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Abstract 

Ensuring data quality is a persistent challenge in survey-based research, particularly 

with the rise of online participant pools prone to inattentiveness and random 

responding. Traditional quality control methods, such as attention checks and response 

pattern analyses, add cognitive load and are often domain-specific. In this paper, we 

explore the use of autoencoders - unsupervised neural networks that learn to 

reconstruct structured data - as a scalable, domain-agnostic alternative for detecting 

inattentive survey respondents. Autoencoders can effectively identify response patterns 

that deviate from typical behavior without requiring labeled data or explicit participant 

intervention. Across nine real-world survey datasets, our experiments demonstrate that 

autoencoders consistently improve over baseline predictors, achieving notable 

reconstruction ability (average Lift > 1.4) and strong inattentiveness detection 

performance (AUC up to 0.79). We further introduce a modified loss function tailored to 

survey structures and explore Percentile Loss to enhance detection in challenging cases. 

These results suggest that autoencoders offer a flexible and automated solution for 

improving behavioral data reliability, complementing traditional survey quality control 

techniques. 

Keywords:  Autoencoders, Inattentiveness, Attention Checks, Behavioral Research, ​
Surveys, Unsupervised Learning 

 

 

Introduction 

Behavioral, social, and political scientists rely on surveys. This kind of research requires high data quality 

to be effective and produce valid outcomes. However, the high data quality is often violated due to the 

presence of random or inattentive responses, which can distort findings, add noise, and reduce statistical 

power. Researchers call this phenomenon ‘content nonresponsivity,’ which is defined as a loss in the 

consistency of responses to the data items (Nichols et al., 1989). Respondents may provide random 

answers due to a lack of engagement, survey fatigue, or just unwillingness, thereby affecting the validity of 

research outcomes (Meade and Craig, 2012). This issue has been further exacerbated by the increasing 

reliance on online crowdsourcing platforms such as Amazon Mechanical Turk (MTurk) and Prolific to find 

survey participants.  Even though these platforms offer researchers a fast, simple, and cheaper way of 

collecting data from diverse participants, there are some concerns about the produced data quality.  The 

workers are usually more likely to multitask during the studies (Goodman et al., 2013) and respond 

randomly to them. Studies show that inattentive and fraudulent responses are more common on online 

platforms, particularly when participants have the opportunity to cheat (Peer et al., 2021).  
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Current techniques of mitigating these issues involve attention checks (Berinsky et al., 2014), metrics of 

the individual responses' variation (Curran, 2016), and the Bayesian Truth Serum mechanism (Weaver 

and Prelec, 2013). These methods, while useful, introduce additional cognitive load, increase the survey 

completion time, and tend to be domain-specific. Given these limitations, there is a growing need for 

automated, data-driven approaches capable of identifying random responses without direct participant 

intervention. 

These limitations can be significantly overcome by leveraging machine learning (ML) and artificial 

intelligence (AI) advancements. When collecting respondents' data for surveys, we cannot ensure who 

answered randomly or if they gave fabricated information, as we do not have a ground truth to compare 

against. Creating datasets that include this information would require a lot of costs and time, but even if 

we were able to provide these, they would include biases and inconsistencies, as definitions of 

inattentiveness can vary across studies. Consequently, unsupervised learning techniques offer a promising 

alternative. In this work, we utilize the autoencoders (Wang et al., 2016). Autoencoders are a type of 

neural network architecture designed to learn compact representations of data by reconstructing input 

patterns with minimal error. When applied to survey responses, an autoencoder learns the underlying 

distribution of typical responses, making it able to detect responses that significantly deviate from 

expected patterns as potential outliers. Unlike traditional methods, this approach does not require 

predefined rules or labeled training data, making it a scalable, adaptable, and domain-agnostic solution 

for detecting inattentive or random respondents. 

Moreover, autoencoders can handle high-dimensional data efficiently, making them particularly useful 

when survey responses involve multiple variables. This is not rare if we think of how many different 

options usually accompany every question. Mapping the high-dimensional survey data into 

low-dimensional spaces preserves the structural and relational patterns inherent in the dataset. In this 

way, autoencoders are able to capture key characteristics and patterns of the respondents, while the 

inattentive users would be considered as noisy samples and difficult to reconstruct. As a result, valid 

responses tend to cluster naturally within the latent space, whereas inattentive or random responses 

appear dispersed, making them detectable as anomalies (Xu et al., 2018).  

In this work, we explore the usage of autoencoders to detect random or inattentive responses in survey 

research. In particular, the central hypothesis is that the internal properties of this model can effectively 

distinguish random from valid responses by learning latent patterns in datasets and identifying outliers 

based on the reconstruction error. Unlike traditional quality control methods, which rely on attention 

checks or truth-inducing mechanisms, this approach operates without requiring participant engagement, 

predefined rules, or labeled data. 

Our contribution is twofold. First, we review autoencoders as a general-purpose tool for spotting 

inattentive survey participants and introduce methodological refinements that adapt them specifically for 

categorical survey data. Second, we provide the first large-scale empirical validation of autoencoders for 

inattentiveness detection, systematically benchmarking performance across nine diverse real-world 

survey datasets. 

Related Work 

Autoencoders for Anomaly Detection  

Autoencoders were originally introduced for unsupervised anomaly detection because they can 

reconstruct typical inputs while producing higher errors for unusual ones (Hawkins et al., 2002). This 

principle has been extended with variants such as Denoising Autoencoders (Vincent et al., 2010), 

Variational Autoencoders (Kingma & Welling, 2013), and Robust Deep Autoencoders (Zhou & Paffenroth, 

2017), each aiming to improve robustness to noise or explicitly model outliers. These innovations 

established autoencoders as a flexible foundation for anomaly detection in diverse domains (Goodge et al., 

2021; Rubio et al., 2020). 

