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Abstract

Ensuring data quality is a persistent challenge in survey-based research, particularly
with the rise of online participant pools prone to inattentiveness and random
responding. Traditional quality control methods, such as attention checks and response
pattern analyses, add cognitive load and are often domain-specific. In this paper, we
explore the use of autoencoders - unsupervised neural networks that learn to
reconstruct structured data - as a scalable, domain-agnostic alternative for detecting
inattentive survey respondents. Autoencoders can effectively identify response patterns
that deviate from typical behavior without requiring labeled data or explicit participant
intervention. Across nine real-world survey datasets, our experiments demonstrate that
autoencoders consistently improve over baseline predictors, achieving notable
reconstruction ability (average Lift > 1.4) and strong inattentiveness detection
performance (AUC up to 0.79). We further introduce a modified loss function tailored to
survey structures and explore Percentile Loss to enhance detection in challenging cases.
These results suggest that autoencoders offer a flexible and automated solution for
improving behavioral data reliability, complementing traditional survey quality control
techniques.

Keywords: Autoencoders, Inattentiveness, Attention Checks, Behavioral Research,
Surveys, Unsupervised Learning

Introduction

Behavioral, social, and political scientists rely on surveys. This kind of research requires high data quality
to be effective and produce valid outcomes. However, the high data quality is often violated due to the
presence of random or inattentive responses, which can distort findings, add noise, and reduce statistical
power. Researchers call this phenomenon ‘content nonresponsivity,” which is defined as a loss in the
consistency of responses to the data items (Nichols et al., 1989). Respondents may provide random
answers due to a lack of engagement, survey fatigue, or just unwillingness, thereby affecting the validity of
research outcomes (Meade and Craig, 2012). This issue has been further exacerbated by the increasing
reliance on online crowdsourcing platforms such as Amazon Mechanical Turk (MTurk) and Prolific to find
survey participants. Even though these platforms offer researchers a fast, simple, and cheaper way of
collecting data from diverse participants, there are some concerns about the produced data quality. The
workers are usually more likely to multitask during the studies (Goodman et al., 2013) and respond
randomly to them. Studies show that inattentive and fraudulent responses are more common on online
platforms, particularly when participants have the opportunity to cheat (Peer et al., 2021).
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Current techniques of mitigating these issues involve attention checks (Berinsky et al., 2014), metrics of
the individual responses' variation (Curran, 2016), and the Bayesian Truth Serum mechanism (Weaver
and Prelec, 2013). These methods, while useful, introduce additional cognitive load, increase the survey
completion time, and tend to be domain-specific. Given these limitations, there is a growing need for
automated, data-driven approaches capable of identifying random responses without direct participant
intervention.

These limitations can be significantly overcome by leveraging machine learning (ML) and artificial
intelligence (AI) advancements. When collecting respondents' data for surveys, we cannot ensure who
answered randomly or if they gave fabricated information, as we do not have a ground truth to compare
against. Creating datasets that include this information would require a lot of costs and time, but even if
we were able to provide these, they would include biases and inconsistencies, as definitions of
inattentiveness can vary across studies. Consequently, unsupervised learning techniques offer a promising
alternative. In this work, we utilize the autoencoders (Wang et al., 2016). Autoencoders are a type of
neural network architecture designed to learn compact representations of data by reconstructing input
patterns with minimal error. When applied to survey responses, an autoencoder learns the underlying
distribution of typical responses, making it able to detect responses that significantly deviate from
expected patterns as potential outliers. Unlike traditional methods, this approach does not require
predefined rules or labeled training data, making it a scalable, adaptable, and domain-agnostic solution
for detecting inattentive or random respondents.

Moreover, autoencoders can handle high-dimensional data efficiently, making them particularly useful
when survey responses involve multiple variables. This is not rare if we think of how many different
options usually accompany every question. Mapping the high-dimensional survey data into
low-dimensional spaces preserves the structural and relational patterns inherent in the dataset. In this
way, autoencoders are able to capture key characteristics and patterns of the respondents, while the
inattentive users would be considered as noisy samples and difficult to reconstruct. As a result, valid
responses tend to cluster naturally within the latent space, whereas inattentive or random responses
appear dispersed, making them detectable as anomalies (Xu et al., 2018).

In this work, we explore the usage of autoencoders to detect random or inattentive responses in survey
research. In particular, the central hypothesis is that the internal properties of this model can effectively
distinguish random from valid responses by learning latent patterns in datasets and identifying outliers
based on the reconstruction error. Unlike traditional quality control methods, which rely on attention
checks or truth-inducing mechanisms, this approach operates without requiring participant engagement,
predefined rules, or labeled data.

Our contribution is twofold. First, we review autoencoders as a general-purpose tool for spotting
inattentive survey participants and introduce methodological refinements that adapt them specifically for
categorical survey data. Second, we provide the first large-scale empirical validation of autoencoders for
inattentiveness detection, systematically benchmarking performance across nine diverse real-world
survey datasets.

Related Work

Autoencoders for Anomaly Detection

Autoencoders were originally introduced for unsupervised anomaly detection because they can
reconstruct typical inputs while producing higher errors for unusual ones (Hawkins et al., 2002). This
principle has been extended with variants such as Denoising Autoencoders (Vincent et al., 2010),
Variational Autoencoders (Kingma & Welling, 2013), and Robust Deep Autoencoders (Zhou & Paffenroth,
2017), each aiming to improve robustness to noise or explicitly model outliers. These innovations
established autoencoders as a flexible foundation for anomaly detection in diverse domains (Goodge et al.,
2021; Rubio et al., 2020).

