input the structure of a crowdsourcing task or process and provide an

ex ante prediction of its behavior, without having to execute the process to see the results.

Despite the fact that the voting process modeled using Gambler’s Ruin random walk is guaranteed

to terminate, the number of votes necessary for reaching consensus on a given item may be

prohibitively large. This is one of the reasons for developing heuristics and, eventually, theoretical

results for escalation workflows. In this type of a crowdsourced labeling process, an item will either

get resolved by a pool of workers recruited from a given pool, or remain unresolved after certain

maximum amount of iterations (an escalation criterion), after which the requester will transfer the

item to the next ‘stage’ where higher accuracy labourers will vote to conclude the item’s consensus

label9. In relation to workflows, it is interesting to establish how many stages will resolve most of

the items, given worker accuracy at each stage. Further, how many workers do we expect to recruit

to resolve all items? What is the most cost-efficient stopping criterion? In this direction of future

work, as with the current work, we aim to enable practitioners to infer cost-optimal parameters of

multistage workflows ex ante.

9 Another motivation for establishing escalation criteria is driven by cost efficiency: there may exist such combinations
of accuracies (p1, p2 and wage rates (pay1, pay2) that make it strictly more cost-efficient for a requester to escalate
items sooner, regardless of the reasonable expectation of those items being resolved by the first, less accurate worker
pool.
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Appendix A: Procedures for simulating δ-margin voting using observational data.

In this appendix, we present pseudo-code that describes various procedures we used to simulate δ-margin

voting for various analyses described in Section 6. In particular, we describe the procedures we used for:

• examining asymptotic properties of consensus vote quality as a function of accuracy p for various values

of the threshold δ

• examining asymptotic properties of time until consensus as a function of accuracy p for various values of

the threshold δ

• comparing the experimental consensus vote quality (i.e., the average correctness of the consensus votes

resulting from our simulations that use observational data) with the theoretical value of quality in Equation 1.

• comparing the experimental time (i.e., number of votes it took) until consensus with the theoretical

value of expected time until consensus in Equation 4.

Algorithm 1 The procedure simulating δ-margin voting using various subsets of observational

data, for computing experimental quality and time until consensus.

1: procedure QualityAndTime VariousWorkerPools(data = Bluebirds)

2: for τw ∈ [0,0.1, ..,0.9] do

3: for τi ∈ [0,0.1, ..,0.9] do

4: data subset ← filter(data,τw, τi)

5: for δ ∈ [0,1, ..,11] do

6: for item ∈ {data subset} do

7: for i∈ [0, ..,19] do

8: this trial stats ← SimulateDMarginVoting(item, δ, replace= False)

9: correctness and time ← get(this trial stats, [‘is correct’, ‘N votes’])

10: all trials single item ← append(correctness and time)

11: end for

12: all trials all items ← append(all trials single item)

13: end for

14: all deltas all trials all items ← append(all trials all items)

15: end for

16: all itemfilters all deltas all trials all items ← append(all deltas all trials all items)

17: end for

18: all filters correctness and time ← append(all itemfilters all deltas all trials all items)

19: end for

20: return(all filters correctness and time)

21: end procedure
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Algorithm 2 The procedure of simulating δ-margin voting using observational data, for comparing

theoretical and experimental values of quality and time to consensus.

1: procedure QualityExperimentsVsTheory(data = Bluebirds)

2: p = WorkerAccuracy(data)

3: for δ ∈ [0, ..,11] do

4: quality theoretical = ComputeTheoreticalQuality(δ, p)

5: for experiment id ∈ [0, ..,99] do

6: for item ∈ Bluebirds do

7: consensus vote stats ← SimulateDMarginV oting(δ, item, replace = True)

8: consensus vote correctness ← get(consensus vote stats, ‘is correct’)

9: all items correctness ← append(consensus vote correctness)

10: end for

11: quality experimental singleTrial ← average(all items correctness)

12: quality experimental multi ← append(quality experimental singleTrial)

13: end for

14: theoretical vs experimental ← combine(quality experimental multi, quality theoretical)

15: theory vs 100Experiments AllDeltas ← append(theoretical vs experimental)

16: end for

17: return(theory vs 100Experiments AllDeltas)

18: end procedure
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