Survey Inattentiveness Detection 

Traditional approaches to inattentiveness rely on embedded design features such as attention checks, 

response time thresholds, or pattern-based indicators like straightlining (Kim et al., 2019). More 

advanced statistical and machine learning approaches include EM-based truth discovery (Dawid & Skene, 
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1979), unsupervised credibility modeling (Yin et al., 2008), and supervised classification using behavioral 

features (Schroeders et al., 2022; Ozaki, 2024). The Bayesian Truth Serum (Weaver & Prelec, 2013) 

represents another strand, incentivizing truthful responses through mechanism design. 

Autoencoders for Survey Inattentiveness 

Only recently have autoencoders been applied specifically to inattentive responding. Alfons & Welz (2024) 

introduced autoencoders for classifying inattentive responses, but their evaluation was limited to 

synthetic data. Welz & Alfons (2023) proposed CODERS, which combines autoencoder reconstruction 

errors with changepoint detection to identify when a respondent begins answering carelessly within a 

survey, demonstrating proof-of-concept in one real and several synthetic datasets. Our work differs in 

three key respects. First, we adapt autoencoders for categorical survey data, introducing variable-level loss 

weighting and exploring Percentile Loss (PL) to address the reconstruction–detection trade-off. Second, 

instead of focusing on within-survey onset, we target the identification of inattentive respondents as a 

whole. Third, we validate our approach on nine diverse, real-world survey datasets that include both 

attentive and inattentive participants, establishing large-scale empirical benchmarks. In doing so, we 

position autoencoders as a scalable and domain-agnostic tool for inattentiveness detection in survey 

practice. 

Data 

We describe the datasets that we used for our study and give the main points of each dataset, along with 

how the data were collected and what attention checks were included. In Table 1, we summarize the 

statistics of all datasets, including the number of samples, the number of variables, the number of 

features, and the average number of features per variable. 

We used https://datasetsearch.research.google.com/ to find publicly available survey datasets that 

include attention checks and use mainly structured/categorical responses (as opposed to textual or other 

forms of unstructured data). We identified nine datasets which differ substantially in topic, respondent 

population, and quality-control mechanisms to ensure that the evaluation reflects the method’s 

robustness across diverse contexts. This heterogeneity spans (1) respondent types (such as adolescents 

(Robinson-Cimpian, 2014), MTurk workers (Moss et al., 2023), and nationally representative adult 

samples (Mastroianni & Dana, 2022)); (2) survey topics (ranging from political attitudes to 

misinformation susceptibility); and (3) attention check designs (ranging from none (Robinson-Cimpian, 

2014) to multiple embedded checks (Pennycook et al., 2020)). 

Beyond diversity, we applied two inclusion criteria: (a) datasets had to contain attention checks, and (b) 

they had to retain the responses of participants who failed these checks. These criteria were highly 

exclusive because most published works release only “cleaned” datasets with inattentive respondents 

removed, making large-scale evaluation of inattentiveness detection challenging.  

Dataset Samples Variables Features AFV 

Robinson-Cimpian (2014) 

Mischievous Respondents 

14,765 98 619 6.32 

Pennycook et al. (2020) 

COVID-19 Misinformation 

853 188 708 3.75 

    Condition 1 212 98 404 4.12 

    Condition 2 206 98 358 3.65 

    Condition 3 220 98 376 3.84 

    Condition 4 215 98 400 4.08 

Alvarez et al. (2019) Inattentive 2,725  39  196  5.03 

Uhalt (2020) Attention Checks 

and Response Quality 

308  60  337  5.62 

O’Grady et al. (2019) Moral 

Foundations 

355 72 322 4.47 
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Buchanan and Scofield (2018) 

Low-Quality Data 

1,038 23 159 6.91 

Moss et al. (2023) Ethical Data 2,277 51 332 6.51 

Mastroianni and Dana (2022) 

Attitude Change 

1,036 51 322 6.31 

Ivanov et al. (2021) Racial 

Resentment 

860 67 310 4.63 

Table 1. Summary of Datasets used in this study. Every sample consists of a number of 

variables. Variables can be either questions or demographic records. Every variable 

consists of features in the way it is explained in the Method. The Average Number of 

Features per Variable (AFV) is also given in the last column. 

 

(Robinson-Cimpian, 2014) Mischievous Respondents: This dataset comes from the 2012 Dane 

County Youth Assessment (DCYA), an anonymous web-based survey of 14,765 U.S. high school students. 

The study investigated “mischievous responders”, adolescents who intentionally gave extreme or 

implausible answers (e.g., exaggerated reports of health behaviors) that distort between-group disparity 

estimates across categories such as sexual orientation, gender identity, and disability. Outcomes examined 

included suicidal ideation, school belongingness, and substance use. Unlike other datasets in our study, 

this survey contained no embedded attention checks; inattentive cases were instead identified through 

domain knowledge and responses to unrelated questions. This makes the dataset distinctive, as it provides 

a large-scale setting where inattentiveness is inferred from patterns of extreme or inconsistent responding 

rather than explicit screening items. 

(Pennycook et al., 2020) COVID-19 Misinformation: This study examined how attention and 

cognitive reflection affect the spread of COVID-19 misinformation. A total of 853 U.S. respondents 

evaluated 30 headlines (15 true, 15 false) presented in a social media format, with ground truth verified by 

fact-checking sources. The central aim was to test whether misinformation sharing occurs because people 

fail to consider accuracy rather than because they truly believe false claims. To measure this, the study 

introduced four experimental conditions that varied both the framing of the question (accuracy vs. 

sharing intention) and the ordering of response options. Data quality was assessed with multiple attention 

checks: two multiple-choice instruction items, one embedded Likert-scale item requiring selection of a 

specific value (“3”), and an additional self-report item asking whether participants had responded 

randomly. This combination of structured conditions and varied attention checks makes the dataset 

particularly useful for evaluating inattentiveness detection under different operational definitions. 