Survey Inattentiveness Detection

Traditional approaches to inattentiveness rely on embedded design features such as attention checks,
response time thresholds, or pattern-based indicators like straightlining (Kim et al., 2019). More
advanced statistical and machine learning approaches include EM-based truth discovery (Dawid & Skene,
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1979), unsupervised credibility modeling (Yin et al., 2008), and supervised classification using behavioral
features (Schroeders et al., 2022; Ozaki, 2024). The Bayesian Truth Serum (Weaver & Prelec, 2013)
represents another strand, incentivizing truthful responses through mechanism design.

Autoencoders for Survey Inattentiveness

Only recently have autoencoders been applied specifically to inattentive responding. Alfons & Welz (2024)
introduced autoencoders for classifying inattentive responses, but their evaluation was limited to
synthetic data. Welz & Alfons (2023) proposed CODERS, which combines autoencoder reconstruction
errors with changepoint detection to identify when a respondent begins answering carelessly within a
survey, demonstrating proof-of-concept in one real and several synthetic datasets. Our work differs in
three key respects. First, we adapt autoencoders for categorical survey data, introducing variable-level loss
weighting and exploring Percentile Loss (PL) to address the reconstruction—detection trade-off. Second,
instead of focusing on within-survey onset, we target the identification of inattentive respondents as a
whole. Third, we validate our approach on nine diverse, real-world survey datasets that include both
attentive and inattentive participants, establishing large-scale empirical benchmarks. In doing so, we
position autoencoders as a scalable and domain-agnostic tool for inattentiveness detection in survey
practice.

Data

We describe the datasets that we used for our study and give the main points of each dataset, along with
how the data were collected and what attention checks were included. In Table 1, we summarize the
statistics of all datasets, including the number of samples, the number of variables, the number of
features, and the average number of features per variable.

We used https://datasetsearch.research.google.com/ to find publicly available survey datasets that
include attention checks and use mainly structured/categorical responses (as opposed to textual or other
forms of unstructured data). We identified nine datasets which differ substantially in topic, respondent
population, and quality-control mechanisms to ensure that the evaluation reflects the method’s
robustness across diverse contexts. This heterogeneity spans (1) respondent types (such as adolescents
(Robinson-Cimpian, 2014), MTurk workers (Moss et al., 2023), and nationally representative adult
samples (Mastroianni & Dana, 2022)); (2) survey topics (ranging from political attitudes to
misinformation susceptibility); and (3) attention check designs (ranging from none (Robinson-Cimpian,
2014) to multiple embedded checks (Pennycook et al., 2020)).

Beyond diversity, we applied two inclusion criteria: (a) datasets had to contain attention checks, and (b)
they had to retain the responses of participants who failed these checks. These criteria were highly
exclusive because most published works release only “cleaned” datasets with inattentive respondents
removed, making large-scale evaluation of inattentiveness detection challenging.

Dataset Samples Variables Features AFV
Robinson-Cimpian (2014) 14,765 98 619 6.32
Mischievous Respondents
Pennycook et al. (2020) 853 188 708 3.75
COVID-19 Misinformation
Condition 1 212 98 404 4.12
Condition 2 206 98 358 3.65
Condition 3 220 98 376 3.84
Condition 4 215 98 400 4.08
Alvarez et al. (2019) Inattentive 2,725 39 196 5.03
Uhalt (2020) Attention Checks 308 60 337 5.62
and Response Quality
O’Grady et al. (2019) Moral 355 72 322 4.47
Foundations
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Buchanan and Scofield (2018) 1,038 23 159 6.91
Low-Quality Data

Moss et al. (2023) Ethical Data 2,277 51 332 6.51
Mastroianni and Dana (2022) 1,036 51 322 6.31
Attitude Change

Ivanov et al. (2021) Racial 860 67 310 4.63
Resentment

Table 1. Summary of Datasets used in this study. Every sample consists of a number of
variables. Variables can be either questions or demographic records. Every variable
consists of features in the way it is explained in the Method. The Average Number of

Features per Variable (AFV) is also given in the last column.

(Robinson-Cimpian, 2014) Mischievous Respondents: This dataset comes from the 2012 Dane
County Youth Assessment (DCYA), an anonymous web-based survey of 14,765 U.S. high school students.
The study investigated “mischievous responders”, adolescents who intentionally gave extreme or
implausible answers (e.g., exaggerated reports of health behaviors) that distort between-group disparity
estimates across categories such as sexual orientation, gender identity, and disability. Outcomes examined
included suicidal ideation, school belongingness, and substance use. Unlike other datasets in our study,
this survey contained no embedded attention checks; inattentive cases were instead identified through
domain knowledge and responses to unrelated questions. This makes the dataset distinctive, as it provides
a large-scale setting where inattentiveness is inferred from patterns of extreme or inconsistent responding
rather than explicit screening items.

(Pennycook et al., 2020) COVID-19 Misinformation: This study examined how attention and
cognitive reflection affect the spread of COVID-19 misinformation. A total of 853 U.S. respondents
evaluated 30 headlines (15 true, 15 false) presented in a social media format, with ground truth verified by
fact-checking sources. The central aim was to test whether misinformation sharing occurs because people
fail to consider accuracy rather than because they truly believe false claims. To measure this, the study
introduced four experimental conditions that varied both the framing of the question (accuracy vs.
sharing intention) and the ordering of response options. Data quality was assessed with multiple attention
checks: two multiple-choice instruction items, one embedded Likert-scale item requiring selection of a
specific value (“3”), and an additional self-report item asking whether participants had responded
randomly. This combination of structured conditions and varied attention checks makes the dataset
particularly useful for evaluating inattentiveness detection under different operational definitions.

