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Choosing job applicants to hire in online labor markets is hard. To identify the best applicant at hand,

employers need to assess a heterogeneous population. Recommender systems can provide targeted job-

applicant recommendations that help employers make better-informed and faster hiring choices. However,

existing recommenders that rely on multiple user evaluations per recommended item (e.g., collaborative

filtering) experience structural limitations in recommending job applicants: Because each job application

receives only a single evaluation, these recommenders can only estimate noisy user-user and item-item

similarities. On the other hand, existing recommenders that rely on classification techniques overcome this

limitation. Yet these systems ignore the hired worker’s performance—and as a result, they uniformly reinforce

prior observed behavior that includes unsuccessful hiring choices—while they overlook potential sequential-

dependencies between consecutive choices of the same employer.

This work addresses these shortcomings by building a framework that uses job-application characteristics

to provide recommendations that (1) are unlikely to yield adverse outcomes (performance-aware) and (2)

capture the potentially evolving hiring preferences of employers (sequence-aware). Application of this frame-

work on hiring decisions from an online labor market shows that it recommends job applicants who are likely

to get hired and perform well. A comparison with advanced alternative recommender systems illustrates

the benefits of modeling performance-aware and sequence-aware recommendations. An empirical adaptation

of our approach in an alternative context (restaurant recommendations) illustrates its generalizability and

highlights its potential implications for users, employers, workers, and markets.
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1. Introduction

Online labor markets such as Peopleperhour, Freelancer, and Upwork facilitate global short-term

contracts or freelance work. Employers can purchase services from online workers that complete

diverse jobs, including web development, graphic design, accounting, sales, marketing, and data

science. Like other online platforms, online labor markets grew exponentially during the past

decade (Freelancers-union 2017). Upwork, for example, hosts fourteen million workers and five

million employers and reports a total annual transaction volume of $1 billion (Lauren 2017, Brier

and Pearson 2018). Similarly, Peopleperhour connects 750,000 employers to 1.5 million workers

around the world (Atkins 2019). This growth is projected to continue as automation and the sharing

economy structure the future of work (Sundararajan 2016, Institute of Business Value 2019).

Similar to offline settings, identifying capable workers to hire in online labor markets is

hard (Klazema 2018). To make hiring decisions, employers need to assess the observed and latent

characteristics of the available job applicants. The observed characteristics include the applicants’

education, skills, work histories, and certifications, as listed on their resumes (Kokkodis et al. 2015).

The latent characteristics are the workers’ actual knowledge and abilities (when skill certifications

are absent), as well as the workers’ motivation, drive, and willingness to collaborate and do a good

job (Geva and Saar-Tsechansky 2016). The existence of latent characteristics, the heterogeneity

that appears in the observed ones (Kokkodis and Ipeirotis 2014), and the interactions between

the two create an uncertain environment of information asymmetry (Akerlof 1970, Pelletier and

Thomas 2018).

Besides, because job applications are free, workers often broadcast their availability widely to

increase their chances of getting hired (Kokkodis et al. 2015). Large numbers of job applications

increase employers’ search costs (Guo et al. 2017) and may even result in unfilled openings (Snir

and Hitt 2003, Carr 2003). By some estimates, around 60% of openings in online labor markets

never reach a contract (Zheng et al. 2015). As a result, increased search costs hurt both the market

(through lack of revenue) and its users (employers and workers), many of whom opt to quit (Guasch

et al. 2003, Autor 2001).
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Information asymmetry and search costs are not unique to online labor markets. Both are present

in almost every type of online market (Dimoka et al. 2012, Chen et al. 2004, Ba and Pavlou

2002). By providing targeted product or service recommendations, recommender systems are a

popular solution to these issues (Pathak et al. 2010, Brynjolfsson et al. 2011, Fleder and Hosanagar

2009). Specifically, in our context, recommender systems can help employers make better-informed

decisions by ranking job applicants according to their likelihood of getting hired and performing well.

Yet, when applied to job-applicant recommendations, existing recommender systems experience

shortcomings. In particular, recommenders that rely on many assessments per item to provide

recommendations (e.g., collaborative filtering; we refer to these systems as many-assessment rec-

ommenders; see Adomavicius and Tuzhilin 2005, Ricci et al. 2011, Quadrana et al. 2018) have

limited information to estimate the required user-user and item-item similarities. This is because,

in online labor markets, (1) task requirements are diverse (i.e., no two jobs are identical), (2) job

applicants evolve by gaining experience or learning new skills, (3) different job openings attract

different pools of applicants and, as a result, tasks have non-overlapping choice sets, and (4) the

ratio of employers to workers is significantly lower than conventional many-assessment contexts

(e.g., movie recommendations). These characteristics allow each job application—the focal recom-

mended item—to be evaluated only once by a single employer. Hence, when applied in this context,

many-assessment systems will underperform as they will rely on a single observed assessment per

job application to estimate noisy user-user and item-item similarities.

On the other hand, systems that rely on a single assessment to provide recommendations over-

come these limitations (we refer to these systems as single-assessment recommenders; see Kokkodis

et al. 2015, Abhinav et al. 2017, Baba et al. 2016, Mao et al. 2015). However, existing single-

assessment systems have two shortcomings when adapted to recommend job applicants. First, they

ignore the performance of the hired applicant. Instead, they learn and uniformly reinforce previ-

ously observed behavior, including employer choices that yielded unsuccessful outcomes (Kokkodis

et al. 2015, Abhinav et al. 2017). Second, they overlook potential sequential-dependencies between
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hiring decisions of the same employers. Hence, they implicitly assume that employer hiring prefer-

ences remain the same over repeated hiring choices. As a result, they make recommendations that

regress to a mean that uniformly aggregates behaviors of varying-experience and varying-ability

employers.

This work identifies three principles for designing job-applicant recommenders that address these

limitations of existing many-assessment and single-assessment systems: A job-applicant recom-

mender should be a single-assessment system that is both performance-aware and sequence-aware.

Single-assessment systems overcome the limitations of many-assessment approaches and learn to

recommend items that only a single user evaluates. Performance-aware systems identify prior unsuc-

cessful hiring choices and learn to promote job applicants who are not only hireable but also likely

to perform well. Sequence-aware systems allow repeat employers to adjust their hiring preferences

and evolve independently.

We instill these principles into a new single-assessment framework that conceptualizes three dis-

crete job-application outcomes (“No-hire,” “Hire-negative,” “Hire-positive”—performance-aware)

and captures any changes in hiring-preferences through a Hidden Markov Model (HMM— sequence-

aware). Implementation of the proposed approach on hiring decisions from a major online labor

market highlights the advantages of the three design principles. Across four different evaluation

metrics, our framework significantly outperforms alternative job-applicant recommenders, includ-

ing existing and new single-assessment systems (logistic regression, gradient boosting, random

forests, support vector machines, recurrent neural networks) and adaptations of popular many-

assessment systems such as collaborative filtering-based approaches (singular value decomposition,

HMM for collaborative filtering; see Sahoo et al. 2012) and deep sequential recommenders (Kula

2018). Repeat employers benefit the most from our approach, as these employers receive person-

alized sequence-aware recommendations by evolving across their distinct hiring-preference paths.

Application of our approach in an alternative context (restaurant recommendations) shows its

generalizability in contexts where both the recommended items and the user preferences change.
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This work extends research in recommender systems and online labor markets by identifying

and addressing critical shortcomings of existing many-assessment and single-assessment approaches

when recommending job applicants. By conceptualizing the necessary design principles, this paper

is the first to directly incorporate worker performance into the recommendation process and allow

employer hiring preferences to change. Methodologically, compared with other HMM-based rec-

ommenders (Sahoo et al. 2012, Hosseinzadeh Aghdam et al. 2015, Zhang et al. 2016b) and tra-

ditional HMM approaches for classification (Murphy 2012), the proposed HMM offers a unique

structure that models choices according to observed applicant-employer-task characteristics and

allows hiring-preferences to evolve only after the completion of each task. As a result, because our

framework provides job-applicant recommendations that lead to successful outcomes, it can benefit

(1) workers to differentiate, (2) employers to make better-informed and faster (reduced search cost;

see Bakos 1997) decisions, and (3) markets to increase their transaction efficiency, which in turn

results in increased revenue and employer satisfaction.

2. Research context

The ultimate goal of this work is to provide relevant job-applicant recommendations in the context

of an online labor market.

Problem definition: Assume a given job opening with a set of job applicants. We are interested

in ranking these applicants according to their likelihood of getting hired and performing well.

At the problem’s core is a recommender system that ranks job applications within a given

opening. A rich literature on recommender systems offers diverse approaches (Adomavicius and

Tuzhilin 2005, Kantor et al. 2011, Quadrana et al. 2018, Zhang et al. 2019), some of which focus

specifically on recommending job applicants and job openings in online labor markets (Kokkodis

et al. 2015, Abhinav et al. 2017, Goswami et al. 2014, Baba et al. 2016, Färber et al. 2003).

These existing recommender systems can be many-assessment or single-assessment depending

on the items they recommend (Figure 1):
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Figure 1 Recommender systems vary according to their focal recommended items
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Many-assessment systems recommend items that multiple users evaluate by estimating user-user and item-item

similarities. Single-assessment systems recommend items that a single user evaluates by modeling item characteristics

through classification techniques. Few-to-many systems use either many-assessment or single-assessment methods to

recommend items that receive few user evaluations.

• Many-assessment recommenders: Many users evaluate each recommended item as the under-

lying item content (e.g., a book’s story, a movie’s finale, or a camera’s chip) does not change.

Examples include systems that recommend books, songs, and movies (Adomavicius and

Tuzhilin 2005, Ricci et al. 2011, Quadrana et al. 2018). The availability of multiple evaluations

per item allows these systems to estimate item-item and user-user similarities. Through matrix

factorization techniques, they predict user-item affinities and make recommendations (Koren

et al. 2009).

• Single-assessment recommenders: Only a single user evaluates each recommended item, as the

underlying item content (e.g., a worker completing tasks that require different skills) changes.

Examples include systems that recruit workers or rank job applicants (Kokkodis et al. 2015,
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Abhinav et al. 2017, Goswami et al. 2014, Mao et al. 2015). These systems use classification

approaches that model observed item characteristics to provide recommendations.

Between these two types, Figure 1 identifies few-assessment systems that recommend items that

either change or receive only a few user evaluations. These systems borrow techniques from either

many-assessment or single-assessment systems to provide recommendations. The next paragraphs

present a brief overview of existing recommender systems and explain in detail the limitations of

these systems when applied to the focal context.

2.1. A brief overview of existing recommender systems

2.1.1. Many-assessment recommenders: Depending on whether they model sequential

user actions, many-assessment recommender systems can be sequence-independent or sequence-

aware (Adomavicius and Tuzhilin 2005, Quadrana et al. 2018).

Sequence-independent recommenders: Conventional content-based, collaborative filtering, and

hybrid approaches do not explicitly model the sequence of user actions. Content-based systems

focus on understanding the commonalities between items that a user has rated highly in the past to

recommend similar items (Adomavicius and Tuzhilin 2005, Billsus and Pazzani 2000, Zheng et al.

2017, Gong and Zhang 2016). Collaborative filtering systems suggest items that similar users with

the targeted user have liked in the past (Billsus and Pazzani 1998, Breese et al. 1998, Adomavicius

and Tuzhilin 2005, Breese et al. 1998, Delgado and Ishii 1999). Hybrid systems combine notions

from content-based with characteristics of collaborative approaches to provide systems that over-

come some of the limitations of the two approaches (Adomavicius and Tuzhilin 2005, Balabanović

and Shoham 1997, Si and Jin 2003, Tso-Sutter et al. 2008). Recent advances in deep learning

extend these approaches by allowing neural networks to structure new collaborative filtering frame-

works (Li et al. 2015, Wang et al. 2015).

Sequence-aware recommenders: Sequence-aware systems explicitly model sequences of past events

and recommend items according to the short-term behavior of the user (Quadrana et al. 2018).

There are three main classes of such recommenders: sequence learning, sequence-aware matrix fac-

torization, and hybrid systems (Quadrana et al. 2018). Sequence-learning methods include frequent
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pattern mining (Hsueh et al. 2008, Zang et al. 2010, Jannach et al. 2015) and sequence model-

ing (recurrent neural networks, Markov models, reinforcement learning; see Garcin et al. 2013, He

et al. 2009, Sahoo et al. 2012, Moling et al. 2012, Natarajan et al. 2013, Song et al. 2016, Twardowski

2016, Zhang et al. 2019). Sequence-aware matrix factorization approaches combine information

from timestamps with algorithms that rely on matrix completion (Koren 2009, Quadrana et al.

2018). Hybrid approaches combine matrix factorization techniques with Markov chains (Rendle

et al. 2010, Lian et al. 2013, He and McAuley 2016) to provide next-item recommendations.

The rich literature of sequence-aware systems further includes approaches that rely on Hidden

Markov Models (HMMs) to recommend items that their content does not change such as news,

songs, and movies. In particular, HMM-based collaborative filtering allows user preferences to

evolve over months in terms of (1) how many news articles they will read and (2) which of the

available articles they will pick (Sahoo et al. 2012). Hierarchical HMMs allow for two levels of

hidden states to provide personalized song recommendations (Hosseinzadeh Aghdam et al. 2015).