(Alvarez et al., 2019) Inattentive: This survey collected 2,725 responses from California adults 

through Qualtrics’ e-Rewards panel to study how inattentiveness affects political attitude measures. The 

study examined whether inattentive respondents introduce noise, satisficing, or misreporting, and 

whether they differ demographically from attentive participants. Data quality was monitored with three 

trap questions: two multiple-choice items requiring a specific answer and one open-text item requiring 

the word “government.” Importantly, the full dataset includes both attentive and inattentive respondents, 

making it a strong benchmark for evaluating detection methods in a domain with coherent, multi-item 

political constructs. 

(Uhalt, 2020) Attention Checks and Response Quality: This Qualtrics survey included 308 

participants and focused on self-assessment of personality traits using Likert-scale items. To evaluate 

response quality, the instrument embedded multiple explicit attention checks that instructed participants 

to select specific options (e.g., “I see myself selecting ‘Agree Strongly’ if I’m paying attention to the 

survey”). These checks were distributed throughout the questionnaire to monitor engagement. The 

dataset provides a useful test case because it combines a structured personality scale, where attentive 

responses should show internal consistency, with clear ground-truth labels from embedded checks. 

(O’Grady et al., 2019) Moral Foundations: This study collected 355 valid responses from U.S. 

undergraduate business students to examine how moral foundations predict prosocial behavior. 

Participants completed the Moral Foundations Questionnaire (MFQ), which measures individualizing 
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foundations (care, fairness) and binding foundations (loyalty, authority, purity). Data quality was 

monitored with a multiple-choice instructional manipulation check (IMC) embedded in the survey to 

ensure that respondents read instructions carefully. The dataset offers a structured attitudinal battery 

with a single attention check for identifying inattentiveness. 

(Buchanan and Scofield, 2018) Low-Quality Data: This online Qualtrics survey collected 1,038 

valid responses and examined methods for detecting low-quality data in psychological research. The study 

explored inattentive, low-effort, and automated responses (e.g., survey bots) using behavioral and 

statistical indicators such as response times, click counts, and distributional anomalies. Data quality was 

also monitored with an embedded attention check instructing participants to “Please mark strongly agree 

for this question.” The dataset is distinctive in combining traditional survey responses with 

metadata-based quality indicators, making it useful for testing detection methods that rely solely on 

response patterns. 

(Moss et al., 2023) Ethical Data: Study 1 surveyed 2,277 active U.S.-based MTurk workers to examine 

financial dependence on MTurk, time investment, and perceptions of fairness. The dataset is 

heterogeneous, covering multiple facets of workers’ experiences. Data quality was monitored with two 

screens: one required selecting the correct summary of a prior item, while the other directly asked 

participants to indicate agreement with the statement “I am not reading the questions in this survey.” This 

combination provides both indirect and self-report measures of inattentiveness. 

(Mastroianni and Dana, 2022) Attitude Change: Study 1 collected 1,036 responses from a 

nationally representative U.S. adult sample via Prolific to examine perceptions of long-term societal 

attitude change. Participants compared their estimates of historical public opinion trends to actual polling 

data, with particular interest in whether people systematically overestimate liberalization. Data quality 

was ensured with an embedded attention check requiring respondents to type the number “1” in both 

blanks of a survey item. This dataset provides a high-quality, representative benchmark with a single IMC 

for inattentiveness. 

(Ivanov et al., 2021) Racial Resentment: This MTurk survey collected 860 responses in April 2020 

to study attitudes toward decarceration during COVID-19. The study examined how information about 

prison health risks, racial resentment, and empathy influenced support for release, and whether support 

varied by crime type, age, or health status of incarcerated individuals. Data quality was monitored with 

two embedded attention checks. The dataset offers a heterogeneous attitudinal instrument with multiple 

checks, useful for assessing inattentiveness in politically sensitive contexts. 

A Review of Autoencoders for Inattentiveness Detection 

Autoencoders are a class of neural networks designed to learn compact representations of data in an 

unsupervised manner by encoding inputs into a lower-dimensional latent space and reconstructing them 

from this compressed representation. An autoencoder consists of two parts: an encoder, which learns an 

efficient representation of the data in a lower dimension, and a decoder, which learns how to create the 

initial data from this low-dimensional representation (Figure 1). 

Encoder: The encoder function, denoted as , maps an input response vector  (  is the number of 𝑓
θ

𝑥 ∈ ℝᵈ 𝑑
features) to a lower-dimensional latent representation  (with ):  𝑧 ∈ ℝᵐ 𝑚 ≪ 𝑑

, where  is the weight matrix,  is the bias term, and  is  𝑧 =  𝑓
θ
(𝑥) =  σ(𝑊ₑ 𝑥 +  𝑏ₑ) 𝑊ₑ ∈ ℝᵐˣᵈ 𝑏ₑ ∈ ℝᵐ σ(·)

a non-linear activation function such as ReLU or sigmoid. 