(Alvarez et al., 2019) Inattentive: This survey collected 2,725 responses from California adults
through Qualtrics’ e-Rewards panel to study how inattentiveness affects political attitude measures. The
study examined whether inattentive respondents introduce noise, satisficing, or misreporting, and
whether they differ demographically from attentive participants. Data quality was monitored with three
trap questions: two multiple-choice items requiring a specific answer and one open-text item requiring
the word “government.” Importantly, the full dataset includes both attentive and inattentive respondents,
making it a strong benchmark for evaluating detection methods in a domain with coherent, multi-item
political constructs.

(Uhalt, 2020) Attention Checks and Response Quality: This Qualtrics survey included 308
participants and focused on self-assessment of personality traits using Likert-scale items. To evaluate
response quality, the instrument embedded multiple explicit attention checks that instructed participants
to select specific options (e.g., “I see myself selecting ‘Agree Strongly’ if I'm paying attention to the
survey”). These checks were distributed throughout the questionnaire to monitor engagement. The
dataset provides a useful test case because it combines a structured personality scale, where attentive
responses should show internal consistency, with clear ground-truth labels from embedded checks.

(O’Grady et al., 2019) Moral Foundations: This study collected 355 valid responses from U.S.
undergraduate business students to examine how moral foundations predict prosocial behavior.
Participants completed the Moral Foundations Questionnaire (MFQ), which measures individualizing
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foundations (care, fairness) and binding foundations (loyalty, authority, purity). Data quality was
monitored with a multiple-choice instructional manipulation check (IMC) embedded in the survey to
ensure that respondents read instructions carefully. The dataset offers a structured attitudinal battery
with a single attention check for identifying inattentiveness.

(Buchanan and Scofield, 2018) Low-Quality Data: This online Qualtrics survey collected 1,038
valid responses and examined methods for detecting low-quality data in psychological research. The study
explored inattentive, low-effort, and automated responses (e.g., survey bots) using behavioral and
statistical indicators such as response times, click counts, and distributional anomalies. Data quality was
also monitored with an embedded attention check instructing participants to “Please mark strongly agree
for this question.” The dataset is distinctive in combining traditional survey responses with
metadata-based quality indicators, making it useful for testing detection methods that rely solely on
response patterns.

(Moss et al., 2023) Ethical Data: Study 1 surveyed 2,277 active U.S.-based MTurk workers to examine
financial dependence on MTurk, time investment, and perceptions of fairness. The dataset is
heterogeneous, covering multiple facets of workers’ experiences. Data quality was monitored with two
screens: one required selecting the correct summary of a prior item, while the other directly asked
participants to indicate agreement with the statement “I am not reading the questions in this survey.” This
combination provides both indirect and self-report measures of inattentiveness.

(Mastroianni and Dana, 2022) Attitude Change: Study 1 collected 1,036 responses from a
nationally representative U.S. adult sample via Prolific to examine perceptions of long-term societal
attitude change. Participants compared their estimates of historical public opinion trends to actual polling
data, with particular interest in whether people systematically overestimate liberalization. Data quality
was ensured with an embedded attention check requiring respondents to type the number “1” in both
blanks of a survey item. This dataset provides a high-quality, representative benchmark with a single IMC
for inattentiveness.

(Ivanov et al., 2021) Racial Resentment: This MTurk survey collected 860 responses in April 2020
to study attitudes toward decarceration during COVID-19. The study examined how information about
prison health risks, racial resentment, and empathy influenced support for release, and whether support
varied by crime type, age, or health status of incarcerated individuals. Data quality was monitored with
two embedded attention checks. The dataset offers a heterogeneous attitudinal instrument with multiple
checks, useful for assessing inattentiveness in politically sensitive contexts.

A Review of Autoencoders for Inattentiveness Detection

Autoencoders are a class of neural networks designed to learn compact representations of data in an
unsupervised manner by encoding inputs into a lower-dimensional latent space and reconstructing them
from this compressed representation. An autoencoder consists of two parts: an encoder, which learns an
efficient representation of the data in a lower dimension, and a decoder, which learns how to create the
initial data from this low-dimensional representation (Figure 1).

Encoder: The encoder function, denoted as f o Maps an input response vector x € R? (d is the number of
features) to a lower-dimensional latent representation z € R™ (with m « d):

z = f,(x) = c(Wex + be), where W, € R™ is the weight matrix, b, € R™ is the bias term, and o() is
a non-linear activation function such as ReL.U or sigmoid.

Decoder: The decoder function, denoted as 9, reconstructs the original response vector from the latent
representation £ = g(p(z) = oW,z + b), where W s R*™ is the decoder weight matrix, b . € R? is

the bias term, and £ € R? is the reconstructed response vector. The number of latent variables m, as well
as the depth of the encoder and decoder, the number of units per layer, and the choice of activation
functions are all hyperparameters that can be tuned for optimal performance. To prevent overfitting and
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Input Output

Encoder Decoder

Figure 1. Architecture of a simple
Autoencoder. The autoencoder consists of
two parts: (a) the Encoder, which encodes

the information into latent variables, and (b)
the Decoder, which decodes the information
to the initial input. (Source)

enhance generalization, L2 regularization (also known as weight decay) is applied to the weights of the
network (Krogh and Hertz, 1991). The regularized objective function is given by

reg = L(x, £) + AY ||[W]|?>, where A is a regularization hyperparameter that controls the penalty on

large weight values. Additionally, we use dropout in hidden layers to randomly deactivate neurons during
training (Srivastava et al., 2014). During training, we drop each unit is with a probability p drop’

dmpl = r@hl, ri~ Bernoulli(1 — p dmp) where hl is the activation vector in the layer [, and ©

denotes element-wise multiplication with the dropout mask r. p drop is also a hyperparameter to be tuned.