Hidden semi-Markov models allow users to stay in a (latent) interest state for varying time intervals

to provide movie, song, and webpage recommendations (Zhang et al. 2016b).

2.1.2. Single-assessment recommenders: Single-assessment systems rely on classification

techniques to provide recommendations (Figure 1). Prior research provides a multitude of sequence-

independent classification-based approaches. For instance, job-applicant recommenders evaluate

unique choice sets of applicants within each job opening to make personalized recommenda-

tions (Kokkodis et al. 2015, Abhinav et al. 2017). These systems adapt popular classifiers (logistic

regression, random forest, support vector machines) to rank job-applicants according to their likeli-

hood of getting hired. Besides, automated recruiters rely on similar classification techniques (logis-

tic regression, random forest, latent aspect models, Decision Trees, K-NN, Bayesian inference) to

model both sides of the market. Such systems recruit candidates to apply to different jobs (Färber

et al. 2003, Malinowski et al. 2006, Goswami et al. 2014, Mao et al. 2015) or redistribute job

applications to create a more balanced marketplace (Borisyuk et al. 2017).
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2.1.3. Few-assessment recommenders: Between many-assessment and single-assessment

recommenders, there exist systems that recommend items that either change (e.g., a restaurant or

a course that change over time) or receive very few user evaluations (e.g., a task that multiple users

(workers) evaluate until it gets filled; see Figure 1). Such few-assessment systems borrow techniques

from both many-assessment and single-assessment approaches. For instance, they can cluster the

recommended items into static entities and apply matrix-factorization-based techniques similar to

many-assessment approaches; Or, they can acknowledge that the items are relatively unique and

apply classification algorithms similar to single-assessment recommenders.

Task recommenders in crowdsourcing environments are a prime example of few-assessment rec-

ommenders. Many tasks on Amazon Mechanical Turk require multiple workers (e.g., human intel-

ligence tasks such as labeling). Because these tasks are often very similar, clustering them into

task categories creates an environment where multiple workers choose to complete the same types

of tasks (i.e., multiple users evaluate the same recommended item). As a result, through this type

of clustering, matrix factorization techniques (Lin et al. 2014, Yuen et al. 2012, 2015, Kurup and

Sajeev 2017) or algorithms that estimate user-item similarities (Safran and Che 2017) can recom-

mend within-task-category tasks to workers.

On the contrary, when task recommenders focus on more complex jobs that are often unique and

harder to cluster into categories, few-assessment systems use classification-based recommenders

similar to single-assessment ones. For instance, logistic regression and support vector machines

can provide job recommendations to workers in online labor markets (Hossain and Arefin 2019).

Similarly, softmax functions can model the probability of winning a crowdsourcing contest and

provide relevant task recommendations (Baba et al. 2016).

Besides task recommenders, there are many alternative few-assessment contexts that existing

literature proposes both many-assessment and single-assessment techniques. These include (1)

restaurant or venue recommendations (Farooque et al. 2014, Kurashima et al. 2013, Li and Li

2014), (2) online courses recommendations (Bousbahi and Chorfi 2015, Symeonidis and Malakoudis

2018, Pardos et al. 2017, Prabhakar et al. 2017), and (3) career path recommendations (Patel et al.

2017, Kokkodis and Ipeirotis 2020).
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Figure 2 Characteristics of the focal context suggest that a single-assessment framework would be a better fit
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93% of workers who complete multiple tasks in our dataset complete tasks that require unique skillsets; 99% of

pairwise matched tasks have entirely unique choice sets of job applicants (zero overlap).

2.2. Overview of the focal single-assessment context

Can existing recommenders provide rankings of job applicants according to their likelihood of getting

hired and performing well?

To understand the limitations of existing recommender systems we first need to identify the

salient features of the focal problem. Our research context assumes a marketplace where workers

apply to job openings, some of them get hired, and once they complete the required task, they

receive a feedback score (rating) about their performance. This behavior suggests that some workers

might get hired (and hence evaluated) multiple times over a period of time. Hence, one could argue

that many-assessment frameworks could provide efficient solutions to our research question as they

would be able to leverage user (employer) evaluations across multiple items (workers) to estimate

the required user-user and item-item similarities.

Yet, recommending job applicants generates additional, unique characteristics that suggest that

single-assessment recommenders would likely be more appropriate. Specifically:

• Diverse, heterogeneous tasks: When workers get hired multiple times, they usually complete

different tasks. As a result, the ratings they receive represent their performance across different

task requirements. For instance, consider the following real example from our data (described

in detail in Section 4):
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Data evidence 1 A worker in our dataset completed two tasks that required the following

skillsets:

— Skillset 1: {sql,.net-framework,asp.net-mvc,c#}

— Skillset 2: {jquery,css,html5,css3,asp.net-mvc }

For the first task, the worker received a very high evaluation (89%). For the second task, the

worker received a lower evaluation (67%). �

Even though the two tasks are contextually similar, they are not identical. The differences

between the tasks generate evaluation inconsistencies: the received feedback scores could be

specific to sql and c# or to jquery—i.e., the skills that do not overlap between the two

skillsets. A many-assessment recommender system would assume that these two tasks are

identical, and try to estimate user similarities based on how these two employers have evaluated

this worker, even though these employers have rated this worker for two different tasks.

Data evidence 2 Figure 2A shows that the vast majority (93%) of workers who complete

more than one task in our dataset complete tasks that require unique skillsets. �

Combined, these observations suggest that the underlying recommended item in our con-

text should not be the worker, but instead, the combination of worker and task, i.e., a job

application. Because only a single employer evaluates each job application, a single-assessment

framework would likely be able to make more appropriate recommendations.

• Ratio of employers to workers: Another characteristic of our context is its low user-to-item

ratio (i.e., employer-to-worker ratio). In many-assessment contexts, the user-to-item ratio is

usually very large:

Data evidence 3 Netflix has 73 million registered users1 and offers 3,7812 movies. The user-

to-item ratio for Netflix is 19,307. In our data, there are 11,461 employers and 162,976 workers

(Section 4). The user-to-item ratio in our context is 0.07. �

1 https://www.statista.com/statistics/250937/quarterly-number-of-netflix-streaming-subscribers-in-the-us/

2 https://www.foxbusiness.com/technology/how-many-movies-on-netflix
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The user-to-item ratio is particularly important for many-assessment recommender systems,

as they rely on multiple users evaluating multiple items to estimate user-user and item-item

similarities. When the available items are significantly more than the available users, many

items do not receive any rating. This is generally true for online labor markets, where many

workers are new or have never got hired on the platform before applying to a focal job

opening (see p.3576, Table 1, Pallais 2014). When ratings are not available, many-assessment

matrix factorization techniques that require such ratings to make predictions will likely fail

(Appendix A). On the other hand, single-assessment systems will learn to rely on alternative,

observed characteristics (beyond ratings, Table 1) to make recommendations, and as a result,

they are more likely to generate better rankings of job applicants.

• Unique choice sets: In many-assessment contexts, the choice sets have large overlapping seg-

ments of product offerings over time. Even though new items enter the choice sets and old

items exit frequently (e.g., new products on Amazon or new movies on Netflix), the vast

majority of items remain available for long periods. On the contrary, in the focal context, each

task attracts an almost unique set of job applicants that employers can choose from.

Data evidence 4 Many movies and TV shows remain available on Netflix for multiple years.

For instance, the TV show “The Office” has been in the choice sets of tens of millions of

Netflix users from 2013 until 2020.34 On the other hand, Figure 2B shows that each employer

makes hiring decisions across vastly unique choice sets: 99% of the pairwise combinations of

tasks in our data do not share any overlapping job applicant. �

Conceptually, overlapping choice sets are critical for many-assessment approaches, as these

approaches operate on the assumption that all items are available to all users (user-item

matrix). Hence, in contexts such as ours, where very few workers of the marketplace are

3 https://variety.com/2013/digital/news/netflix-adds-the-office-and-30-rock-final-seasons-other-nbc-shows-on-oct-1-

1200682400/

4 https://en.wikipedia.org/wiki/The Office (American TV series)
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available to each employer at each point in time, many-assessment systems will likely generate

noisy predictions that incorporate workers that will likely never apply (become available) to

the focal job opening. On the contrary, single-assessment systems do not rely on the availability

of workers, but instead, they make predictions based on the observed characteristics that each

applicant-task combination offers (Table 1).

Appendix A provides additional examples and describes in detail the structural problems that

many-assessment frameworks face when applied to the focal context; Table 2 summarizes the

similarities and differences between the focal and many-assessment contexts; Figure 11 shows that

the implementation of such approaches results in very poor recommendations; Figure 16 generalizes

the poor performance of these systems in a few-assessment context, restaurant recommendations.

2.3. Limitations of existing single-assessment recommenders in the focal context

The previous discussion illustrates that our context requires a single-assessment framework. What

are the limitations of current single-assessment approaches?

Existing single-assessment approaches can rank job-applicants according to their likelihood of

getting hired (Kokkodis et al. 2015, Abhinav et al. 2017). Besides, classification algorithms proposed

in automated recruiters can be adapted to address the focal problem (Goswami et al. 2014, Färber

et al. 2003, Malinowski et al. 2006, Mao et al. 2015). However, similar to implicit-feedback many-

assessment recommenders, these approaches ignore the performance of the hired worker (predict

only “Hire” or “No-hire”). Hence, they learn and uniformly reinforce previously observed behavior,

including choices that resulted in unsuccessful outcomes.

Furthermore, existing single-assessment approaches are sequence-independent: they uniformly

consider all previous employer decisions to predict future behavior. As a result, they implicitly

assume that employer hiring preferences remain the same over repeated hiring choices. This assump-

tion, however, might not be entirely accurate. Over repeated hiring decisions and through gaining

experience by remotely managing workers and by increasing their familiarity with the platform,



Author: Article Short Title
14 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

many employers might evolve and adjust their hiring preferences.5 Hence, existing single-assessment

systems will likely offer recommendations that might not fully capture the current hiring prefer-

ences of each employer.

2.4. Design principles of a performance-aware and sequence-aware job-applicant
recommender

Based on the above discussion on the shortcomings of existing recommender systems, we argue

that an efficient system that ranks job applicants according to their likelihood of getting hired

and performing well should be a single-assessment recommender that is both performance-aware

and sequence-aware. Single-assessment systems overcome the limitations of many-assessment rec-

ommenders (Section 2.2, Appendix A) and allow models to recommend unique items through their

time-varying characteristics. Performance-aware systems identify previously unsuccessful hiring

decisions and learn to promote job applicants who are not only hireable but also likely to perform

well. Sequence-aware systems allow employers to independently adjust their hiring preferences over

time and offer recommendations that capture employers’ current hiring preferences. Together, these

three design principles structure frameworks that provide personalized recommendations of job

applicants who are likely to get hired and perform well.

Figure 3 builds a decision tree that positions this work in the current literature of recommender

systems. The first layer divides recommender systems into many-assessment and single-assessment

(few-assessment systems map to either of the two). The second layer subdivides into sequence-

aware and sequence-independent systems. The third layer further splits existing systems according

to their outcome modeling (implicit or explicit feedback and performance-aware). The leaves of the

decision tree identify examples of each subtree. Finally, the bottom of the decision tree describes

the necessary adjustments that various approaches require in order to fit the focal problem.

5 Employer hiring preferences might evolve over repeated hiring choices for multiple reasons. Some employers might

learn through “trial and error,” while others might adjust their confidence levels in managing and controlling workers

remotely. As we discuss in Section 6.4, identifying the exact mechanism that employers learn or gain experience

requires a deeper investigation that is outside the scope of this work. Instead, in this work we argue that job-applicant

recommenders should capture these possibilities by allowing employer hiring preferences to evolve.
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Figure 3 Positioning of our work in the current literature of recommender systems
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None of the existing systems are single-assessment and, at the same time, sequence-aware and performance-aware:

Our work is the first to meet these three design principles.

The figure annotates that none of the existing systems satisfy the three design principles: there

are no existing single-assessment systems that are sequence-aware and performance-aware. Our

work fills this gap by implementing a single-assessment framework that is both performance-aware

and sequence-aware, and as a result, it provides relevant rankings of job-applicants according to

their likelihood of getting hired and performing well. We discuss this framework next.
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3. Sequence-aware and performance-aware job-applicant
recommendations

A transaction in online labor markets starts with an employer creating a job opening. The opening

description reveals characteristics that the employer is looking for, such as the required set of

skills and experience. Workers who are looking for opportunities observe these characteristics and

self-select to submit their job applications to openings that they see fit. Employers then assess

the available job applicants and decide which ones to hire. The next paragraphs summarize a

single-assessment system that provides sequence-aware and performance-aware rankings of such

job applicants, hence guiding employers to make better-informed and faster decisions.

3.1. Latent hiring preferences and observed outcomes

An employer’s hiring-decision process is latent. The market, however, observes the characteris-

tics and outcomes of each job application. Specifically, for each applicant, the employer must first

choose whether or not to hire. If the employer does not hire the applicant at hand, the market

observes a “No-hire” outcome. However, if the employer chooses to hire the applicant at hand, the

market eventually (when the task is completed) observes an outcome that describes the worker’s

performance: A “Hire-positive” outcome occurs when the performance of the hired worker is satis-

factory, while a “Hire-negative” outcome occurs when the performance of the hired worker is not

satisfactory. Formally, upon completion of a task, the market observes the employer’s decisions on

the task’s job-applicants, which fall in the following set of possible outcomes (Y):6

Y = {“No-hire,” “Hire-negative,” “Hire-positive”} . (1)

Over time, repeat employers who hire workers on multiple tasks might adjust their hiring pref-

erences as they get more familiar with the challenges of hiring and managing remote workers.