Decoder: The decoder function, denoted as , reconstructs the original response vector from the latent 𝑔
φ

representation  , where  is the decoder weight matrix,  is 𝑥̂ =  𝑔
φ

(𝑧) =  σ(𝑊
𝑑
 𝑧 +  𝑏

𝑑
) 𝑊

𝑑
 ∈ ℝᵈˣᵐ 𝑏

𝑑
 ∈ ℝᵈ

the bias term, and  is the reconstructed response vector. The number of latent variables , as well  𝑥̂ ∈ ℝᵈ 𝑚
as the depth of the encoder and decoder, the number of units per layer, and the choice of activation 

functions are all hyperparameters that can be tuned for optimal performance. To prevent overfitting and  
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Figure 1. Architecture of a simple 

Autoencoder. The autoencoder consists of 

two parts: (a) the Encoder, which encodes 

the information into latent variables, and (b) 

the Decoder, which decodes the information 

to the initial input. (Source) 

 

enhance generalization, L2 regularization (also known as weight decay) is applied to the weights of the 

network (Krogh and Hertz, 1991). The regularized objective function is given by

 where  is a regularization hyperparameter that controls the penalty on  𝐿
𝑟𝑒𝑔

 =  𝐿(𝑥,  𝑥̂) +  λ ∑ ||𝑊||²₂ λ
large weight values. Additionally, we use dropout in hidden layers to randomly deactivate neurons during 

training (Srivastava et al., 2014). During training, we drop each unit is with a probability : 𝑝
𝑑𝑟𝑜𝑝

 where  is the activation vector in the layer , and  ℎ
𝑑𝑟𝑜𝑝

𝑙 =  𝑟 ⊙ ℎ𝑙,  𝑟ᵢ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 −  𝑝
𝑑𝑟𝑜𝑝

) ℎ𝑙 𝑙 ⊙
denotes element-wise multiplication with the dropout mask .  is also a hyperparameter to be tuned.  𝑟 𝑝

𝑑𝑟𝑜𝑝

Data Preparation: The datasets we use in this study are surveys, where each participant provides 

answers to a series of usually multiple-choice questions. Since the majority of survey items follow a 

closed-form structure, the data is inherently categorical. Autoencoders, as well as all machine learning 

algorithms, function with numeric data, and thus, we transform the categorical variables into a numerical 

representation proper for the network.  Each survey question (variable) is encoded using one-hot 

encoding, where each possible response choice is represented as a separate binary feature. Specifically, for 

a question with  possible answer choices, a vector of length  is created (or  if there exist users who 𝑘 𝑘 𝑘 + 1
passed the question), where only the selected response is marked as 1. At the same time, the remaining 

elements are set to 0. This transformation results in a feature space where the number of input 

dimensions is significantly larger than the number of original survey items, as each categorical variable 

expands into multiple binary features. The model treats each response as a set of features, learning the 

underlying distribution of the entire response set. We train the network so as to reconstruct the original 

input from its learned latent representation, capturing patterns across all answers. For further details on 

dataset statistics and preprocessing steps, refer to the Data Section.   

Loss Function: For categorical survey responses, which is our case, the Binary Cross-Entropy (BCE) loss 

is used for Autoencoders training . As 𝐵𝐶𝐸(𝑥,  𝑥̂) =  −  ∑ᵢ₌₁ᵈ [𝑥ᵢ 𝑙𝑜𝑔(𝑥̂ᵢ) +  (1 −  𝑥ᵢ) 𝑙𝑜𝑔(1 −  𝑥̂ᵢ)]
explained earlier, our datasets consist of variables (questions) that each contain multiple binary features. 

Thus, we modify the standard BCE loss to take into consideration this “nested” structure. Instead of 

treating every response option independently, we compute the loss for each variable and normalize it by 

the logarithm of its number of features. Formally, our loss function is: 

 𝐿 =  (1 / |𝓥|) ∑
{𝑣 ∈ 𝓥}

 [1 / 𝑙𝑜𝑔(|𝐹ᵥ|)] ∑
{𝑓 ∈ 𝐹ᵥ}

 𝐵𝐶𝐸(𝑥
𝑓
,  𝑥̂

𝑓
)
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where 𝓥 is the set of all survey variables (questions), Fᵥ is the set of features (possible responses) for 

variable v. This variable-level weighting ensures that survey questions with more response options do not 

disproportionately dominate the total loss function.   

Randomness Detection: As already explained, autoencoders are suitable models for capturing the 

internal correlations between features in the dataset and constructing a structured latent representation 

that preserves these dependencies. Given their ability to learn compact and meaningful representations of 

valid response patterns, we hypothesize that an autoencoder can effectively differentiate between 

attentive and inattentive respondents based on reconstruction loss. After training our model on each 

survey, we can then run an additional evaluation, using the same training data, and compute the 

reconstruction loss for each individual row (participant).  Attentive users should create the same patterns 

in surveys, in contrast to the random responses, resulting in lower reconstruction losses. Therefore, we 

rank the reconstruction errors in descending order, identifying the respondents with the highest losses as 

potential inattentive participants. Our hypothesis is based on extensive prior research in anomaly and 

outlier detection, where autoencoders and similar deep learning architectures have been successfully 

employed to identify data points that deviate from expected patterns; in Computer Vision (An and Cho, 

2015; Zhou and Paffenroth, 2017), time series (Xu et al., 2018), and tabular data (Eduardo et al., 2020). 

Bringing these examples to our use case, we predict that respondents who answered randomly will be 

flagged as outliers due to their poor reconstruction quality, favoring the broader application of 

autoencoder-based anomaly detection in behavioral data analysis. To the best of our knowledge, we are 

the first to apply this methodology to the analysis of inattentiveness in behavioral studies. 

Our approach builds on the assumption that inattentive respondents lack consistent response patterns, 

producing randomness that the autoencoder cannot reconstruct. By contrast, minority groups with 

coherent but distinctive perspectives remain reconstructible because their internal consistency anchors 

them within the learned manifold. This distinction mirrors earlier dimensionality reduction techniques 

such as Principal Component Analysis (PCA), where structured minority patterns are captured by weaker 

components, whereas purely random responses cannot be represented. Thus, the autoencoder primarily 

flags incoherence rather than legitimate minority viewpoints, clarifying an important boundary condition 

of our method. 