Data Preparation: The datasets we use in this study are surveys, where each participant provides
answers to a series of usually multiple-choice questions. Since the majority of survey items follow a
closed-form structure, the data is inherently categorical. Autoencoders, as well as all machine learning
algorithms, function with numeric data, and thus, we transform the categorical variables into a numerical
representation proper for the network. Each survey question (variable) is encoded using one-hot
encoding, where each possible response choice is represented as a separate binary feature. Specifically, for
a question with k possible answer choices, a vector of length k is created (or k + 1 if there exist users who
passed the question), where only the selected response is marked as 1. At the same time, the remaining
elements are set to 0. This transformation results in a feature space where the number of input
dimensions is significantly larger than the number of original survey items, as each categorical variable
expands into multiple binary features. The model treats each response as a set of features, learning the
underlying distribution of the entire response set. We train the network so as to reconstruct the original
input from its learned latent representation, capturing patterns across all answers. For further details on
dataset statistics and preprocessing steps, refer to the Data Section.

Loss Function: For categorical survey responses, which is our case, the Binary Cross-Entropy (BCE) loss
is used for Autoencoders training BCE(x, ) = — Yi1*[xilog(®) + (1 — x)log(1l — %)]. As
explained earlier, our datasets consist of variables (questions) that each contain multiple binary features.
Thus, we modify the standard BCE loss to take into consideration this “nested” structure. Instead of
treating every response option independently, we compute the loss for each variable and normalize it by
the logarithm of its number of features. Formally, our loss function is:

L= (1/IVDE, ., [1/1g(FDIT, ., BCEG, %,
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where V is the set of all survey variables (questions), F, is the set of features (possible responses) for
variable v. This variable-level weighting ensures that survey questions with more response options do not
disproportionately dominate the total loss function.

Randomness Detection: As already explained, autoencoders are suitable models for capturing the
internal correlations between features in the dataset and constructing a structured latent representation
that preserves these dependencies. Given their ability to learn compact and meaningful representations of
valid response patterns, we hypothesize that an autoencoder can effectively differentiate between
attentive and inattentive respondents based on reconstruction loss. After training our model on each
survey, we can then run an additional evaluation, using the same training data, and compute the
reconstruction loss for each individual row (participant). Attentive users should create the same patterns
in surveys, in contrast to the random responses, resulting in lower reconstruction losses. Therefore, we
rank the reconstruction errors in descending order, identifying the respondents with the highest losses as
potential inattentive participants. Our hypothesis is based on extensive prior research in anomaly and
outlier detection, where autoencoders and similar deep learning architectures have been successfully
employed to identify data points that deviate from expected patterns; in Computer Vision (An and Cho,
2015; Zhou and Paffenroth, 2017), time series (Xu et al., 2018), and tabular data (Eduardo et al., 2020).
Bringing these examples to our use case, we predict that respondents who answered randomly will be
flagged as outliers due to their poor reconstruction quality, favoring the broader application of
autoencoder-based anomaly detection in behavioral data analysis. To the best of our knowledge, we are
the first to apply this methodology to the analysis of inattentiveness in behavioral studies.

Our approach builds on the assumption that inattentive respondents lack consistent response patterns,
producing randomness that the autoencoder cannot reconstruct. By contrast, minority groups with
coherent but distinctive perspectives remain reconstructible because their internal consistency anchors
them within the learned manifold. This distinction mirrors earlier dimensionality reduction techniques
such as Principal Component Analysis (PCA), where structured minority patterns are captured by weaker
components, whereas purely random responses cannot be represented. Thus, the autoencoder primarily
flags incoherence rather than legitimate minority viewpoints, clarifying an important boundary condition
of our method.

Method: For our experiments, we focus exclusively on categorical variables. However, we also take into
consideration the numeric variables: if they have fewer than 20 distinct values, we treat them as
categorical. Otherwise, we discretize them into predefined categories based on their standardized values.
First, we apply standard normalization to each numeric variable z = (x — W) /o where x represents
the raw value, p is the mean, and o is the standard deviation of the variable. Afterwards, we categorize the
values into six discrete bins, as defined in Table 2.

Category Standardized Value Range
Bottom-extreme z < —1.4
Low -14<z< -07
Normal -07 <z<0.7
High 0.7 <z < 1.4
Top-extreme z > 1.4
Missing Data N/A

Table 2. Categorization of numeric

variables based on standardized values.

Admittedly, many questions were open-ended and required text as a response. We focus exclusively on
structured categorical and categorized numerical variables, thereby excluding open-ended responses from
our analysis. Datasets with a high proportion of such text fields were intentionally avoided to maintain
consistency and not affect our findings.
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For each dataset (survey), we separately perform a hyperparameter tuning phase before training the
autoencoder. We employ Bayesian Optimization to efficiently explore the hyperparameter space. This
optimization is conducted using the KerasTuner package within the Keras framework. Table 3 provides
an overview of the hyperparameters explored during tuning, along with their respective search ranges.
The optimization process evaluates various configurations over 30 trials, using a validation split of 20%
and training each candidate model for up to 300 epochs, with an Early Stopping of 10 epochs. The

best-performing configuration is selected based on validation loss minimization.

Hyperparameter

Values Explored

Learning Rate

{0.0001, 0.001, 0.01}

Encoder Layers {1, 2,3}
Encoder Units {64, 96, 128, 160, 192, 224, 256}
Encoder Activation® {ReLU}

Encoder Regularization

{0.0, 0.001, 0.01}

Encoder Dropout

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

Encoder Batch Normalization {True}

Latent Space Dimensionality {2, 3, ..., 50}

Latent Activation {ReLU}

Decoder Layers {1, 2, 3}

Decoder Units {64, 96, 128, 160, 192, 224, 256}
Decoder Activation {ReLU}

Decoder Regularization (L2)

{0.0, 0.001, 0.01}

Decoder Dropout

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

Decoder Batch Normalization

{True}

Table 3. Hyperparameter search space in our tuning experiments, using
Bayesian Optimization. The Units, Activation, Regularization, Dropout,
and Batch Normalization explored values were the same for each layer,
regardless of how many layers were chosen each time for both the
encoder and decoder.