6 Section 4 discusses performance thresholds that separate “Hire-positive” from “Hire-negative” outcomes. Extensions

to more granular outcomes are conceptually trivial but increase sparsity without a clear benefit for the platform, as

the platform’s ultimate goal is to predict the likelihood of getting hired and being successful, which is sufficiently

captured by the three classes in Y. Note that including both a “Hire-negative” and a “No-hire “ class is crucial, as

it allows markets to create flexible rankings across different objectives (Section 6.4 and Appendix G).
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A Hidden Markov Model (HMM) can formally facilitate this possible evolution of hiring prefer-

ences. In particular, an HMM allows employers to operate from a latent state that captures their

current hiring preferences. As employers hire workers over multiple tasks, they emit task-specific

“No-hire,” “Hire-positive,” and “Hire-negative” observations. These observations reveal new infor-

mation about the current employer hiring preferences. If the employers’ preferences change, the

HMM allows for employers to stochastically transition to new states that better capture their

updated hiring preferences. Otherwise, employers remain in the state that best describes their

observed behavior.

3.2. HMM structure

The definition of an HMM requires (1) a transition matrix T that describes the transition probabil-

ities between states that capture different employer hiring preferences, and (2) an emission matrix

E that describes the state-specific probability distributions across the set of observations Y. In the

next paragraphs, we assume that the HMM has K states such that S = {s1, s2, ..., sK}; Appendix F

shows the tuning process of choosing an appropriate number of states K.

Transition probabilities: Employers emit observations Yt ∈ Y for every job application they

receive (Equation 1). Conceptually, hiring-preferences might only change after an employer hires a

worker for a given task and observes the hired-worker’s performance (i.e., at the completion of the

task). The HMM encodes this by allowing employers to transition to a new state only when when

the employer has:

1. Chosen a job applicant to hire,7

2. Chosen job applicants to not hire (“No-hire” observations), and,

3. Observed the outcome of the hired worker (“Hire-negative” or “Hire-positive” observation).

This context-specific requirement separates the transition probability matrix of our HMM from

all prior HMM designs that allow stochastic transitions to occur after every observation (Murphy

7 Employers’ decisions on any given task happen instantaneously: the moment that one applicant gets hired, the

remaining applicants emit a “No-hire” outcome.



Author: Article Short Title
18 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

2012, Bishop 2006, Sahoo et al. 2012). (Appendix J shows that this constraint yields significantly

better results in practice.) Formally, the task-specific transition probability of a given employer

to move from state sk to state sl when evaluating job application t for task o after observing the

outcomes of o− 1 tasks is as follows:

λ
sksl
γklXo−1

:= Pr(St = sl|St−1 = sk;γkl,Xo−1)

=



0, if t is not the first application of task o to be evaluated and sl 6= sk

1, if t is not the first application of task o to be evaluated and sl = sk,

softmax(γklXo−1), if t is the first application of task o to be evaluated

(2)

where Xo−1 is a vector of employer characteristics that captures the employer’s behavior on the

previously o − 1 tasks with observed outcomes, and γkl is a parameter vector of state sk that

weights vector Xo−1. (Note that Equation 2 assumes a sequence of ordered tasks according to

their completion dates.) Based on Equation 2, for a job applicant t the transition matrix has the

following form:

T (γ,Xo−1) =



λs1s1
γ11Xo−1

λs1s2
γ12Xo−1

. . . λs1sK
γ1KXo−1

λs2s1
γ21Xo−1

λs2s2
γ22Xo−1

. . . λs2sK
γ2KXo−1

...
...

...
...

λsKs1
γK1Xo−1

λsKs2
γK2Xo−1

... λsKsK
γKKXo−1


, (3)

where γ = [γ11,γ12, . . . ,γKK ]′.

Unlike most HMMs that provide state-specific static transition matrices (Murphy 2012, Bishop

2006, Sahoo et al. 2012, Hosseinzadeh Aghdam et al. 2015, Zhang et al. 2016b), the elements of the

focal matrix T of Equation 3 are state-specific, employer-specific, and task-specific. Simply put,

the transition probabilities of each employer are personalized, and they change according to the

employer’s current state and history of observed outcomes as captured by vector Xo−1.

Emission probabilities: The second component of the HMM framework identifies the emission

probabilities across the three hiring outcomes in Y. The HMM assumes that these probabilities

are (1) state-specific, representing the current hiring preferences of the employer, and (2) job-

application specific, capturing the observed characteristics of the focal job application. In particular,
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for a given job application, an employer at state sk will make a hiring choice according to the

following:

µ
sk
β
y
k
ZtXo−1

:= Pr(Yt = y|St = sk;βy
k,Zt,Xo−1) = softmax(βy

k[Zt,Xo−1]
′) , (4)

where Zt is a vector of job-application characteristics, Xo−1 is the same vector of employer char-

acteristics that affect transition probabilities (Equation 2), y ∈ Y, sk ∈ S, and βy
k is a parameter

vector that weights Zt and Xo−1 in estimating the probability to observe outcome y when being

in state sk. The emission matrix then is as follows:

E(β,Zt,Xo−1) =


µs1

βNo-hire
1 ZtXo−1

µs1

β
Hire-negative
1 ZtXo−1

µs1

β
Hire-positive
1 ZtXo−1

...
...

...

µsK
βNo-hire
K

ZtXo−1
µsK

β
Hire-negative
K

ZtXo−1
µsK

β
Hire-positive
K

ZtXo−1

 , (5)

where β = [βNo-hire
1 ,βHire-negative

1 ,βHire-positive
1 , . . . ,βHire-positive

K ]′. Similar to the transition matrix T ,

and unlike popular HMM approaches that provide state-specific user-independent emission distri-

butions (Murphy 2012, Sahoo et al. 2012, Hosseinzadeh Aghdam et al. 2015, Zhang et al. 2016b),

the emission probabilities of the proposed framework depend not only on the current employer

state, but also, on both the observed job-application Zt and employer Xo−1 characteristics.

HMM over time: Figure 4 shows the evolution of hiring-preferences of a single employer across

R tasks that attract M job applications with outcomes Y1, ..., Yt, ..., YM , Yt ∈ Y. Aligned with the

conventional presentation of probabilistic graphical models (Koller and Friedman 2009), shaded

ellipses identify observed outcomes and characteristics, while clear ellipses identify latent hiring-

preference states. The figure identifies that a new employer who joins the platform starts at state

sk ∈ S according to an initial probability vector π and remains to that state until the completion

of the first task. From that state, the employer chooses which applicant to hire for the first task.

Once the task is completed, the platform observes the performance of the hired applicant, and

annotates observations Y1 ∈ Y to Yt ∈ Y. The experience that the employer gained from the first
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Figure 4 Interactions of the HMM framework across a sequence of completed tasks by a single employer
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. . . YM
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XR−1

Rth task (o=R)

π

The Figure illustrates a sequence of M hiring choices (“No-hire,” “Hire-negative,” “Hire-positive”) across R

tasks of a single employer. During these choices, the focal employer transitions over states S1, S2, ..., SM according

to the previously observed employer characteristics X0,X1, ...,XR−1 and parameters γ (Equation 2). For each

received job application t, the employer emits a hiring choice Yt based on the employer’s current state St, employer

characteristics Xo−1, job-application characteristics Zt, and parameters β (Equation 4). The employer lands on

state S1 ∈ S according to an initial probability vector π. Aligned with the conventional presentation of probabilistic

graphical models (Koller and Friedman 2009), latent states form clear ellipses and observed characteristics form

shaded ones.

task accumulates to vector X1. This vector affects the transition of the employer to a potentially

new state sl (Equation 2), which better describes the employer’s hiring preferences. From that

state, the employer evaluates new applications t+ 1, ..., for task o= 2. This process continues until

the completion of the Rth task.

Figure 4 further shows how job-application and employer characteristics (Zt,Xo−1) affect the

propensity of each hiring decision Yt ∈Y: Through Equation 4, the model can predict the likelihood

of each job-application to yield a “No-hire,” a “Hire-negative,” and a “Hire-positive” outcome. As

we show later in Section 5.3 and Appendix G, estimation of these likelihoods yields performance-

aware rankings of job-applicants that are not only likely to get hired, but they also have better

chances of performing well.

Vectors π,β, and γ are parameters that the model needs to estimate. Appendix C presents the

derivation of the likelihood and the subsequent process of estimating these parameters. Appendix F

discusses the process of choosing the number of states K, and Appendix I provides implementation

details with code examples from our Github repository (https://github.com/repudime/gbu).

https://github.com/repudime/gbu
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4. Empirical context

We build and evaluate the proposed framework on a set of real transactions from a major online

labor market. The focal dataset includes 762,802 hiring decisions by 11,461 employers that led

to 45,331 completed tasks and observed performance outcomes. The dataset tracks employers for

twelve months and includes all their hiring decisions from the time that they joined the platform.

The dataset also uses the internal log of the marketplace that takes snapshots of each worker’s

profile at the time of a job application.

Figure 5 illustrates characteristics of employer behavior in the focal dataset, which shows some

initial model-free evidence that some employers might adjust their hiring preferences over time.

Figure 5A shows that as employers gain experience, they hire workers who perform significantly

better (p < 0.05). Similarly, Figures 5B and 5C show that over time, employers hire workers with

higher reputation scores (p < 0.05) and lower self-reported expertise (p < 0.05). These trends show

how employers’ average behavior change over time. However, not all employers are average; Our

approach allows employers to evolve or not evolve independently, hence better-capturing the current

status of their hiring preferences. (Appendix D provides a more detailed description of the dataset

and the focal market.)

Outcomes, employer, and job-application characteristics The HMM framework requires

outcomes (Yt ∈Y) as well as employer (Xo−1) and job-application (Zt) characteristics (Figure 4).

Target variable (Yt): Equation 1 models three outcomes: “Hire-positive,” “Hire-negative,” and

“No-hire.” The “No-hire” outcomes are readily available through the job applicants that employers

did not choose to hire. The platform further labels a hiring outcome as “Hire-positive” when, upon

the competition of the task, the employer privately rates the performance of the hired worker with

a score greater or equal to 80% (i.e., performance threshold = 0.8). Otherwise, the platform labels

a hiring outcome as “Hire-negative.” (Appendix H illustrates the robustness of our approach across

alternative performance thresholds.)
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Figure 5 Model-free evidence suggests that some repeat employers adjust their hiring behaviors
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Performance scores are private and only observed by the platform; Accumulated reputation scores are publicly

available; Self-reported years of experience include the self-reported experience of the worker on the skills listed (not

verified by the platform). CI: Confidence interval.

Employer and job-application characteristics (Xo−1,Zt): Previous works on job-applicant

recommendations have proposed various features that capture employer and job-application char-

acteristics to predict the likelihood of each applicant to get hired (Kokkodis et al. 2015, Abhinav

et al. 2017). Appendix E presents the set of 22 predictive variables we consider for this analysis;

Table 1 shows their descriptive statistics. These statistics represent sequential observations of the

same variables over time. We log-transform variables with long tails. We normalize (min-max) all

variables to accelerate the convergence speed of the numeric optimization. (Note that the variables

of Table 1 are context-specific. Appendix B shows how alternative contexts—such as restaurant

recommendations—require different variable choices.)

5. Framework evaluation

The next paragraphs describe the training process of the HMM framework and compare its per-

formance with alternative advanced recommender systems.

5.1. Nested cross validation

Our data has a time component (Figure 4). To ensure that we do not use information from the

future to predict the past we evaluate all approaches through a nested cross validation setup (see
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Table 1 Descriptive statistics

Mean Median StD Min Max

Variable that creates outcomes Yit

Worker performance (privately reported
to the platform)

0.79 0.89 0.28 0 1

Employer characteristics (Xo−1)

Employer money spent after completing
o− 1 tasks

178 4 841 0 36806

Employer most recent outcome (o− 1) 0.62 1 0.49 0 1

Employer total competed tasks (o− 1) 2.3 1 6 0 131

Employer number of fixed contracts
after completing o− 1 tasks

1.5 0 4.7 0 94

Employer number of hourly contracts
after completing o− 1 tasks

0.84 0 3.1 0 120

Employer total hire-positive outcomes
after completing o− 1 tasks

1.4 0 4 0 104

Employer fixed contract jobs with hire-
positive outcomes after completing o− 1
tasks

0.96 0 3.3 0 89

Employer hourly contract jobs with
hire-positive outcomes after completing
o− 1 tasks

0.46 0 2.1 0 99

Job-application characteristics (snapshots of worker profiles at the time of application, Zt)

Applicant completed work-hours 578 45 1472 0 37766

Skills IP 1 1 1.2 0 18

Applicant bid price 89 11 549 1 50000

Received order of application 26 15 32 0 291

Applicant accumulated reputation score
(publicly available)

4.8 4.9 0.4 1 5

Applicant completed jobs 5 0 15 0 403

Employer-applicant countries PMI −0.49 −0.46 0.4 −3.7 4.4

Applicant’s self-reported years of expe-
rience (not verified by the platform)

4.5 4 4.1 0 30

Certifications PMI 2.3 2.1 1.7 −0.71 7

Invited 0.15 0 0.35 0 1

Contract type 0.48 0 0.5 0 1

Statistics describe time-varying sequential observations.
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Figure 6 The nested cross validation process
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For all models, parameter tuning and feature selection happens in the training and validation sets. Reported

performance across all metrics is estimated on the previously unseen test sets.

for instance Cochrane 2018). Figure 6 describes this process. First, we assume 10 folds. Each fold

includes a training, a validation, and a test set. Each training set includes only tasks that have

been completed before the beginning of the validation set; each validation set includes only tasks

that have been completed before the beginning of the test set. The necessary data transformations

(e.g., normalization), hyperparameter tuning, and feature selection8 happens in each training and

validation sets, guaranteeing no data leakage in the previously unseen test sets. Once tuning is

done, each algorithm uses both the training and validation sets of each fold to build a final model

that is tested once on the previously unobserved test set.