Method: For our experiments, we focus exclusively on categorical variables. However, we also take into 

consideration the numeric variables: if they have fewer than 20 distinct values, we treat them as 

categorical. Otherwise, we discretize them into predefined categories based on their standardized values. 

First, we apply standard normalization to each numeric variable  where x represents 𝑧 =  (𝑥 −  μ) / σ
the raw value, μ is the mean, and σ is the standard deviation of the variable. Afterwards, we categorize the 

values into six discrete bins, as defined in Table 2. 

Category Standardized Value Range 

Bottom-extreme  𝑧 <  − 1. 4
Low  − 1. 4 ≤ 𝑧 <  − 0. 7
Normal  − 0. 7 ≤ 𝑧 <  0. 7
High   0. 7 ≤ 𝑧 <  1. 4
Top-extreme  𝑧 >  1. 4
Missing Data N/A 

Table 2. Categorization of numeric 

variables based on standardized values. 

 

Admittedly, many questions were open-ended and required text as a response. We focus exclusively on 

structured categorical and categorized numerical variables, thereby excluding open-ended responses from 

our analysis. Datasets with a high proportion of such text fields were intentionally avoided to maintain 

consistency and not affect our findings.  
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For each dataset (survey), we separately perform a hyperparameter tuning phase before training the 

autoencoder. We employ  Bayesian Optimization to efficiently explore the hyperparameter space. This 

optimization is conducted using the KerasTuner package within the Keras framework. Table 3 provides 

an overview of the hyperparameters explored during tuning, along with their respective search ranges. 

The optimization process evaluates various configurations over 30 trials, using a validation split of 20% 

and training each candidate model for up to 300 epochs, with an Early Stopping of 10 epochs. The 

best-performing configuration is selected based on validation loss minimization. 

 

Hyperparameter Values Explored 

Learning Rate {0.0001, 0.001, 0.01} 

Encoder Layers​  {1, 2, 3} 

Encoder Units {64, 96, 128, 160, 192, 224, 256} 

Encoder Activation
1 

{ReLU} 

Encoder Regularization​  {0.0, 0.001, 0.01} 

Encoder Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} 

Encoder Batch Normalization {True} 

Latent Space Dimensionality​  {2, 3, ..., 50} 

Latent Activation {ReLU} 

Decoder Layers {1, 2, 3} 

Decoder Units {64, 96, 128, 160, 192, 224, 256} 

Decoder Activation {ReLU} 

Decoder Regularization (L2) {0.0, 0.001, 0.01} 

Decoder Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} 

Decoder Batch Normalization {True} 

Table 3. Hyperparameter search space in our tuning experiments, using 

Bayesian Optimization. The Units, Activation, Regularization, Dropout, 

and Batch Normalization explored values were the same for each layer, 

regardless of how many layers were chosen each time for both the 

encoder and decoder. 

 

Experimental Results 

Metrics used for the Evaluation 

Reconstruction Evaluation 

First, we assess how accurately the model can reconstruct the original data.  For each variable separately, 

we compute the accuracy, defined as the proportion of correctly reconstructed values across all samples.  

Given an original dataset  and its reconstruction,  the accuracy for a variable  is defined as: 𝑋 ∈ ℝⁿˣᵈ 𝑋, 𝑣ᵢ

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣ᵢ) =  (1 / 𝑁)Σ
𝑗=1

𝑛 𝕀(𝑥
𝑗,𝑖

= 𝑥
𝑗,𝑖

)

1
 As a robustness check, we also extended the activation function search space beyond ReLU to include SELU, Swish, and GELU. The 

results were largely consistent with our main findings, with only minor, dataset-specific variations (e.g., modest improvements in 

Alvarez et al. (2019), slight decreases in Buchanan & Scofield (2018)). 
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where  and  represent the original and reconstructed values of the variable  for the sample , and 𝑥
𝑗,𝑖

𝑥
𝑗,𝑖

𝑣ᵢ 𝑗
 is the indicator function, which returns 1 if the reconstruction is correct and 0 otherwise. To obtain a 𝕀(·)

dataset performance measure, we compute the average accuracy across all  variables: 𝑑

 𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (1 / 𝑑) ∑ᵢ₌₁ᵈ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣ᵢ)

 To assess the performance of our model, we compare its accuracy to a baseline model that always predicts 

the majority class for each variable.  The baseline accuracy for a variable  is defined as: 𝑣ᵢ

, ​𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣ᵢ) =  𝑚𝑎𝑥
𝑐
 (1 / 𝑁) ∑

𝑗=1
ⁿ 𝕀(𝑥

𝑗,𝑖
=  𝑐),   𝑐 ∈ 𝒞ᵢ

where 𝒞ᵢ is the set of unique categorical values for the variable . The Mean Baseline Accuracy is defined 𝑣ᵢ
similarly to Mean Accuracy. The Lift metric quantifies the improvement of our model over the baseline 

and is calculated as: 

 𝐿𝑖𝑓𝑡 =  (1 / 𝑑) ∑ᵢ₌₁ᵈ  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣ᵢ) / 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣ᵢ)

A Lift value greater than 1 indicates that the model performs better than the majority-class baseline, while 

a Lift value close to 1 suggests that the model offers little improvement over simple majority-based 

predictions. In addition to the accuracy-based evaluation, we leverage the One-vs-All (OVA) ROC AUC 

metric, denoted as ORA, to further assess the reconstruction quality per variable. Unlike traditional 

accuracy, which evaluates direct matches between predicted and actual values, ORA measures the model's 

ability to rank correct responses higher than incorrect ones across all possible categories. 