Experimental Results

Metrics used for the Evaluation
Reconstruction Evaluation
First, we assess how accurately the model can reconstruct the original data. For each variable separately,

we compute the accuracy, defined as the proportion of correctly reconstructed values across all samples.

Given an original dataset X € R™*? and its reconstruction, X, the accuracy for a variable v; is defined as:

—

n
Accuracy(v) = (1/N)2_ "I(x; =x )

! As a robustness check, we also extended the activation function search space beyond ReLU to include SELU, Swish, and GELU. The
results were largely consistent with our main findings, with only minor, dataset-specific variations (e.g., modest improvements in
Alvarez et al. (2019), slight decreases in Buchanan & Scofield (2018)).
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where X, and X, represent the original and reconstructed values of the variable v; for the sample j, and
I(-) is the indicator function, which returns 1 if the reconstruction is correct and o otherwise. To obtain a
dataset performance measure, we compute the average accuracy across all d variables:

Mean Accuracy = (1/d) i1 Accuracy(vy)

To assess the performance of our model, we compare its accuracy to a baseline model that always predicts
the majority class for each variable. The baseline accuracy for a variable v; is defined as:

Baseline Accuracy(vy) = max_ a1/nN) Zj=1" ]I(xji = 0), CEC;,

where % is the set of unique categorical values for the variable v;. The Mean Baseline Accuracy is defined
similarly to Mean Accuracy. The Lift metric quantifies the improvement of our model over the baseline
and is calculated as:

Lift = (1/d) Yi-1® Accuracy(v;y) / Baseline Accuracy(vy)

A Lift value greater than 1 indicates that the model performs better than the majority-class baseline, while
a Lift value close to 1 suggests that the model offers little improvement over simple majority-based
predictions. In addition to the accuracy-based evaluation, we leverage the One-vs-All (OVA) ROC AUC
metric, denoted as ORA, to further assess the reconstruction quality per variable. Unlike traditional
accuracy, which evaluates direct matches between predicted and actual values, ORA measures the model's
ability to rank correct responses higher than incorrect ones across all possible categories.

For a given variable v; with categorical outcomes, we treat each possible category as a positive class, with
all other categories as negative (One-vs-All approach). We then compute the ROC AUC score for each
category and aggregate across all categories using a macro-average:

ORA(v)) = (1/|GD Z{Ceci} ROC AUC(c)

where % is the set of unique categorical values for the variable v;, ROC AUC(c) is the area under the ROC
curve for class c, treating it as the positive class in a One-vs-All (OvA) manner.

To obtain the final ORA score, we compute the mean across all variables:

Mean ORA = (1/d) Yi-1* ORA(vy)

Randomness Detection Evaluation

Afterwards, we assess the model's ability to correctly detect inattentive users. We consider attention check
responses as ground truth labels. We note that since some datasets contain multiple attention checks, we
compute our metrics for each attention check separately.

After passing a dataset through the model, we obtain a reconstruction error for each sample. We then
rank the errors in decreasing order, with the assumption that inattentive users should have higher errors.
This allows us to frame the inattentiveness detection task as an information retrieval problem, where the
goal is to rank inattentive users at the top. To evaluate how well the model ranks inattentive users, we
compute recall at position h = total number of inattentive users:

Recall@k = |{inattentive users intopk}|/h

This metric tells us how well we perform if we knew a priori the number of inattentive users and selected
exactly that many samples.

To assess precision at specific ranks, we compute:
Precision@k = |{inattentive users intopk}|/k

We report precision at k = 10, 50, 100, which helps evaluate how well the model performs when selecting
a fixed number of respondents. Note that Precision@h = Recall@h.

NDCG evaluates ranking quality while giving higher weight to correctly identified inattentive users
appearing earlier in the ranking. The discounted cumulative gain at rank h is:
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DCG@h = Yi.,"I(inattentive at ranki) /log,(i + 1)

We normalize by the ideal DCG (best possible ranking):

NDCG@h = DCG@h /IDCG@h

where IDCG@h is computed by sorting inattentive users in perfect ranking order.

Finally, we evaluate our model’s ability to discriminate between attentive and inattentive users using the
ROC curve. Here, reconstruction error is used as the decision threshold, and we compute:

True Positive Rate (TPR) = True Positives / (True Positives + False Negatives)
False Positive Rate (FPR) = False Positives / (False Positives + True Negatives)

By plotting TPR vs FPR across different thresholds, we obtain the ROC curve and compute AUC (Area
Under Curve), which measures the model’s ranking ability:

AUC = [o*TPR(t) dFPR(t)

Higher AUC values indicate that the model effectively distinguishes inattentive from attentive users.
Results
Reconstruction Performance

Reconstruction performance provides a measure of how accurately the model captures the typical
patterns of the data. High reconstruction accuracy indicates that the autoencoder has successfully learned
the underlying structure of the responses. We focus on whether the model meaningfully improves over a
simple baseline predictor — one that always predicts the majority response for each survey question — by
computing Lift scores. The reconstruction performance across all datasets is presented in Table 4. For the
Pennycook et al. (2020) dataset, we also report results for each condition separately. Overall, we observe
that the model achieves an accuracy of over 70% in all datasets except for the O’Grady et al. (2019)
dataset, which records the lowest performance. Among all datasets, the highest Lift score is achieved in
Uhalt (2020), where the model significantly outperforms a simple majority-class predictor in this dataset.
While the model consistently improves over the baseline predictor, there is variability in Lift scores across
datasets. The Alvarez et al. (2019) dataset also exhibits a high Lift score. This dataset is constructed with
the goal of investigating inattentiveness, a task very close to ours. Conversely, O’Grady et al. (2019)
dataset achieves the lowest Lift score, suggesting that its data structure presents challenges for the model.
Potential factors affecting performance include feature sparsity, where datasets with a larger number of
features may exhibit higher sparsity, making reconstruction more difficult, and sample size, since smaller
datasets may lead to poorer generalizations.