5.2. Alternative recommender systems

Alternative approaches could also generate rankings of applicants. Prior work on recommending

job-applicants (Kokkodis et al. 2015, Abhinav et al. 2017) along with other sequence-aware machine

learning approaches provide a variety of alternative single-assessment recommenders. To benchmark

the performance of the HMM framework against such advanced alternative models, we implement

and compare the following systems:

� Current reputation: Upon completion of each job, workers receive a publicly available rating.

These ratings accumulate to form each worker’s public reputation. The most straightforward and

8 For all models we use a step-forward feature selection process (Ferri et al. 1994). See Appendix I.1 for a detailed

description of the this process.
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transparent recommender system ranks applicants according to their accumulated reputation

scores (Kokkodis et al. 2015, Abhinav et al. 2017).

� Single-assessment recommenders: Classification techniques can estimate the likelihood of an

applicant getting hired and completing a job successfully. These systems model the relationship:

Pr(Yt|Zt,Xo−1)∼G(Zt,Xo−1) , (6)

where:

◦ Logistic regression: G represents the logistic sigmoid.

◦ Support Vector Machines (SVM): G captures the relationships between vectors Xo−1,Zt,

and Yt through Support Vector Machines.

◦ Gradient boosting classification (XGBoost): G captures the relationships between vectors

Xo−1,Zt, and Yt ∈Y through gradient boosting classification (Chen and Guestrin 2016).

◦ Random forest: G captures the relationships between vectors Xo−1,Zt, and Yt ∈ Y through

a multitude of decision trees (Ho 1998).

◦ Recurrent neural networks (LSTM): G captures sequence-aware relationships between vec-

tors Xo−1,Zt, and Yt ∈ Y through Long Short Term Memory networks (Hochreiter and

Schmidhuber 1997).

Appendix F describes the grid search process we follow for tuning all recommenders.

5.3. Results

Our goal is to rank job applicants according to their likelihood of getting hired and performing

well. The next paragraphs benchmark the performance of the HMM framework against alternative

recommender systems across four ranking measures:

• Job-applicant rankings for all employers,

• Job-applicant rankings for repeat employers,

• Performance of top-ranked applicants,

• Performance of top-ranked applicants within tasks.
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Figure 7 Comparison of alternative recommenders: job-applicant rankings for all employers
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The proposed approach ranks job applicants according to their likelihood of getting hired and performing well

significantly better (at least p < 0.1) than the alternative systems. The y−axis shows the 10-fold nested cross-validated

AUC percentage improvement of the proposed framework over the x−axis recommender systems. Error bars show

90% confidence intervals. Implicit identifies implicit-feedback systems (“No-hire,” “Hire”). Confidence intervals are

estimated across the improvements of the 10 folds.

5.3.1. Job-applicant rankings for all employers: The first ranking measure that we use

is the area under the ROC curve (AUC; see Provost and Fawcett 2001). Our AUC score of interest

measures the probability that a model ranks applicants who are hireable and likely to perform well

(“Hire-positive”) higher than applicants who are not likely to get hired (“No-hire”), or they are

likely to get hired and perform poorly (“Hire-negative”; see p.864 of Fawcett 2006). (Appendix G

shows alternative rankings that trade-off “Hire-positive” with “Hire-negative” outcomes.)

Figure 7 compares the AUC performance of the HMM framework with that of the alternative

recommender systems. The y−axis shows the average percentage AUC-improvement of the HMM

framework compared to the x−axis alternative system (Table 3 in Appendix M shows the AUC

scores for each fold and approach). The error bars show the nested 10-fold cross-validated 90%

confidence intervals. The Figure shows that the performance of the HMM framework is significantly

(p < 0.05) better than the performance of all alternative systems. The percentage improvement over

the existing single-assessment models (Kokkodis et al. 2015, Abhinav et al. 2017) ranges, on average,

between 4% and 28%. The most competitive (with the HMM framework) models are the LSTM,
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Figure 8 Comparison of alternative recommenders: job-applicant rankings for repeat employers
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As employers hire more workers, the proposed approach’s improvement over the alternative recommender systems

increases (positive slope). This is due to the task-specific employer transitions of Equation 2. The y−axis shows

the 10-fold nested cross-validated AUC percentage improvement of the proposed framework over each alternative

recommender system. The x−axis captures employer experience in terms of hired-workers (completed tasks). CI

stands for confidence interval. Implicit identifies implicit-feedback systems (“No-hire,” “Hire”). Confidence intervals

are estimated across the improvements of the 10 folds.

and XGBoost, none of which has been previously proposed for job-applicant recommendations. Yet,

even against these powerful approaches, the unique structure that allows task-specific transitions

of our HMM framework allows it to perform on average 4% to 6% (p < 0.05) better. As we discuss

next, the outperformance of our HMM follows an increasing trend when models recommend job-

applicants to repeat employers.

5.3.2. Job-applicant rankings for repeat employers: The real power of the HMM

approach resides in modeling employers who hire workers repeatedly over different tasks as these

employers are more likely to adjust their hiring preferences and evolve across the HMM states

(see also Appendix L that quantifies employer transitions). To test how each approach performs

in terms of such repeat employers, we estimate the AUC scores for hiring decisions after employers

complete n or more tasks (AUC-n). Specifically, for any given n, we consider only hiring decisions

that occurred after each decision-making employer has hired and evaluated n − 1 workers. For

instance, if a given employer appears in a test set with a sequence of four tasks and their respective

hiring choices and outcomes, then AUC-2 would consider that employer’s second, third, and fourth
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tasks’ choices; AUC-3 would consider the third and fourth tasks’ choices; AUC-4 would consider

the fourth task’s choices; for n> 4, the estimation of AUC-n would exclude this employer.

Figure 8 shows the 10-fold cross-validated AUC-n percentage improvement scores of the HMM

approach over the alternative recommender approaches as employers hire workers across different

job tasks. The x−axis captures the number of previously hired workers (completed collaborations)

for each employer. Intuitively, as employers hire and manage more workers, the HMM should

provide better recommendations as its state structure allows employers to adjust their hiring-

preferences individually. As a result, the HMM improvement over the alternative recommenders

should increase over time.

Figure 8 shows this expected improvement increase over time. Across all alternative recom-

mender systems, the slope of the linear regression of percentage improvement over the number of

completed jobs is positive (at least p < 0.1; Figure 8 shows the 90% confidence intervals for the

slopes of each improvement line; for the reputation baseline the slope is positive but not statis-

tically significant). This increasing trend illustrates that allowing employers to evolve according

to the feature vector Xo−1 and Equation 2 captures employer changing hiring preferences and

yields progressively better results compared with the alternative recommender systems that do

not capture employer evolution as accurately. (Note that sequence-aware models such as LSTM do

not encode the task-specific sequences of Equation 2; Instead, the sequences these systems model

identify sequential dependencies across all hiring outcomes: “No-hire,” “Hire-negative,” and “Hire-

positive.” Appendix O discusses and conceptually explains why our HMM approach outperforms

the LSTM recommender.)

5.3.3. Performance of top-ranked applicants: Given a ranking of candidates, perhaps

the most crucial performance metric is whether the top ranked candidates actually get hired and

perform better than the bottom-ranked ones. To evaluate this behavior, we compare all alternative

approaches by estimating the performance lift as follows:

Performance lift(p) =
#(HMM “Hire-positive”∈ p)−#(Alternative “Hire-positive”∈ p)

#(Alternative “Hire-positive”∈ p)
, (7)
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Figure 9 Comparison of alternative recommenders: performance of top-ranked applicants
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Compared with alternative recommenders, the proposed approach ranks applicants who are more likely to get hired

and perform well in the top 50th percentiles, while it ranks applicants who are less likely to get hired and perform well

in the bottom 50th ones. The y−axis shows the 10-fold nested cross-validated performance lift (Equation 7). Error bars

show 90% confidence intervals. Implicit identifies implicit-feedback systems (“No-hire,” “Hire”). Confidence intervals

are estimated across the improvements of the 10 folds.

where “Alternative” captures a ranking by an alternative recommender system and p ∈ {Bottom

50%, Top 50%}.

Intuitively, as we move from the bottom-ranked to the top-ranked job applicants the perfor-

mance lift should increase. If ranked applicants by the HMM framework purely outperform ranked

applicants from an alternative approach, the estimated performance lift should be negative for the

bottom 50th percentile and positive for the top 50th percentile.

Figure 9 shows exactly this behavior for all alternative recommenders. The y−axis shows the

nested 10-fold cross-validated performance lift; the x−axis separates applicants into the bottom

and the top 50th percentiles according to their predicted likelihood of getting hired and performing

well. Indeed, the observed performance lift is negative (p < 0.05) for all bottom-ranked job appli-

cants, and positive (p < 0.05) for all the top-ranked ones. Overall, compared with all alternative

recommenders, the HMM framework presents significantly (p < 0.05) better applicants in the top

ranking positions and significantly worse applicants in the bottom ones.

5.3.4. Performance of top-ranked applicants within tasks: The ranking (AUC, AUC-n)

and performance lift evaluations capture a model’s behavior across all available tasks; they do not,
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however, evaluate how each algorithm performs within tasks. To do so, we rank applicants within

each task, and we measure the actual performance of the top-ranked applicants as follows:

Within-task hired-applicant performance(k) =

#(“Hire-positive” ∈ top−k recommended)

#(∈ top−k hired)

#(“Hire-positive” /∈ top−k recommended)

#(/∈ top−k hired)

, (8)

where “∈ top−k” captures recommended applicants in the top−k who got hired and “/∈ top−k”

captures recommended applicants not in the top−k who get hired. Conceptually, this performance

ratio measures how much better the top-recommended job applicants perform compared with the

rest non-top-ranked applicants who got hired.

Figure 10 shows the results for k = 39 in a similar form to Figure 7: The y−axis captures

the 10-fold cross-validated performance improvement of the HMM framework over the x−axis

recommender. The 90% confidence intervals clearly show that the within-task performance of the

HMM framework is statistically significantly (p < 0.05) better than all alternative recommender

systems. The improvement ranges from an average of 15% over the LSTM to 43% over the SVM.

5.4. Robustness and generalizability

Multiple appendices illustrate the robustness and generalizability of the HMM framework:

� Alternative ranking mechanisms: The proposed approach ranks job applicants according to

their likelihood of getting hired and performing well; it ignores, however, the likelihood of each

candidate to get hired and perform poorly (“Hire-negative”). Given that employers who hire

poor-performing workers are likely to exit the market (Tripp and Grégoire 2011), alternative

ranking mechanisms could trade-off “Hire-positive” outcomes for fewer “Hire-negative” ones.

Such approaches could minimize the likelihood of “Hire-negative” outcomes while keeping the

likelihood of observing “Hire-positive” outcomes at sufficient levels. Appendix G presents such

alternative ranking approaches.

� Robustness to alternative thresholds: The platform’s choice of performance threshold equal

to 0.8 (80%) might appear ad-hoc. Appendix H illustrates that our results are robust across

alternative thresholds of separating “Hire-positive” from “Hire-negative” outcomes.

9 Results are robust for k = 4,5.
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Figure 10 Comparison of alternative recommenders: performance of top-ranked applicants within tasks

Within−task improvement of the HMM framework over alternative recommenders
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The proposed approach ranks job applicants within tasks according to their likelihood of getting hired and

performing well significantly better (p <0.05) than the alternative systems. The y−axis shows the nested 10-fold

cross-validated within-task performance (Equation 8) improvement of the proposed framework over the x−axis recom-

mender systems. Error bars show 90% confidence intervals. Implicit identifies implicit-feedback systems (“No-hire,”

“Hire”). Confidence intervals are estimated across the improvements of the 10 folds.

� Generalizability: Our approach can generalize to other single-assessment and few-assessment

contexts (Figure 1). One such context is restaurant recommendations on reputation platforms

such as TripAdvisor and Yelp. In these platforms, user preferences evolve as reviewers grow older.