For a given variable  with categorical outcomes, we treat each possible category as a positive class, with 𝑣ᵢ
all other categories as negative (One-vs-All approach).  We then compute the ROC AUC score for each 

category and aggregate across all categories using a macro-average: 

 𝑂𝑅𝐴(𝑣ᵢ) =  (1 / |𝒞ᵢ|) ∑
{𝑐 ∈ 𝒞ᵢ}

 𝑅𝑂𝐶 𝐴𝑈𝐶(𝑐)

where 𝒞ᵢ is the set of unique categorical values for the variable ,  is the area under the ROC 𝑣ᵢ 𝑅𝑂𝐶 𝐴𝑈𝐶(𝑐)
curve for class , treating it as the positive class in a One-vs-All (OvA) manner. 𝑐

To obtain the final ORA score, we compute the mean across all variables: 

 𝑀𝑒𝑎𝑛 𝑂𝑅𝐴 =  (1 / 𝑑) ∑ᵢ₌₁ᵈ 𝑂𝑅𝐴(𝑣ᵢ)

Randomness Detection Evaluation 

Afterwards, we assess the model's ability to correctly detect inattentive users. We consider attention check 

responses as ground truth labels. We note that since some datasets contain multiple attention checks, we 

compute our metrics for each attention check separately. 

After passing a dataset through the model, we obtain a reconstruction error for each sample. We then 

rank the errors in decreasing order, with the assumption that inattentive users should have higher errors.  

This allows us to frame the inattentiveness detection task as an information retrieval problem, where the 

goal is to rank inattentive users at the top. To evaluate how well the model ranks inattentive users, we 

compute recall at position h = total number of inattentive users: 

 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =  |{𝑖𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝑢𝑠𝑒𝑟𝑠 𝑖𝑛 𝑡𝑜𝑝𝑘}| / ℎ

This metric tells us how well we perform if we knew a priori the number of inattentive users and selected 

exactly that many samples. 

To assess precision at specific ranks, we compute: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =  |{𝑖𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝑢𝑠𝑒𝑟𝑠 𝑖𝑛 𝑡𝑜𝑝𝑘}| / 𝑘

We report precision at  = 10, 50, 100, which helps evaluate how well the model performs when selecting 𝑘
a fixed number of respondents. Note that . 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@ℎ =  𝑅𝑒𝑐𝑎𝑙𝑙@ℎ

NDCG evaluates ranking quality while giving higher weight to correctly identified inattentive users 

appearing earlier in the ranking.  The discounted cumulative gain at rank  is: ℎ
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 𝐷𝐶𝐺@ℎ =  ∑ᵢ₌₁ʰ 𝕀(𝑖𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝑎𝑡 𝑟𝑎𝑛𝑘 𝑖) / 𝑙𝑜𝑔₂(𝑖 +  1)

We normalize by the ideal DCG (best possible ranking): 

 𝑁𝐷𝐶𝐺@ℎ =  𝐷𝐶𝐺@ℎ / 𝐼𝐷𝐶𝐺@ℎ

where IDCG@h is computed by sorting inattentive users in perfect ranking order. 

Finally, we evaluate our model’s ability to discriminate between attentive and inattentive users using the 

ROC curve. Here, reconstruction error is used as the decision threshold, and we compute: 

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

By plotting TPR vs FPR across different thresholds, we obtain the ROC curve and compute AUC (Area 

Under Curve), which measures the model’s ranking ability: 

 𝐴𝑈𝐶 =  ∫₀¹ 𝑇𝑃𝑅(𝑡) 𝑑𝐹𝑃𝑅(𝑡)

Higher AUC values indicate that the model effectively distinguishes inattentive from attentive users. 

Results 

Reconstruction Performance 

Reconstruction performance provides a measure of how accurately the model captures the typical 

patterns of the data.  High reconstruction accuracy indicates that the autoencoder has successfully learned 

the underlying structure of the responses. We focus on whether the model meaningfully improves over a 

simple baseline predictor — one that always predicts the majority response for each survey question — by 

computing Lift scores.  The reconstruction performance across all datasets is presented in Table 4. For the 

Pennycook et al. (2020) dataset, we also report results for each condition separately.  Overall, we observe 

that the model achieves an accuracy of over 70% in all datasets except for the O’Grady et al. (2019) 

dataset, which records the lowest performance.  Among all datasets, the highest Lift score is achieved in 

Uhalt (2020), where the model significantly outperforms a simple majority-class predictor in this dataset. 

While the model consistently improves over the baseline predictor, there is variability in Lift scores across 

datasets. The Alvarez et al. (2019) dataset also exhibits a high Lift score. This dataset is constructed with 

the goal of investigating inattentiveness, a task very close to ours.  Conversely, O’Grady et al. (2019) 

dataset achieves the lowest Lift score, suggesting that its data structure presents challenges for the model. 

Potential factors affecting performance include feature sparsity, where datasets with a larger number of 

features may exhibit higher sparsity, making reconstruction more difficult, and sample size, since smaller 

datasets may lead to poorer generalizations. 