Dataset Accuracy? | Baseline Acc Lift? ORA?T
Robinson-Cimpian (2014) 79.66 60.19 1.44 0.69
Pennycook et al. (2020) 76.71 66.22 1.15 0.71
Condition 1 78.14 57.15 1.50 0.74
Condition 2 76.49 56.51 1.46 0.74
Condition 3 75.72 53.48 1.49 0.74
Condition 4 75.99 52.75 1.53 0.75
Alvarez et al. (2019) 86.57 52.56 1.94 0.84
Uhalt (2020) 71.95 35.66 2.08 0.75
O’Grady et al. (2019) 63.52 58.78 1.13 0.53
Buchanan and Scofield (2018) 86.33 50.87 1.95 0.80
Moss et al. (2023) 77.31 59.78 1.37 0.68
Mastroianni and Dana (2022) 70.87 61.64 1.15 0.60
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Ivanov et al. (2021) | 68.50 | 45.32 1.65 | 0.71

Table 4. Evaluation of model performance across datasets when we try to “predict” an
out-of-sample attribute value. Acc refers to the mean accuracy of the model in
reconstructing the original data. Baseline Acc (Baseline Accuracy) represents the
accuracy if we “guess” the majority class as the value for each attribute. Lift is computed
as the ratio of Accuracy to Baseline Acc, indicating the improvement of our model over a
naive predictor. ORA denotes the One-Vs-All ROC AUC metric, with 0.5 as the baseline
performance.

Randomness Detection Performance

Table 5 presents the performance of our model in detecting inattentive respondents across all datasets.
For datasets containing multiple attention checks, we report results for each check separately, as well as
for the union and intersection of all checks. In the union case, a respondent is considered inattentive if
they fail at least one attention check, whereas in the intersection case, only those who fail all attention
checks are classified as inattentive. For the case of Robinson-Cimpian (2014), where the survey lacks
attention checks, we develop specific criteria based on the paper. These criteria include users who gave
extreme answers to questions unrelated to the survey, e.g., eating carrots, salad, and fruits over 4 times
per week each.

The AUC provides a robust measure of how well the reconstruction error differentiates inattentive from
attentive respondents. We can observe that the highest AUC values are achieved in Uhalt (2020) (0.70),
Alvarez et al. (2019) (0.79), and some attention checks in Pennycook et al. (2020), such as the third when
considering all conditions (0.78), indicating strong discriminative power in these datasets. The lowest
AUC values appear in Buchanan and Scofield (2018) (0.60) and Moss et al. (2023) (0.51-0.54),
suggesting that inattentive responses in these datasets are harder to distinguish from attentive ones.

The union condition consistently yields higher recall values across datasets, as it captures a larger range of
inattentive respondents. The intersection condition, while more restrictive, results in higher AUC values
in some datasets, e.g., Pennycook et al. (2020), indicating that respondents failing all attention checks are
stronger cases of inattentiveness.

While precision at different cutoffs (P@10, P@50, P@100) provides insights into how well the model
ranks inattentive users at specific points, its utility depends on practical deployment scenarios. For
instance, in real-world applications where manual validation of flagged respondents is feasible, high
P@10 or P@50 is desirable, ensuring that the top-ranked inattentive cases are indeed errors. We can
easily observe that the precision metrics are higher when the total number of errors is also high.

In the Robinson-Cimpian (2014) dataset, we observe notably low precision scores across all cutoff
thresholds, despite a relatively high AUC (0.74). This discrepancy is primarily attributed to the small
number of inattentive users (h = 230) relative to the total sample size (14,765), which can hurt precision
scores.

For Pennycook et al. (2020), results demonstrate that aggregating all conditions yields substantially
stronger performance metrics than analyzing each condition separately. Notably, Attention Check 3
consistently outperforms the others in terms of AUC, suggesting it is particularly effective at
distinguishing inattentive respondents. We hypothesize that this is due to the nature of the check:
embedded within a Likert-scale battery, it instructs participants to select a specific response (“neither
agree nor disagree”), which attentive users are more likely to notice and comply with. In contrast,
Attention Checks 1 and 2 involve preference-based questions that prompt participants to override their
natural choice by selecting a predetermined option. Because these items’ instructions are information-rich
and potentially engaging, even attentive users may inadvertently fail them. Attention Check 4, which asks
users if they responded randomly at any point during the survey, is highly generic and may capture a
broader range of behaviors, including momentary lapses in attention or fatigue, even among otherwise
attentive participants. This may explain its moderate performance and the overall variability across
individual checks. The Alvarez et al. (2019) dataset yields the highest overall performance across both
AUC and precision metrics. Upon closer examination, we observe that inattentive participants in this
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dataset exhibit distinct response patterns, including widespread item nonresponse, making them easier to
identify through reconstruction-based approaches.