At the same time, restaurants change significantly, as they go through renovations, update their

menus, and hire new stuff. As a result, both the users (reviewers) and the recommended items

(restaurants) change. In this few-assessment context, we can build recommender systems that

rank restaurants within a location according to their likelihood of getting reviewed positively

(i.e., a user will visit them, self-select to review them, and review them positively). Appendix B

implements our approach and compares its performance with alternative recommender systems

on a set of TripAdvisor restaurant reviews: the proposed approach significantly outperforms

(p < 0.05) the alternative recommender systems in this different context, providing evidence

that our framework generalizes in contexts where both the recommended items and the user

preferences might change over time.



Author: Article Short Title
32 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

� Comparison with many-assessment recommenders: Section 2.2 illustrated the character-

istics of job-applicant recommendations that make it a single-assessment context. Appendix A

provides additional details and examples on why many-assessment systems will likely perform

poorly in this context. Appendix A.2 implements eight such systems, and illustrates in practice

that they perform poorly compared with our proposed framework (Figure 11); Figure 16 shows

that their underperformance extends in the alternative, restaurant recommendation context.

Overall, by encapsulating the design principles discussed in Section 2.4, the proposed framework

performs particularly well, especially among repeat employers. Because no alternative approach

can model employer sequences at the task level and at the same time provide “No-hire” outcomes,

our HMM framework ends up providing significantly better job applicant recommendations.

6. Discussion

This work conceptualized that job-applicant recommenders in online labor markets should be

single-assessment systems that are performance-aware and sequence-aware. Based on these prin-

ciples, an HMM framework modeled performance-aware emissions and allowed employer hiring

preferences to change. Comparison of the proposed framework with various alternative recom-

mender systems highlighted the advantages of the three design principles. The empirical evaluation

further showed that repeat employers benefit the most from our approach, as these employers

receive personalized sequence-aware recommendations by following their distinct hiring-preference

paths. Application of the HMM framework in a restaurant recommendation context showed its gen-

eralizability in environments where both the recommended items and the user preferences change.

6.1. Research contributions

Given the projected growth of the number of online workers in the coming years (Agile-1 2016,

Sundararajan 2016), accurate job-applicant recommendations could be a significant factor of the

ultimate reach of online work. This paper is the first to outline the limitations of existing recom-

mender systems and explain why such systems underperform when ranking job-applicants accord-

ing to their likelihood of getting hired and performing well. By identifying and addressing these
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shortcomings, this work provides significantly enhanced recommendations of hireable and capable

job applicants, especially for repeat employers.

From a design perspective, this work conceptualizes three principles that job-applicant recom-

mender systems should have. First, they need to be single-assessment systems and facilitate the

modeling of uniquely recommended items. Second, they need to be performance-aware; Our work is

the first to formulate the job-application recommendation problem as a trinary classification prob-

lem that includes both implicit (the choice to hire) and explicit (performance of the hired worker)

feedback. Because this formulation separates successful from unsuccessful collaborations, it does

not reinforce all prior hiring decisions, but instead, it learns from unsuccessful collaborations and

identifies job applicants that have a high propensity of performing well. Third, job-applicant rec-

ommender systems should be sequence-aware, allowing employer hiring preferences to evolve over

repeated collaborations with remote workers. Our work is the first to capture employer changing

hiring preferences through task-specific customized transition probabilities (Equation 2).

The unique design of the HMM framework extends the rich literature of existing recommender

systems (Figure 3). Compared with previous HMM-based systems (Sahoo et al. 2012, Hossein-

zadeh Aghdam et al. 2015, Zhang et al. 2016b), the proposed approach allows the (1) modeling of

uniquely evaluated items, (2) task-specific transition probabilities (Equation 2), (3) history-driven

stochastic transitions (affected by vector Xt−1), and (4) item-driven emission probabilities (affected

by vectors Xt−1,Zt). Two empirical contexts (job-applicant and restaurant recommendations) show

in practice the significance of these unique characteristics (Section 5.3, Appendices B, J, N).

The conceptualizations of performance-awareness and sequence-awareness can transfer to other

types of recommender systems in online labor markets and crowdsourcing. In particular, both

automated recruiters and task recommenders could adapt to be performance-aware and sequence-

aware. Automated recruiters could include observed outcomes on top of hireability requirements

while allowing both the worker’s experience and the employer’s hiring preferences to evolve. Simi-

larly, task recommenders can incorporate performance when they allocate jobs to available workers,

while they can also allow worker abilities to evolve. Future work on these two types of recommender

systems can instill these ideas that will likely improve performance and reduce adverse outcomes.
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6.2. Contributions to practice and generalizability

This paper provides a detailed guideline along with sample code10 for market practitioners that are

interested in developing performance-aware and sequence-aware recommender systems. Specifically,

it addresses empirical challenges that include the conceptualization, modeling, and estimation of

the framework:

� HMM architecture: Section 3 describes how practitioners can conceptualize and formulate a

suitable structure for an HMM that allows a series of observed signals to shape the transition

and emission probabilities of employers with different hiring preferences. It further illustrates

how transitions can be task-specific (Equation 2), which is conceptually sound when modeling

evolving hiring-preferences.

� Parameter estimation: Appendix C guides practitioners through the derivation of the global

likelihood of the model and the estimation process of all the parameters. Appendix F presents

the process of selecting an appropriate configuration for the HMM.

� Evaluation: Section 5.3 guides practitioners in generating meaningful evaluation metrics that

compare the performance of various recommender systems in terms of ranking candidates

according to their likelihood of performing well.

These methodological contributions generalize beyond the focal context of online work. The

HMM framework can be adjusted and successfully implemented in any context where (1) recom-

mended items change or receive very few user evaluations, (2) user preferences evolve, and (3)

choice sets do not significantly overlap. Offline job-applicant recommendations form one such con-

text: by analyzing career trajectories of LinkedIn users, sequence-aware frameworks can identify

performance outcomes (e.g., through “upward trajectory” or “downward trajectory”) while allow-

ing employer hiring preference to change as job requirements change. Recommending restaurants

is another such context: Appendix B shows that reputation platforms such as Yelp and TripAd-

visor could use a similar framework to develop performance-aware and sequence-aware restaurant

10 See our Github repository: https://github.com/repudime/gbu

https://github.com/repudime/gbu
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recommendations. Similarly, travel platforms such as Airbnb can also use the proposed framework

as both the recommended items (rented apartments) and user preferences evolve: Our approach

models these sequential changes while controlling for implicit (choice of an apartment to stay)

and explicit (rating of the chosen apartment) feedback. Figure 1 identifies multiple other suitable

contexts, including recommending skills to learn (both recommended skills and users change over

time) and courses to take (courses evolve based on teachers and year; students also evolve).

6.3. Implications for platforms, workers, employers, and the future of work

Online labor markets stand to benefit through implementing our approach as job-applicant rec-

ommendations that lead to successful outcomes help (1) workers to differentiate, (2) employers

to make better-informed and faster (reduced search cost; see Bakos 1997) decisions, and (3) the

markets to increase their transaction efficiency, which in turn results in increased revenue and

customer satisfaction. Through recommendations of appropriate job applicants, some low-quality

workers that currently flood the market might get marginalized. This marginalization can create

room for potentially high-quality workers to pursue tasks that they see fit.

Furthermore, employers who make faster decisions that lead to productive collaborations are

more likely to keep using the platform (Jerath et al. 2011). More successful employers will create

more job openings, which in turn will attract more workers and widen the reach of the online labor

economy. Besides, through improved recommendations, markets will increase their transaction

efficiency as more openings will reach contracts (recall that currently, as many as 60% of job

openings never reach a contract; see Zheng et al. 2015).

The performance of the proposed approach in terms of recommending candidates to repeat

employers (Section 5.3, Figure 8) is of particular importance to market managers. These employ-

ers represent a significant client segment for online labor markets. Providing them with relevant

recommendations reduces the number of adverse outcomes and increases the employers’ likelihood

to keep participating in the marketplace (Tripp and Grégoire 2011).

Finally, through the proposed framework, platforms can better understand how employers evolve.

By observing employer paths across various latent states of changing hiring preferences, platform
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managers have opportunities to intervene to groups of employers that are likely to drop out (e.g.,

through discount offers, or through helping them to make better hiring choices).

6.4. Limitations

Our approach learns to reinforce previously observed successful hiring behavior. As a result, it

can miss applicants with characteristics that might be really good and valuable but have not been

previously chosen by employers (i.e., “No-hire” choices). Markets can explore this possibility by

developing rankings that assign a higher weight to “No-hire” outcomes (similar to the examples

presented in Appendix G). By introducing more “No-hire” candidates into the curated top-ranked

applicant recommendations, platforms can empirically measure the outcomes of hired workers who

would (probabilistically) not have been hired otherwise, retrain their systems, and eventually learn

to provide more holistic and better recommendations.

Another limitation of our work is that it does not investigate the underlying mechanisms that

drive employers to adjust their preferences. In fact, our approach is agnostic to the factors that

cause employers to transition to new states. Instead, our framework is being proactive and expects

that some employers will likely evolve over time. Hence, it provides the infrastructure for modeling

these changing employers (see Appendix L) while allowing employers who do not change to remain

in the same state. Regardless, given that our work shows empirically that for some employers hiring

preferences change, future research can properly investigate the mechanisms that such changes

happen.

6.5. Conclusion

Conclusively, this work implements a single-assessment job-applicant recommendation framework

that is both performance-aware and sequence-aware. Application of this framework in a large

dataset of hiring decisions from an online labor market shows that it provides recommendations

of job applicants who are both hireable and likely to perform well. The framework’s structure

generalizes to other contexts where the recommended items either change or receive very few

evaluations, and where user preferences evolve. As a result, its deployment in different types of

online platforms could have significant implications for workers, employers, businesses, and the

future of work.
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Appendix A Comparison with many-assessment recommender
systems

In this section we explain in detail the structural limitations of implementing many-assessment

systems in our context. We start by providing an example that highlights the conceptual differences

between our context and many-assessment systems and then we discuss the necessary adaptations

that we need to make in practice in order to implement many-assessments recommenders. The

last subsection of this Appendix empirically illustrates the poor performance of these approaches

compared with our HMM framework.

A.1 Comparison of the focal context with movie recommendations

To further clarify the conceptual differences of the focal context that we described in Section 2.2,

consider the following comparison with a traditional many-assessment context, movie recommen-

dations:

Scenario 1: A worker applies to two different jobs posted by two employers:

• Job 1 requires Python and R. The offered contract is hourly, the employer is experienced and

located in Ukraine, and the task attracts a lot of applicants because Python and R are fairly

popular on this platform.

• Job 2 requires Stata. Our focal worker knows both R and Stata, and hence applies to this

task. This task is posted by an inexperienced employer from the U.S., and attracts very few

applicants because Stata is not a popular skill on the platform.

Scenario 2: Two users choose to watch a movie from the same streaming platform:

• A user located in Ukraine chooses to watch the movie “Star Wars” among a set of available

movies offered by the platform in Ukraine.

• A user located in the U.S. chooses to watch the movie “Star Wars” among a set of available

movies offered by the platform in the U.S.

Are these two scenarios contextually identical?

Similar to the movie context, the users’ (employers’) tastes and backgrounds might differ. On

the other hand, while in our context the underlying item and choice sets are task-specific, the two
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Table 2 Comparison of the focal context with movie recommendations

Context User Evaluated
item

Similarities Differences

Watching
movies

Service
subscriber

Movie

• Users have dif-
ferent tastes.

• The movie content does not change. A given
movie has the same story-line independent of
who is watching it.
• The total number of subscribers is signif-

icantly larger than the total number of
movies, allowing for each movie to be evalu-
ated thousands of times.
• Subscribers who choose to watch the same

movie made that choice among overlapping
choice sets.

Hiring
workers (1)

Employer Worker

• Employers
have different
tastes.

• Workers complete unique tasks.
• When they receive multiple evaluation

scores, these scores represent their perfor-
mance across different skills.
• Employers who evaluate the same worker did

not choose that worker among overlapping
choice sets.
• The total number of employers is signifi-

cantly smaller than the total number of items
(workers), hence each item is evaluated (on
average) very few times.

Hiring
workers (2)

Employer
Task-
specific job
application

• Employers
have different
tastes.

• Each item (job-application) is unique and
receives only a single evaluation score.
• Direct implementation of many-assessment

systems is impossible as there are no multi-
ple evaluations per item for the frameworks
to estimate user-user and item-item similari-
ties. Strong assumptions and adaptations are
necessary (see Appendix A.2).

users who are using the same streaming platform have vastly overlapping sets of movies to choose

from. Even further, in our context, the two employers evaluate the same worker for completely

different tasks that require different skills. Yet, the movie users evaluate the exact same version

of “Star Wars”: they will watch and evaluate the exact same storyline with the same actors and

the same finale. Table 2 summarizes these similarities and differences between the two contexts,

illustrating the shortcomings of many-assessment frameworks in our context.
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A.2 Implementing adaptations of many-assessment recommender systems

Despite these shortcomings, can we still modify many-assessment systems to address the focal

problem?

Definition of items: The most significant adjustment we need to make is to define the items that

multiple employers evaluate. We consider two options for modeling items:

• Option 1: The recommended item is the worker.

• Option 2: The recommended item is a mapping of job-applicant-task characteristics.