Dataset Accuracy  ↑ Baseline Acc Lift  ↑ ORA  ↑
Robinson-Cimpian (2014) 79.66 60.19 1.44 0.69 

Pennycook et al. (2020) 76.71 66.22 1.15 0.71 

    Condition 1 78.14 57.15 1.50 0.74 

    Condition 2 76.49 56.51 1.46 0.74 

    Condition 3 75.72 53.48 1.49 0.74 

    Condition 4 75.99 52.75 1.53 0.75 

Alvarez et al. (2019) 86.57 52.56 1.94 0.84 

Uhalt (2020) 71.95 35.66 2.08 0.75 

O’Grady et al. (2019) 63.52 58.78 1.13 0.53 

Buchanan and Scofield (2018) 86.33  50.87 1.95 0.80 

Moss et al. (2023) 77.31  59.78 1.37 0.68 

Mastroianni and Dana (2022) 70.87 61.64 1.15  0.60 
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Ivanov et al. (2021) 68.50 45.32 1.65 0.71 

Table 4. Evaluation of model performance across datasets when we try to “predict” an 

out-of-sample attribute value. Acc refers to the mean accuracy of the model in 

reconstructing the original data. Baseline Acc (Baseline Accuracy) represents the 

accuracy if we “guess” the majority class as the value for each attribute. Lift is computed 

as the ratio of Accuracy to Baseline Acc, indicating the improvement of our model over a 

naive predictor. ORA denotes the One-Vs-All ROC AUC metric, with 0.5 as the baseline 

performance. 

 

Randomness Detection Performance  

Table 5 presents the performance of our model in detecting inattentive respondents across all datasets. 

For datasets containing multiple attention checks, we report results for each check separately, as well as 

for the union and intersection of all checks. In the union case, a respondent is considered inattentive if 

they fail at least one attention check, whereas in the intersection case, only those who fail all attention 

checks are classified as inattentive. For the case of Robinson-Cimpian (2014), where the survey lacks 

attention checks, we develop specific criteria based on the paper. These criteria include users who gave 

extreme answers to questions unrelated to the survey, e.g., eating carrots, salad, and fruits over 4 times 

per week each. 

The AUC provides a robust measure of how well the reconstruction error differentiates inattentive from 

attentive respondents. We can observe that the highest AUC values are achieved in Uhalt (2020) (0.70), 

Alvarez et al. (2019) (0.79), and some attention checks in Pennycook et al. (2020), such as the third when 

considering all conditions (0.78), indicating strong discriminative power in these datasets. The lowest 

AUC values appear in Buchanan and Scofield (2018) (0.60) and Moss et al. (2023) (0.51–0.54), 

suggesting that inattentive responses in these datasets are harder to distinguish from attentive ones. 

The union condition consistently yields higher recall values across datasets, as it captures a larger range of 

inattentive respondents. The intersection condition, while more restrictive, results in higher AUC values 

in some datasets, e.g., Pennycook et al. (2020), indicating that respondents failing all attention checks are 

stronger cases of inattentiveness. 

While precision at different cutoffs (P@10, P@50, P@100) provides insights into how well the model 

ranks inattentive users at specific points, its utility depends on practical deployment scenarios. For 

instance, in real-world applications where manual validation of flagged respondents is feasible, high 

P@10 or P@50 is desirable, ensuring that the top-ranked inattentive cases are indeed errors. We can 

easily observe that the precision metrics are higher when the total number of errors is also high.  

In the Robinson-Cimpian (2014) dataset, we observe notably low precision scores across all cutoff 

thresholds, despite a relatively high AUC (0.74). This discrepancy is primarily attributed to the small 

number of inattentive users (h = 230) relative to the total sample size (14,765), which can hurt precision 

scores. 

For Pennycook et al. (2020), results demonstrate that aggregating all conditions yields substantially 

stronger performance metrics than analyzing each condition separately. Notably, Attention Check 3 

consistently outperforms the others in terms of  AUC, suggesting it is particularly effective at 

distinguishing inattentive respondents. We hypothesize that this is due to the nature of the check: 

embedded within a Likert-scale battery, it instructs participants to select a specific response (“neither 

agree nor disagree”), which attentive users are more likely to notice and comply with. In contrast, 

Attention Checks 1 and 2 involve preference-based questions that prompt participants to override their 

natural choice by selecting a predetermined option. Because these items’ instructions are information-rich 

and potentially engaging, even attentive users may inadvertently fail them. Attention Check 4, which asks 

users if they responded randomly at any point during the survey, is highly generic and may capture a 

broader range of behaviors, including momentary lapses in attention or fatigue, even among otherwise 

attentive participants. This may explain its moderate performance and the overall variability across 

individual checks. The Alvarez et al.  (2019) dataset yields the highest overall performance across both 

AUC and precision metrics. Upon closer examination, we observe that inattentive participants in this 
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dataset exhibit distinct response patterns, including widespread item nonresponse, making them easier to 

identify through reconstruction-based approaches. 

In contrast, the Moss et al. (2023) dataset exhibits the weakest performance, with AUC scores close to 

random classification (≈0.51–0.54). An inspection of the training dynamics reveals that, despite early 

stopping being enabled, the autoencoder reaches a very low reconstruction loss that it maintains across 

many epochs, suggesting overfitting to patterns that are not informative for detecting inattentiveness. To 

address this limitation, we explore Percentile Loss (PL) (Merrill and Olson, 2020), which was originally 

proposed in the computer vision domain, where the goal was to model the common background rather 

than rare anomalies. The rationale behind PL is that it is statistically improbable for the 95th-percentile 

loss in a batch to correspond to an anomaly, assuming anomalies are rare. Accordingly, PL focuses 

learning on the lowest-error subset of a batch, thereby discouraging the model from overfitting to 

anomalous inputs. We adapt this approach to our context by calculating the reconstruction loss over a 

specified percentile of samples during training. When applying the 80th percentile loss, Moss et al.  

(2023) performance significantly improves, with AUC scores rising to 0.70–0.80 depending on the 

attention check configuration. This improvement, however, comes at the expense of reconstruction 

accuracy: the model’s Lift score decreases by approximately 11%. This trade-off is expected, as the model 

learns to ignore some of the more irregular patterns (including those of inattentive users), thus improving 

its ability to identify inattentiveness through deviation. However, this improvement is not universal. For 

example, in Alvarez et al. (2019), the application of PL reduces AUC from 0.79 to 0.76, with only a 

marginal decrease in Lift (about 1%). This variability across datasets underscores the need for further 

investigation into the reconstruction–detection trade-off and the development of more adaptive strategies 

for selecting optimal percentile thresholds across varying attentional profiles. 