In contrast, the Moss et al. (2023) dataset exhibits the weakest performance, with AUC scores close to
random classification (=0.51-0.54). An inspection of the training dynamics reveals that, despite early
stopping being enabled, the autoencoder reaches a very low reconstruction loss that it maintains across
many epochs, suggesting overfitting to patterns that are not informative for detecting inattentiveness. To
address this limitation, we explore Percentile Loss (PL) (Merrill and Olson, 2020), which was originally
proposed in the computer vision domain, where the goal was to model the common background rather
than rare anomalies. The rationale behind PL is that it is statistically improbable for the g5th-percentile
loss in a batch to correspond to an anomaly, assuming anomalies are rare. Accordingly, PL focuses
learning on the lowest-error subset of a batch, thereby discouraging the model from overfitting to
anomalous inputs. We adapt this approach to our context by calculating the reconstruction loss over a
specified percentile of samples during training. When applying the 8oth percentile loss, Moss et al.
(2023) performance significantly improves, with AUC scores rising to 0.70—0.80 depending on the
attention check configuration. This improvement, however, comes at the expense of reconstruction
accuracy: the model’s Lift score decreases by approximately 11%. This trade-off is expected, as the model
learns to ignore some of the more irregular patterns (including those of inattentive users), thus improving
its ability to identify inattentiveness through deviation. However, this improvement is not universal. For
example, in Alvarez et al. (2019), the application of PL reduces AUC from 0.79 to 0.76, with only a
marginal decrease in Lift (about 1%). This variability across datasets underscores the need for further
investigation into the reconstruction—detection trade-off and the development of more adaptive strategies
for selecting optimal percentile thresholds across varying attentional profiles.

Exploratory analysis across the nine datasets suggests that performance variation is driven less by size or
sparsity and more by survey structure and label quality. Specifically, correlations indicate that Lift
improvement over baseline relates moderately to AUC (Pearson r=0.41), whereas sample size, number of
variables, number of features, and AFV show near-zero associations (e.g., AFV r=-0.10). Surveys with
coherent, multi-item constructs (e.g., political attitudes, personality) yield stronger performance (AUCs
=~0.70—0.79), while heterogeneous instruments show weaker separability (=0.51-0.54). Similarly,
embedded instruction checks align closely with reconstruction-based detection (AUCs up to 0.84),
whereas self-reports or single IMCs produce noisier labels (AUCs =0.60). This suggests that autoencoders
are most effective for structured surveys with redundant item batteries, while heterogeneous instruments
may require robust training strategies such as Percentile Loss.

Dataset h R@ht | P@io? | P@50"1 | P@1oo | NDCG | AUC?T
T @h?
Robinson-Cimpian (2014) 230 0.07 0 0.10 0.07 0.07 0.74
Pennycook et al. (2020)
All Conditions
Attention 1 636 0.78 1.00 0.90 0.90 0.80 0.62
Attention 2 236 0.38 0.70 0.56 0.45 0.42 0.58
Attention 3 68 0.32 0.50 0.40 0.28 0.36 0.78
Attention 4 172 0.38 0.70 0.50 0.42 0.43 0.62
Union 686 0.83 1.00 0.94 0.93 0.84 0.61
Intersection 28 0.25 0.30 0.26 0.17 0.29 0.84
Condition 1
Attention 1 158 0.73 0.80 0.76 0.76 0.76 0.51
Attention 2 56 0.27 0.30 0.24 0.27 0.24 0.52
Attention 3 13 0.15 0.10 0.12 0.11 0.24 0.70
Attention 4 44 0.30 0.40 0.26 0.22 0.32 0.53
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Union 169 0.79 1.00 0.80 0.82 0.81 0.53
Intersection 8 0.13 0.10 0.06 0.06 0.25 0.65
Condition 2
Attention 1 152 0.73 0.90 0.74 0.75 0.75 0.50
Attention 2 63 0.41 0.50 0.44 0.38 0.46 0.61
Attention 3 20 0.25 0.20 0.18 0.14 0.20 0.63
Attention 4 42 0.29 0.40 0.26 0.22 0.37 0.54
Union 165 0.81 0.90 0.88 0.81 0.83 0.55
Intersection 6 0] 0.10 0.04 0.03 0 0.59
Condition 3
Attention 1 159 0.72 0.80 0.80 0.76 0.72 0.54
Attention 2 54 0.35 0.50 0.36 0.30 0.40 0.60
Attention 3 15 0.13 0.10 0.06 0.08 0.10 0.54
Attention 4 41 0.34 0.50 0.36 0.26 0.43 0.65
Union 173 0.79 1.00 0.88 0.81 0.82 0.55
Intersection 4 0.25 0.10 0.02 0.02 0.17 0.57
Condition 4
Attention 1 167 0.78 0.90 0.78 0.78 0.80 0.50
Attention 2 63 0.32 0.20 0.30 0.31 0.28 0.51
Attention 3 20 0.25 0.40 0.18 0.14 0.29 0.68
Attention 4 45 0.20 0.40 0.18 0.21 0.24 0.52
Union 179 0.84 0.90 0.86 0.84 0.86 0.52
Intersection 10 0.30 0.30 0.06 0.06 0.33 0.57
Alvarez et al. (2019) 975 0.68 1.00 1.00 1.00 0.72 0.79
Uhalt (2020) 6 0.33 0.20 0.04 0.05 0.23 0.70
O’Grady et al. (2019) 20 0.52 0.10 0.12 0.08 0.13 0.63
Buchanan and Scofield 59 0.10 0.10 0.10 0.10 0.09 0.60
(2018)
Moss et al. (2023)
Attention 1 161 0.54 0.30 0.14 0.17 0.15 0.53
Attention 2 140 0.52 0.50 0.14 0.12 0.14 0.54
Union 248 0.54 0.50 0.22 0.24 0.21 0.54
Intersection 53 0.06 0.30 0.06 0.05 0.07 0.51
Mastroianni and Dana 60 0.47 1.00 0.56 0.29 0.60 0.65
(2022)
Ivanov et al. (2021)
Attention 1 165 0.30 0.80 0.46 0.36 0.37 0.63
Attention 2 55 0.09 0.20 0.08 0.09 0.11 0.60
Union 173 0.32 0.80 0.48 0.39 0.39 0.64
Intersection 47 0.06 0.20 0.06 0.06 0.09 0.58
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Table 5. Evaluation of inattentiveness detection across datasets. h represents the
number of inattentive users identified as ground truth. R@h denotes Recall@h. At
perfect ranking, where all inattentive users have a higher error than all attentive, R@h =
1. P@k denotes Precision@k. A separate evaluation is provided for the datasets where we
had more attention checks. Union means we consider a sample as inattentive only when
it failed in one of the attention checks. Intersection means we consider a sample as
inattentive only when it fails in all attention checks.