The first option is straightforward as it assumes that each worker is an item. This approach,

ignores task-specific characteristics. The second option controls for such characteristics by clus-

tering job applications according to vectors Xo−1,Zt. Specifically, for this option, we use a Gaus-

sian Mixture Model (GMM; see Murphy 2012). The model estimates the conditional probability

Pr(Clustered item|Zt,Xo−1), where the clustered item becomes the focal recommended item. We

choose the number of clustered items C according to the resulting BIC scores (Murphy 2012). We

consider C ∈ {5,10, ...,100}. C = 35 yields the lowest BIC score; hence, we cluster job-applications

into one of the 35 mapped items.

Definition of ratings: The next adaptation focuses on encoding the necessary ratings of a many-

assessment system. In particular, many-assessment recommenders require an ordered rating scale

(e.g., star ratings). Such ordering is absent in our context: the focal labels are “No-hire,” “Hire-

negative,” and “Hire-positive.” Even though “Hire-positive” is better than “Hire-negative,” the

relationship between “No-hire” and “Hire-negative” and between “No-hire” and “Hire-positive”

cannot be uniquely defined.

To implement a performance-aware many-assessment recommender we consider the following

ordering of ratings:

• “No-hire” 7→ 0

• “Hire-negative” 7→ 1

• “Hire-positive” 7→ 2
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Many-assessment systems, however, do not have to be performance-aware. Traditionally, these

systems are either implicit (i.e., modeling the choice to buy or not buy a product and ignoring the

rating) or explicit (i.e., modeling only rated products). Hence, we can implement these types of

systems in our context by ignoring the outcome of the hired candidate (implicit) and by focusing

only on the hired workers and their outcomes (explicit). We discuss the specific implementations

of many-assessment systems next.

A.3 Results

We build the following many-assessment recommenders:

◦ Collaborative filtering (SVD): Collaborative filtering recommenders are among the most popular

and widespread industry approaches (Adomavicius and Tuzhilin 2005, Meyer 2012, Su and

Khoshgoftaar 2009). In this analysis, we use singular value decomposition (SVD; see Kantor

et al. 2011). The three different mappings of ratings and the two options for items generate six

different SVD versions:

1. Explicit feedback SVD with option 1 items

2. Implicit feedback SVD with option 1 items

3. Performance-aware SVD with option 1 items

4. Explicit feedback SVD with option 2 items

5. Implicit feedback SVD with option 2 items

6. Performance-aware SVD with option 2 items

◦ HMM-based Collaborative Filtering (HMM-CF): Adaptations of many-assessment HMM-based

recommender approaches could model employer evolution over changing hiring preferences. To

showcase that their application experiences the same limitations with other many-assessment

recommenders, we implement the proposed algorithm by Sahoo et al. (2012). Appendix N

discusses the details of this adaptation. Since this approach models next-item recommendations

(e.g., which news article to read next), it requires implicit-feedback sequences of observations (see

Appendix N and Sahoo et al. 2012).
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Figure 11 Comparison with many-assessment adaptations

AUC improvement of the HMM framework over alternative recommenders
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Across three different outcome mappings (implicit, explicit, and p-aware) and two different item mappings

(option 1 and option 2), many-assessment systems significantly underperform the proposed HMM approach. The

y−axis shows the 10-fold nested cross-validated AUC improvement of the HMM approach compared with the x−axis

many-assessment framework. Error bars show 90% confidence intervals. Implicit identifies implicit-feedback systems

(“No-hire,” “Hire”). Explicit identifies explicit-feedback systems (“Hire-negative,” “Hire-positive”). P-aware identifies

performance-aware systems (“No-hire,” “Hire-negative,” “Hire-positive”). Confidence intervals are estimated across

the improvements of the 10 folds.

◦ Neural network sequence recommender systems (CNN): The rise and popularity of neural net-

works have motivated approaches that use such networks to build deep recommender systems

(Section 2.1.1). Deep sequential recommenders can capture latent employer changing hiring pref-

erences (Zhang et al. 2019). Convolutional neural networks (CNN) often model such sequential

recommender systems (Kula 2017, 2018). As next-item recommenders, these systems require

implicit-feedback sequences of observations (Kula 2017).

Figure 11 shows the results. As expected, none of the many-assessment approaches is competitive

with the HMM framework: the AUC improvement ranges between 24% for the implicit SVD with

option 2 items to up to 48% for the HMM-CF approach. Appendix B and Figure 16 further shows

that many-assessment systems significantly underperform our approach in an alternative, few-

assessment context. Overall, this analysis provides empirical support that the presented conceptual

shortcomings of many-assessment systems significantly hurt their performance.
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Appendix B Generalizability: Restaurant recommendations

Figure 1 identifies the type of contexts that our framework can provide relevant recommendations.

In particular, our approach can generalize to other single-assessment and few-assessment contexts

where the recommended items evolve or receive very few user evaluations, the user preferences

evolve, or the choice sets do not significantly overlap. To illustrate, we implement and test our

framework in an alternative few-assessment context: restaurant recommendations.

Our goal is to rank restaurant choices according to their likelihood of being reviewed—on an

online reputation platform such as TripAdvisor—positively. In this context, both user preferences

and item characteristics evolve. For instance, college students (reviewers) might be more interested

in cheap fast food; As they grow older and become young professionals they might be interested in

alternative types of cuisines. Similarly, the restaurants (recommended items) also evolve: through

changing management, going through renovations, hiring new chefs and changing menus they offer

different experiences over time.

These characteristics suggest that our framework, which captures evolving user preferences and

recommends items based on their observed characteristics, should provide accurate restaurant

recommendations. To illustrate, we focus on a popular zip-code area in the Boston area and create

a dataset of 35,492 restaurant choices as captured on a set of TripAdvisor reviews.11 Similar to our

primary context, we generate three outcome levels: “No-review,” “Review-negative,” and “Review-

positive.” To separate “Review-negative” and “Review-positive” we use a threshold equal to 0.8

(4 out of 5 stars).

Similar to our primary analysis (Section 4 and Appendix I.1), we use a feature-selection process

to identify the most informative variables. We consider the following predictive variables:

1. Number of posted reviews: the total number of previously posted reviews of the reviewer at

hand after making o− 1 restaurant choices (numeric).

2. Quality of reviewed restaurants: the average reputation of all the restaurants that the reviewer

has previously reviewed after making o− 1 restaurant choices (numeric).

11 The dataset is available on our Github repository: https://git.io/JmFBz

https://git.io/JmFBz
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3. Restaurant rating: the restaurant’s current reputation score at time t (numeric).

4. Restaurant number of reviews: the restaurant’s total number of reviews at time t (numeric).

5. Whether the restaurant is categorized by the platform as “cheap” (binary).

6. Whether the restaurant is categorized by the platform as “affordable” (binary).

7. Whether the restaurant is categorized by the platform as “expensive” (binary).

We tune our framework and the alternative recommender systems following a similar process as

the one presented in Appendix F.12 We follow the same evaluation process as shown in Figure 6

and Section 5.3. Many-assessment recommenders in this few-assessment context do not require

clustering, as this is a few-assessment context where multiple users evaluate the recommended

items (restaurants). Yet, many-assessment recommenders require similar rating assumptions as in

our main context to become performance-aware (Appendix A.2).

Figures 12 to 16 show the results in the same order as in Section 5.3. Across all measures,

the proposed framework significantly (at least p < 0.1) outperforms all alternative recommender

systems. Overall, this application of our approach in this alternative context illustrates its gener-

alizability and provides empirical evidence that our framework can be successfully implemented in

contexts where the recommended items evolve or receive very few user evaluations and where user

preferences evolve.

12 We consider greater number of HMM states (i.e., K ∈ {5,6}) as the average timelines of reviewers (i.e., posted

reviews R) are longer compared with our main worker dataset.
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Figure 12 Comparison of alternative recommenders: restaurant rankings for all reviewers

AUC improvement of the HMM framework over alternative recommenders
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The proposed approach ranks restaurants according to their likelihood of getting reviewed positively significantly

better (at least p < 0.05) than the sixteen alternative systems. The y−axis shows the 10-fold nested cross-validated

AUC percentage improvement of the proposed framework over the x−axis recommender systems. Error bars show

90% confidence intervals.

Figure 13 Ranking performance of alternative recommenders for repeat reviewers
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As reviewers evaluate additional restaurants, the proposed approach’s improvement over the alternative recom-

mender systems relatively increases (positive slope, p < 0.1 in all alternative approaches except logistic regression). The

y−axis shows the 10-fold nested cross-validated AUC percentage improvement of the proposed framework over each

alternative recommender system. The x−axis captures reviewer tenure in terms of posted reviews. Error bars show

90% confidence intervals. CI stands for confidence interval. Confidence intervals are estimated across the improvements

of the 10 folds.
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Figure 14 Comparison of alternative recommenders: performance of top-ranked restaurants
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Compared with all alternative recommenders, the proposed approach ranks restaurants that are more likely to get

reviewed positively in the top 50th cohorts, while it ranks restaurants that are less likely to get reviewed positively

in the bottom 50th cohorts. The y−axis shows the 10-fold nested cross-validated performance lift (Equation 7). The

x−axis ranks restaurants into cohorts according to their likelihood of getting reviewed positively. Error bars show

90% confidence intervals. Confidence intervals are estimated across the improvements of the 10 folds.

Figure 15 Comparison of alternative recommenders: performance of top-ranked restaurants within choice sets

Within−task improvement of the HMM framework over alternative recommenders
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The proposed approach ranks restaurants within choice sets according to their likelihood of getting reviewed

positively significantly better (at least p < 0.1) than the alternative systems. The y−axis shows the 10-fold nested

cross-validated within-choice-set performance (Equation 8) improvement of the proposed framework over the x−axis

recommender systems. Error bars show 90% confidence intervals. Confidence intervals are estimated across the

improvements of the 10 folds.
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Figure 16 Comparison with many-assessment adaptations (restaurant recommendations)

AUC improvement of the HMM framework over alternative recommenders
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Across three different outcome mappings (implicit, explicit, and p-aware), many-assessment systems significantly

underperform the proposed HMM approach in this alternative context. The y−axis shows the 10-fold nested cross-

validated AUC improvement of the HMM approach compared with the x−axis many-assessment framework. Error

bars show 90% confidence intervals. Implicit identifies implicit-feedback systems (“No-review,” “Review”). Explicit

identifies explicit-feedback systems (“Review-negative,” “Review-positive”). P-aware identifies performance-aware

systems (“No-review,” “Review-negative,” “Review-positive”). Confidence intervals are estimated across the improve-

ments of the 10 folds.
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Appendix C HMM likelihood derivation and estimation

Given the structure of the HMM, the framework needs to estimate the parameter vectors π,β,γ.

To do so, it maximizes the conditional probability of the set of observations given the HMM. Let

us assume a sequence of M hiring decisions across R tasks for a given employer i:

Y i = Yi1, Yi2, . . . , YiM , (9)

where Yim ∈ Y,m ∈ {1,2, ...,M}. These observations correspond to a sequence of employer and

job-application characteristics (Figure 4):

X i0:R−1 = X i0,X i1, . . . ,X iR−1 , (10)

Zi1:M = Zi1,Zi2, . . . ,ZiM . (11)

Furthermore, let us assume that Y i is the result of a sequence of latent states, Si:

Si = Si1, Si2, . . . , SiM , (12)

where Sim ∈ S.

Based on the structure of the graph in Figure 4, the conditional likelihood of observing Y i is:

Pr(Y i|Si;β,Zi1:M ,X i1:R−1) =
M∏
t=1

Pr(Yit|Sit;β,Zit,X io−1) , (13)

where Equation 4 estimates the right hand side (recall that the subscript o is connected with

subscript t). The conditional probability of observing the sequence Si is (Figure 4):

Pr(Si|γ,X i1:R−1) =π(S1)
M∏
t=2

Pr(Sit|Sit−1;γ,X io−1) , (14)

where π(S1) is the the prior probability of being at state S1 ∈ S. Equation 2 estimates the right

hand side.
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Based on this analysis and the graph in Figure 4, the likelihood of this sequence of observations

for employer i is as follows:

l(Y i;π,β,γ) = Pr(Y i|π,β,γ,Zi1:M ,X i1:R−1,Yi1:M−1)

= π(S1)
∑
∀Si

Pr(Y i,Si|β,γ,Zi1:M ,X i1:R−1,Yi1:M−1)

Figure 4
= π(S1)

∑
∀Si

Pr(Y i|Si;β,Zi1:M ,X i1:R−1)Pr(Si|γ,X i1:R−1)

= π(S1)Pr(Yi1|Si1;β,Zi1,X i0)

.
∑
∀Si

M∏
t=2

Pr(Yit|Sit;β,Zit,X io−1)

. Pr(Sit|Sit−1;γ,X io−1) , (15)

where the structure of the HMM (Figure 4) decomposes the joint probability of

Pr(Y i,Si|β,γ,Zi1:M ,X i1:R−1,Yi1:M−1). Note that X i0 captures the initial characteristics of each

employer before they complete their first task. The complete likelihood for a dataset with N

employers is as follows:

L(β,γ) =
N∏
i=1

l(Yi;π,β,γ) . (16)

To estimate the parameters π,β and γ that maximize this complete likelihood we can use common

solvers such as the L-BFGS-B (Byrd et al. 1995) or the COBYLA13 algorithms. (In practice, we

minimize the negative log-likelihood of Equation 16. See Appendix I and our Github repository14

for additional implementation details.) Equation 16 assigns more weight to employers who make

more hiring decisions (i.e., larger M and R values). As a result, it is expected (and desired) that the

resulting HMM will assigned greater weight to (and as a result represent better) repeat employers

than one-time employers.

13 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

14 https://github.com/repudime/gbu

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://github.com/repudime/gbu
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Appendix D The marketplace

The focal marketplace provides a variety of opportunities for high-skilled workers in categories

such as web and software development (i.e., programming), graphic design, marketing, and writ-

ing (Figure 17A). Job applicants come from a variety of locations (Figure 17B), including India

(36%), south and south-east Asia (40%), Europe (11%) and North America (7%). The majority of

the employers reside in North America (53%, Figure 17C). However, a significant portion comes

from Europe, Australia, and Asia, highlighting the global dimension of the focal platform. Finally,

employers spend significant amounts of money on the platform, often hundreds or thousands of

dollars per completed task (Figure 17D). This non-trivial cost of each task suggests that employers

likely expect fruitful collaborations with the hired workers.15

Figure 17 Characteristics of the focal market
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The figures show information about the types of tasks (A), worker locations (B), employer locations (C), and task

cost.

15 At the time that we queried the market’s database, the platform did not offer an advanced task recommender.

Workers could look for tasks based on keyword searches. After applying to a job opening, employers could rank

applicants according to their reputation and arrival time.
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Appendix E Predictive variables

Below is the description of the predictive variables we consider in our feature selection process:

1. Employer money spent after completing o− 1 tasks: The total amount of money that the focal

employer has spent so far in the previous o− 1 completed tasks (numeric).

2. Employer most recent outcome (o−1): The outcome of the most recent (o−1) completed task

of the employer (numeric).

3. Employer total competed tasks (o − 1): the employer’s total number of completed jobs

(numeric).

4. Employer number of fixed contracts after completing o− 1 tasks: the employer’s total number

of completed jobs that used fixed contracts after completing o− 1 tasks (numeric).

5. Employer number of hourly contracts after completing o− 1 tasks: the employer’s total number

of completed jobs that used hourly contracts after completing o− 1 tasks (numeric).

6. Employer total hire-positive outcomes after completing o− 1 tasks: the employer’s total number

of “Hire-positive” outcomes after completing o− 1 tasks (numeric).

7. Employer fixed contract jobs with hire-positive outcomes after completing o− 1 tasks: the

employer’s total number of “Hire-positive” outcomes in previously completed fixed contracts

(numeric).

8. Employer hourly contract jobs with hire-positive outcomes after completing o− 1 tasks: the

employer’s total number of “Hire-positive” outcomes in previously completed hourly contracts

(numeric).

9. Applicant completed work-hours: the number of hours that the job applicant has worked on

the platform at the time of application (numeric).

10. Skills IP : the inner product between the skillset of the job-applicant and the required skills

by the task at the time of application (numeric).

11. Applicant bid price: the bid price of the applicant (numeric).

12. Received order of application: the order that a job application was received (numeric).
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13. Applicant accumulated reputation score (publicly available): the accumulated publicly available

reputation score of the job applicant at the time of application (numeric).

14. Applicant completed jobs: the applicant’s total number of completed jobs (numeric).

15. Employer-applicant countries PMI : the pairwise mutual information between the job appli-

cant’s country and the employer’s country (numeric; see below Equation 18). Conceptually,

it captures the average affinity of employers from a given country to hire workers from the

applicant’s country.

16. Applicant’s self-reported years of experience (not verified by the platform): the self-reported

job applicant’s experience (numeric).

17. Certifications PMI : the pairwise mutual information between the listed certificates of the

job-applicant and the required skills by the task (numeric; see Equation 17).

18. Invited : whether or not the employer invited the job applicant to apply to the focal task

(binary).

19. Contract type: whether or not the job is fixed priced or hourly rated (binary).

20. Applicant bid price × Contract type: an interaction term between the job applicant’s bid price

and the contract type (numeric).

21. Employer number of fixed contracts after completing o− 1 tasks × Contract type: interaction

between the employer’s total number of completed fixed-contract jobs and the contract type

of the job at hand (numeric).

22. Employer hourly contract jobs with hire-positive outcomes after completing o− 1 tasks ×

Contract type: interaction between the employer’s total number of completed hourly-contract

jobs and the contract type of the job at hand (numeric).

Most of these variables are self-explained. To estimate the pairwise mutual information (PMI) of

countries and certifications we rely on prior work on hiring decisions (Kokkodis et al. 2015):

Certifications PMI(Ea,Ei) = log
Pr(Ea,Ei)

Pr(Ea)Pr(Ei)
, (17)

Employer-applicant countries PMI(Ca,Ci) = log
Pr(Ca,Ci)

Pr(Ca)Pr(Ci)
, (18)
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where Ea is the set of certifications of the job applicant, Ei is the set of required skills of the

specific job task, Ca is the country of the job-applicant, and Ci is the country of the employer.

PMI measures how much the probability of a co-occurrence between two events differs from what

we would see if the two events were independent. It can be both positive and negative, and it is

zero when the two events are independent.

To avoid overfitting, we estimate these PMI scores on a separate set of 10,000 previously hired

workers. The employers who hired these 10000 workers are not included in the focal dataset

described in Section 4. Because we use hired workers, the PMI scores reflect employers’ average

affinities towards certain countries and certifications.
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Appendix F Hyperparameter tuning

The proposed framework and many of the alternative recommender systems discussed in Section 5.2

require hyperparameter tuning. This Appendix discusses the grid search approaches we followed to

tune these parameters for our HMM and the alternative recommender systems that rely on random

forest, gradient boosting, and recurrent neural networks.

HMM tuning: For the proposed framework we need to identify the number of states K for each

fold in the nested cross validation structure (Figure 6). We consider the following 40 combinations:

HMM tested combinations:

{ K︷ ︸︸ ︷
{2,3,4,5}×

folds︷ ︸︸ ︷
{0,1,...,9 }

}
. (19)

For each one of these combinations, we follow an HMM-specific step-forward feature selection

process (Ferri et al. 1994) to identify the best-performing predictive variables on the validation

set (see also Appendix I and our Github repository for more information on the feature selection

process).

Random forest tuning: For the Random forest recommender, we use the Python package

sklearn.ensemble.RandomForestClassifier. We experiment with two hyper-parameters: the

maximum number of levels in each decision tree (“max depth”), and the number of trees in the

forest (“n estimators”). We consider the following 90 combinations:

Random forest tested combinations:

{ max depth︷ ︸︸ ︷
{3,10,15}×

n estimators︷ ︸︸ ︷
{10,50,100}×

folds︷ ︸︸ ︷
{0,1,...,9 }

}
. (20)

Similar with the HMM training process, for each one of these combinations, we follow a random-

forest-specific step-forward feature selection process to identify the best-performing predictive vari-

ables on the validation set.

XGBoost tuning: For Gradient boosting we use the Python package xgboost. We tune

three hyperparameters: the number of trees to fit (“n estimators”), the maximum tree depth

(“max depth”), and the subsample ratio of the training instance (“subsample”). We consider the

following 180 combinations:

XGBoost tested combinations:

{ n estimators︷ ︸︸ ︷
{50,100,150}×

max depth︷ ︸︸ ︷
{3,10,15}×

subsample︷ ︸︸ ︷
{0.8,1}×

folds︷ ︸︸ ︷
{0,1,...,9 }

}
. (21)

https://github.com/repudime/gbu
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Similar with the HMM training process, for each one of these combinations, we follow an XGBoost-

specific step-forward feature selection process to identify the best-performing predictive variables

on the validation set.

LSTM tuning: To build LSTM networks we use the Python packages keras.models.Sequential

and keras.layers.LSTM. To get probability estimates, we use a softmax activation function and we

optimize according to the categorical crossentropy. We tune two hyperparameters: the number

of “epochs” to train the model, and the number of samples per gradient update “batch size.” In

addition, we explore stacking hidden LSTM layers, in an effort to improve performance (Brownlee

2017). We consider the following 180 combinations:

LSTM tested combinations:

{ epochs︷ ︸︸ ︷
{10,20,30}×

batch size︷ ︸︸ ︷
{32,64,128}×{Stacked, Not stacked}×

folds︷ ︸︸ ︷
{0,1,...,9 }

}
.

(22)

To set the parameter “units” (i.e., the dimensionality of the output space of the hidden layer; see

the dense layer implementation of Keras 2021), we use the formula (Eckhardt 2018):

units= 0.67 ∗ (nfeatures +nsteps) , (23)

where nfeatures is the total number of predictive variables and nsteps is the length of the sequence

(see also Appendix O). Note that the units (also known as neurons) refer to the hidden layer of

the network; our final layer has three neurons that capture the total number of output classes we

predict (see the run lstm function on our Github repository: https://git.io/JmF80#L88).

Similar with the previous models, for each one of these combinations, we follow an LSTM-specific

step-forward feature selection process to identify the best-performing predictive variables on the

validation set.

https://git.io/JmF80#L88
https://git.io/JmF80#L88
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Appendix G Alternative ranking functions

The main goal of our research is to rank job-applicants according to their likelihood of getting

hired and performing well. However, alternative ranking mechanisms could trade-off “Hire-positive”

outcomes for fewer “Hire-negative” outcomes to provide risk-averse recommendations.

In this appendix, we consider four alternative ranking approaches:

• Difference: This approach subtracts the likelihood of observing a “Hire-negative” outcome

from the likelihood of observing a “Hire-positive” outcome.

• 75%-Hire-negative 25%-Hire-positive: This approach interpolates the probability of the two

outcomes and creates rankings according to the following:

0.75 ∗
(

1−Pr(“Hire-negative”)

)
+ 0.25 ∗Pr(“Hire-positive”) . (24)

• 25%-Hire-negative 75%-Hire-positive: This approach interpolates the probability of the two

outcomes and creates rankings according to the following:

0.25 ∗
(

1−Pr(“Hire-negative”)

)
+ 0.75 ∗Pr(“Hire-positive”) . (25)

• Odds ratio: This approach estimates the ratio of the likelihood of the two outcomes:

Odds ratio =
Pr(“Hire-positive”)

Pr(“Hire-negative”)
. (26)

Figure 18 compares these four different ranking approaches with the main ranking approach

that ranks applicants according to their estimated likelihood of getting hired and performing well.

The Figure shows the within-task performance as defined in Equation 8, as well as the within-task

likelihood of “Hire-negative”:

Within-task likelihood of “Hire-negative”(k) =
#(“Hire-negative” ∈ top−k recommended)

#(∈ top−k hired)
.

(27)

The results show that in terms of within-task performance, the main (“Hire-positive”) ranking

performs on par or better than the four alternative ranking approaches. However, in terms of min-

imizing the likelihood of “Hire-negative” outcomes, the main ranking performs on par or worse. In

practice, managers can experiment with such alternative ranking mechanisms and adjust according

to their objectives and costs of “Hire-positive” and “Hire-negative” outcomes.
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Figure 18 Comparison of alternative rankings

Within−opening likelihood of 'Hire−negative' Within−opening performance

0 5 10 15 0 10 20 30 40 50

Difference

75%−Hire−negative
25%−Hire−positive

25%−Hire−negative
75%−Hire−positive

Odds ratio

Improvement of the main (''Hire−positive'') ranking  (%)

Most rankings yield comparable results; The odds-ratio rankings yield worse results than the main ranking in

terms of within-task performance (Equation 8), but better results in terms of the within-task likelihood of getting a

“Hire-negative” outcome (Equation 27). The main raking approach ranks applicants according to their “Hire-positive”

probabilities. Error bars show 95% confidence intervals.
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Appendix H Robustness with alternative thresholds

The choice of a performance threshold equal to 0.8 to separate “Hire-positive” from “Hire-negative”

might bias the observed results. To check the robustness of our approach across alternative thresh-

olds, we repeat the evaluation process for performance thresholds equal to 0.7 and 0.9. Figures 19

and 20 show the results that are qualitatively the same with the results in our primary analysis.

Figure 19 Comparison of alternative recommenders: job-applicant rankings for all employers (performance

threshold = 0.7)
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The proposed approach ranks job applicants according to their likelihood of getting hired and performing well

significantly better (at least p < 0.1) than the alternative systems. The y−axis shows the 10-fold nested cross-validated

AUC percentage improvement of the proposed framework over the x−axis recommender systems. Error bars show

90% confidence intervals. Implicit identifies implicit-feedback systems (“No-hire,” “Hire”). Confidence intervals are

estimated across the improvements of the 10 folds.
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Figure 20 Comparison of alternative recommenders: job-applicant rankings for all employers (performance

threshold = 0.9)
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The proposed approach ranks job applicants according to their likelihood of getting hired and performing well

significantly better (at least p < 0.1) than the alternative systems. The y−axis shows the 10-fold nested cross-validated

AUC percentage improvement of the proposed framework over the x−axis recommender systems. Error bars show

90% confidence intervals. Implicit identifies implicit-feedback systems (“No-hire,” “Hire”). Confidence intervals are

estimated across the improvements of the 10 folds.
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Appendix I Implementation details

This section presents the implementation details of our framework. You can find the respective

Python code in our Github repository: https://github.com/repudime/gbu16

I.1 Feature selection

Figure 6 describes the nested cross validation process we follow to train our framework and the

alternative approaches. Feature selection happens in the training and validation sets of each fold.