Conclusions

In this study, we proposed and evaluated empirically the use of autoencoders as an unsupervised,
general-purpose approach for detecting inattentive survey respondents, offering a scalable alternative to
traditional attention checks and rule-based quality controls. By leveraging the model’s ability to
reconstruct structured survey responses, we detect inattentiveness through deviations in reconstruction
quality without requiring explicit participant intervention, predefined screening rules, or labeled training
data. Across nine real-world survey datasets, our results demonstrate that autoencoders can reliably
capture latent response patterns and distinguish inattentive respondents with notable performance gains
over baseline predictors. We further assume that for different use cases, the methodology facilitates
flexibility to adapt correspondingly. More specifically, if, for example, we care for strong deviations from
the underlying patterns, we should train the autoencoders for a longer time without restricting them. As
shown in our empirical findings, this would lead the model to capture a higher percentage of patterns,
moving the reconstruction—detection trade-off toward the reconstruction direction. Our metrics also
provide a use case dependency. If we know a priori that a specific number of participants were inattentive,
then we can rely on the Recall at a cutoff of this known number to conclude on how accurate we could be if
we were to exclude them. On the other hand, if we want to conclude on how accurate we could be by
excluding the number of participants we want, without a priori knowledge, then Precision at this number
is the ideal metric.

Compared to prior related work, our contribution extends the literature on machine learning-based
inattentiveness detection in important ways. Methodologically, we refine the standard autoencoder
framework by tailoring the loss function to categorical survey structures and by experimenting with
Percentile Loss (PL) as a strategy to improve inattentiveness detection in noisy settings. Empirically, we
establish practical benchmarks through large-scale validation on nine diverse datasets, setting a
foundation for future methodological comparisons. Alfons and Welz (2024), the closest work to ours,
evaluated autoencoders in synthetic datasets to classify inattentive respondents, but their experiments
were restricted to simulated random responding without validation against real-world survey structures.
Moreover, their evaluation focused only on overall detection rates without investigating reconstruction
performance, detection ranking quality, or optimization techniques.

Our work examines the performance of autoencoders in diverse real-world datasets, adapting loss
structures to survey formats, tuning hyperparameters via Bayesian optimization, evaluating both
reconstruction fidelity and inattentiveness ranking performance with ground truth attention checks, and
proposing percentile loss for further consideration on the “difficult” cases. Welz and Alfons (2023)
proposed CODERS, which also uses autoencoders but for a different task: detecting the onset of
inattentive responding within a survey. Their method focuses on when a participant becomes inattentive
during answering, using item-level change-point detection. Their evaluation was limited to one real
dataset and simulations. In contrast, our method detects who among the full sample is inattentive overall,
operating at the respondent level rather than longitudinally within a survey. Theoretically, while CODERS
advances the understanding of partial or fatigue-driven carelessness, our contribution lies in establishing
autoencoders as a general-purpose framework for respondent-level inattentiveness detection. Practically,
our validation spans nine diverse, real-world datasets that include both attentive and inattentive
respondents, which is rare in this domain. Together, these distinctions demonstrate that our work
complements rather than duplicates CODERS, offering researchers tools for different levels of granularity
in managing survey data quality.
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Despite these contributions, several limitations should be acknowledged. First, our method assumes that
attentive respondents exhibit structured patterns that the autoencoder can learn. In datasets with
extremely heterogeneous populations or poorly designed surveys (e.g., without coherent constructs),
reconstruction learning may struggle. Second, our approach focuses on categorical and discretized
numeric variables. In the future, we want to generalize our analysis for all kinds of data. This would
include the text data that exists in multiple surveys and can be encoded in the autoencoder paradigm.
Incorporating open-ended text responses into the model, perhaps through the use of embedding
techniques, could allow the method to handle a broader range of survey formats. Third, while our
experiments cover diverse domains, we primarily evaluated surveys with relatively structured formats;
future work is needed to test generalizability to highly unstructured surveys or different
cultures/languages. Fourth, the choice of threshold for flagging inattentiveness based on reconstruction
error remains somewhat heuristic, and further research could investigate dynamic or adaptive
thresholding strategies. Although the application of Percentile Loss (PL) improved detection in some
datasets, it also reduced reconstruction fidelity, revealing a trade-off that demands deeper theoretical and
empirical study. It can be further investigated to improve robustness against reconstruction overfitting in
datasets with complex noise patterns. This can include either a fixed percentile or a learned
hyperparameter based on some measures. We believe that there is a lot of room for improvement in this
direction, since there is evidence for promising results on the “difficult” cases. Finally, our evaluation
relies on the basic assumption that attention checks are consistent and correct across the various datasets.
There could be many different reasons to violate this hypothesis. Future studies could explore other
metadata signals, such as response times or answer variance, to evaluate this methodology or even further
enhance inattentiveness detection via hybrid models. This limited our analysis since the number of
studies that included attention checks and made their full, non-filtered data publicly available was
severely scarce.
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