We use a step-forward feature selection (Ferri et al. 1994) process. In particular, we use the

Python package mlxtend.feature selection.SequentialFeatureSelector, and we build each

respective model by choosing the most informative predictive variables among the ones presented

in Appendix E. The function do feature selection inside the custom utils.py file shows the

Python code for this process.

I.2 Complexity and running time

One potential concern about our approach is that it might be too expensive—in terms of training

time—to estimate. Indeed, the numeric optimization presented in Appendix C is computationally

tedious. In fact, Equation 16 can take a significant amount of time to be estimated even for tiny

amounts of data and parameters (see function get individual log l and relevant time tests).

Instead of estimating this equation, we estimate its vectorized version (function

get single timeline likelihood map). The complexity of this factorized function is O(N ∗M), where

N is the number of employers (timelines) in our data and M is the median length of a timeline

(number of received job applications across completed tasks). In cases such us ours, where M is

small compared to N , complexity grows almost linear with the number of timelines ≈O(N). And

as we discuss in Appendix I.4, complexity can even be reduced to a constant ≈ O(1) through

parallelization.

Furthermore, our implementation uses state of the art linear algebra libraries17 that significantly

speed up the process. Overall, even though the training time of our HMM will vary depending on

16 Our README.md file provides rich information about our HMM implementation and explains in detail how we

impose the structure of the HMM, and how we derive the emission and transition probabilities (matrices T and E).

17 BLAS: http://www.netlib.org/blas/

https://github.com/repudime/gbu
https://git.io/JmFBo#L487
https://git.io/JmFBq
https://git.io/JmFBo#L233
https://git.io/JmF4n
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the number of iterations, it is comparable with the training time of our LSTM approaches even

without parallelization (see relevant time tests).

I.3 Parameters to be estimated

The total number of parameters to be estimated depends on the number of states, the number of

outcomes, and the number of emission and transition variables. Assuming nstates to be the number

of states, noutcomes to be the number of outcomes, and ntransitions, nemissions to be the number of

transition and emission variables respectively, the total number of parameters that the model will

need to estimate will be:

Total number of parameters = nstates ∗ (nstates− 1) ∗ntransitions

+ nstates ∗nemissions ∗ (noutcomes− 1) +nstates . (28)

Hence, the parameters that we estimate for our main models range from 42 (nstates = 2,

ntransitions = 2, nemissions = 9, noutcomes = 3) to 410 (nstates = 5, ntransitions = 9, nemissions = 23,

noutcomes = 3). We share the details of the parameter vector in our Github repository as follows:

• hmm gbu.py: line 120 calls the function createPriors (https://git.io/JmF4h)

• hmm functions.py: line 348 defines the function createPriors that initializes our parameter

vector to be optimized (https://git.io/JmFBo)

I.4 Implementation in practice

Finally, we argue that our approach is overall appealing to practitioners for two more reasons:

• Offline training: In practice, platforms can train our approach once a week (or a month) based

on new data. This training process happens offline. Once the model learns its parameters,

real-time recommendations happen instantaneously.

• High potential for parallelization: The log of Equation 16 that forms the nega-

tive log-likelihood we minimize is a sum of individual user likelihoods (function

get single timeline likelihood map). Hence, we can estimate the individual user-

likelihoods in parallel and aggregate them at the end. We can do this through batches assigned

in parallel cores, or, through a MapReduce formulation.

https://git.io/JmFBq
https://git.io/JmF4h
https://git.io/JmFBo
https://git.io/JmFBo#L233
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Appendix J Comparison of alternative transition constraints

One of the distinct characteristics of our framework is that it allows transitions only after the

completion of a task (Equation 2). Does this matter?

We compare our task-specific approach with an HMM that allows task-independent transitions

after every observation Yt−1 ∈ Y. Specifically, we can assume that transitions have the following

form:

λ
sksl
γklXo−1Yt−1

:= Pr(St = sl|St−1 = sk;γkl,Xo−1) = softmax(γklXo−1) . (29)

When we test this implementation, we observe that constraining transitions after the completion

of a task yields up to 4% significantly (p < 0.001) better results. Hence, our unique design choice

to model transitions through Equation 2 significantly improves the performance of our approach.

Appendix K Heterogeneous employers

Does our framework perform well for different kinds of employers?

To test, we split our test sets into focused (i.e., employers who hire workers only in a single

category) and diverse (i.e., employers who hire workers in multiple task categories) employers.

Figure 21 shows the results. Our framework performs better compared with alternative approaches

across both groups, but it does slightly better across focused employers, as perhaps it is able to

better learn their preferences over time.
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Figure 21 Comparison of alternative recommenders: job-applicant rankings for all employers(Diverse vs.

focused employers)
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The proposed approach significantly outperforms alternative approaches for both diverse (hire workers across

multiple task categories) and focused (hire workers only in a single task category) employers. Error bars show 90%

confidence intervals. Confidence intervals are estimated across the improvements of the 10 folds.



Author: Article Short Title
70 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Appendix L Do employers transition across different states?

Another relevant question to our proposed framework is whether employers indeed evolve over

time: If they do not, then there is no need for implementing a complex system such as the HMM.

Figure 8 shows that our framework performs increasingly better on repeat employers, illustrating

that such repeat employers likely evolve. To better capture this evolution, Figure 22 shows the

percentage of employers who complete more than two tasks and transition to more than two states.

Indeed, a significant portion of repeat employers (that ranges between 37.5% and 65%) transition

to two or more states during our observational window.

Figure 22 A significant portion of employers evolves across multiple HMM states
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Appendix M AUC scores

Table 3 presents the AUC scores of our framework and the alternative approaches, for all three

performance thresholds.
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Table 3

Model AUC (performance
threshold =0.8)

AUC (performance
threshold =0.7)

AUC (performance
threshold =0.9)

Average HMM 0.71 0.68 0.681
Lgistic regression 0.668 0.661 0.642
Random forest 0.673 0.664 0.643
SVM 0.561 0.548 0.543
XGBoost 0.677 0.66 0.657
LSTM 0.688 0.667 0.647
Reputation (implicit) 0.564 0.555 0.569

Per fold 0 HMM 0.683 0.621 0.646
0 Lgistic regression 0.584 0.576 0.5
0 Random forest 0.579 0.553 0.562
0 SVM 0.523 0.521 0.353
0 XGBoost 0.603 0.595 0.587
0 LSTM 0.578 0.608 0.563
0 Reputation (implicit) 0.547 0.541 0.567
1 HMM 0.704 0.689 0.649
1 Lgistic regression 0.65 0.655 0.566
1 Random forest 0.638 0.625 0.607
1 SVM 0.463 0.556 0.499
1 XGBoost 0.629 0.662 0.621
1 LSTM 0.693 0.652 0.616
1 Reputation (implicit) 0.6 0.585 0.591
2 HMM 0.712 0.675 0.683
2 Lgistic regression 0.67 0.68 0.683
2 Random forest 0.656 0.667 0.624
2 SVM 0.598 0.497 0.524
2 XGBoost 0.684 0.663 0.633
2 LSTM 0.698 0.69 0.494
2 Reputation (implicit) 0.554 0.536 0.561
3 HMM 0.732 0.719 0.719
3 Lgistic regression 0.696 0.677 0.685
3 Random forest 0.723 0.704 0.699
3 SVM 0.63 0.542 0.566
3 XGBoost 0.727 0.683 0.701
3 LSTM 0.705 0.66 0.658
3 Reputation (implicit) 0.603 0.603 0.624
4 HMM 0.717 0.666 0.682
4 Lgistic regression 0.676 0.655 0.664
4 Random forest 0.688 0.653 0.644
4 SVM 0.483 0.548 0.606
4 XGBoost 0.68 0.649 0.64
4 LSTM 0.698 0.631 0.688
4 Reputation (implicit) 0.566 0.561 0.561
5 HMM 0.696 0.669 0.679
5 Lgistic regression 0.656 0.656 0.65
5 Random forest 0.666 0.672 0.638
5 SVM 0.557 0.557 0.56
5 XGBoost 0.665 0.64 0.668
5 LSTM 0.678 0.691 0.676
5 Reputation (implicit) 0.557 0.54 0.553
6 HMM 0.714 0.688 0.676
6 Lgistic regression 0.692 0.663 0.628
6 Random forest 0.654 0.649 0.594
6 SVM 0.579 0.609 0.597
6 XGBoost 0.678 0.656 0.673
6 LSTM 0.699 0.682 0.642
6 Reputation (implicit) 0.563 0.557 0.573
7 HMM 0.708 0.687 0.673
7 Lgistic regression 0.691 0.668 0.677
7 Random forest 0.701 0.705 0.66
7 SVM 0.582 0.561 0.618
7 XGBoost 0.691 0.678 0.65
7 LSTM 0.708 0.675 0.695
7 Reputation (implicit) 0.594 0.561 0.598
8 HMM 0.71 0.688 0.695
8 Lgistic regression 0.682 0.682 0.682
8 Random forest 0.722 0.714 0.691
8 SVM 0.552 0.525 0.542
8 XGBoost 0.705 0.699 0.703
8 LSTM 0.693 0.672 0.696
8 Reputation (implicit) 0.559 0.563 0.561
9 HMM 0.726 0.698 0.711
9 Lgistic regression 0.687 0.699 0.686
9 Random forest 0.706 0.693 0.708
9 SVM 0.644 0.565 0.566
9 XGBoost 0.706 0.678 0.69
9 LSTM 0.732 0.71 0.74
9 Reputation (implicit) 0.498 0.5 0.499
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Appendix N Adaptation of an HMM-based recommender

In section 5.3 we have used an adaptation of the HMM-based recommender system (HMM-CF)

proposed by Sahoo et al. (2012). Because this HMM serves article recommendations, its struc-

ture does not directly apply in our context. Below we list the differences between our approach

and the HMM-CF and identify adaptations that the HMM-CF requires to provide job-applicant

recommendations:

• The HMM-CF updates user states monthly. Monthly aggregations are not relevant in our

setting. Hence, we update employer preferences in the HMM-CF adaptation after each hiring

decision.

• Similar to other many-assessment recommender systems (Section 2.2), HMM-CF uses items

that multiple users evaluate. Hence, to apply the HMM-CF in the focal context we use the

clustering of job-applications presented in Appendix A.

• The HMM-CF does not allow individual employer characteristics (i.e., vector Xo−1) to affect

state transitions.

• The HMM-CF includes a component of negative Binomial that identifies the number of articles

to recommend per month. Then it uses multinomial emissions to choose items. In our context,

the negative Binomial step is unnecessary, as we do not model how many job-applicants the

employer will hire. Hence in the focal adaptation, we only use the second step of the HMM-CF

that models multinomial emission and transition probabilities.

• The HMM-CF uses implicit feedback to model choices. It does not allow for performance-aware

outcomes.

Based on these modifications, Section 5.3 and Appendices H and B compare the performance of

the HMM-CF with our proposed approach. Our framework significantly (p < 0.001) outperforms

the HMM-CF across all alternative evaluation measures we consider.
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Appendix O Shortcomings of the LSTM approach

One of the most competitive single-assessment framework is the Long-Short Term Memory (LSTM).

Yet, even this approach, which by definition is sequence aware, underperforms compared with the

proposed HMM framework. In this section, we discuss the implementation details of the LSTM

approach and we conceptually identify why the LSTM networks perform worse than the curated

HMM.

Implementation details: To apply an LSTM framework, we need to create the sequences that

the network will learn from. Specifically, we need to reshape the data such as each row is a job appli-

cation and each column is a separate time series (see Multiple Input Series; Brownlee 2018). Then,

we need to structure the data into samples with input and output elements. We can assume that

for a job application t, the previous n job applications are also relevant. Function split sequences

shows this process that generates sequences of job applications. The function assumes that the

parameter n steps is the median of the number of applications per task (i.e., median M) in the

training set. As a result, this function assumes that ranked job applications (independent of task

and employer) generate sequences, and not tasks (which is the case in our context as shown in

Figure 4). For more information regarding our LSTM implementation please visit the following

files:

• lstm sklearn.py: https://git.io/JmFRv

• train lstm.py: https://git.io/JmF80

Discussion: The above details illustrate that it is likely impossible for the LSTM to capture

employer evolution through completed tasks and at the same time provide job-application recom-

mendations. An encoder-decoder architecture (Brownlee 2018) could potentially model task-specific

sequences, but it would require hundreds of parallel columns that describe the characteristics of

each application multiplied by the number of applications per task. That would potentially be fine

if we had long sequences, but in our context, task sequences are short.

Furthermore, the length of sequences in our context is not (and cannot be) constant. When

defining the n steps, we only approximate the length of previous applications that the LSTM

https://git.io/JmFB7#L226
https://git.io/JmFRv
https://git.io/JmF80
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will consider as relevant. This generates a lot of noise, when job-applications from different tasks

become relevant (e.g., when tasks receive fewer than nsteps applications, and when the number of

job applicants is greater than n steps).

These two shortcomings explain conceptually why the LSTM cannot capture employer evolving

preferences as good as our proposed framework, and why it ends up underperforming for repeat

employers as shown in Figures 7 to 10 and in Figures 12 to 15.
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