Exploratory analysis across the nine datasets suggests that performance variation is driven less by size or 

sparsity and more by survey structure and label quality. Specifically, correlations indicate that Lift 

improvement over baseline relates moderately to AUC (Pearson r≈0.41), whereas sample size, number of 

variables, number of features, and AFV show near-zero associations (e.g., AFV r≈−0.10). Surveys with 

coherent, multi-item constructs (e.g., political attitudes, personality) yield stronger performance (AUCs 

≈0.70–0.79), while heterogeneous instruments show weaker separability (≈0.51–0.54). Similarly, 

embedded instruction checks align closely with reconstruction-based detection (AUCs up to 0.84), 

whereas self-reports or single IMCs produce noisier labels (AUCs ≈0.60). This suggests that autoencoders 

are most effective for structured surveys with redundant item batteries, while heterogeneous instruments 

may require robust training strategies such as Percentile Loss. 

Dataset h R@h  ↑ P@10  ↑ P@50  ↑ P@100

 ↑
NDCG

@h  ↑
AUC  ↑

Robinson-Cimpian (2014) 230 0.07 0 0.10 0.07 0.07 0.74 

Pennycook et al. (2020)  

    All Conditions  

        Attention 1 636 0.78 1.00 0.90 0.90 0.80 0.62 

        Attention 2 236 0.38 0.70 0.56 0.45 0.42 0.58 

        Attention 3 68 0.32 0.50 0.40 0.28 0.36 0.78 

        Attention 4 172 0.38 0.70 0.50 0.42 0.43 0.62 

        Union 686 0.83 1.00 0.94 0.93 0.84 0.61 

        Intersection 28 0.25 0.30 0.26 0.17 0.29 0.84 

    Condition 1  

        Attention 1 158 0.73 0.80 0.76 0.76 0.76 0.51 

        Attention 2 56 0.27 0.30 0.24 0.27 0.24 0.52 

        Attention 3 13 0.15 0.10 0.12 0.11 0.24 0.70 

        Attention 4 44 0.30 0.40 0.26 0.22 0.32 0.53 

​ Forty-Sixth International Conference on Information Systems, Nashville, Tennessee, USA 2025​
12 



​ Can Autoencoders Replace Attention Checks in Surveys? 

 

​  

        Union 169 0.79 1.00 0.80 0.82 0.81 0.53 

        Intersection 8 0.13 0.10 0.06 0.06 0.25 0.65 

    Condition 2  

        Attention 1 152 0.73 0.90 0.74 0.75 0.75 0.50 

        Attention 2 63 0.41 0.50 0.44 0.38 0.46 0.61 

        Attention 3 20 0.25 0.20 0.18 0.14 0.20 0.63 

        Attention 4 42 0.29 0.40 0.26 0.22 0.37 0.54 

        Union 165 0.81 0.90 0.88 0.81 0.83 0.55 

        Intersection 6 0 0.10 0.04 0.03 0 0.59 

    Condition 3  

        Attention 1 159 0.72 0.80 0.80 0.76 0.72 0.54 

        Attention 2 54 0.35 0.50 0.36 0.30 0.40 0.60 

        Attention 3 15 0.13 0.10 0.06 0.08 0.10 0.54 

        Attention 4 41 0.34 0.50 0.36 0.26 0.43 0.65 

        Union 173 0.79 1.00 0.88 0.81 0.82 0.55 

        Intersection 4 0.25 0.10 0.02 0.02 0.17 0.57 

    Condition 4  

        Attention 1 167 0.78 0.90 0.78 0.78 0.80 0.50 

        Attention 2 63 0.32 0.20 0.30 0.31 0.28 0.51 

        Attention 3 20 0.25 0.40 0.18 0.14 0.29 0.68 

        Attention 4 45 0.20 0.40 0.18 0.21 0.24 0.52 

        Union 179 0.84 0.90 0.86 0.84 0.86 0.52 

        Intersection 10 0.30 0.30 0.06 0.06 0.33 0.57 

Alvarez et al. (2019) 975 0.68 1.00 1.00 1.00 0.72 0.79 

Uhalt (2020) 6 0.33 0.20 0.04 0.05 0.23 0.70 

O’Grady et al. (2019) 20 0.52 0.10 0.12 0.08 0.13 0.63 

Buchanan and Scofield 

(2018) 

59 0.10 0.10 0.10 0.10 0.09 0.60 

Moss et al. (2023)  

        Attention 1 161 0.54 0.30 0.14 0.17 0.15 0.53 

        Attention 2 140 0.52 0.50 0.14 0.12 0.14 0.54 

        Union 248 0.54 0.50 0.22 0.24 0.21 0.54 

        Intersection 53 0.06 0.30 0.06 0.05 0.07 0.51 

Mastroianni and Dana 

(2022) 

60 0.47 1.00 0.56 0.29 0.60 0.65 

Ivanov et al. (2021)  

        Attention 1 165 0.30 0.80 0.46 0.36 0.37 0.63 

        Attention 2 55 0.09 0.20 0.08 0.09 0.11 0.60 

        Union 173 0.32 0.80 0.48 0.39 0.39 0.64 

        Intersection 47 0.06 0.20 0.06 0.06 0.09 0.58 
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Table 5. Evaluation of inattentiveness detection across datasets. h represents the 

number of inattentive users identified as ground truth. R@h denotes Recall@h. At 

perfect ranking, where all inattentive users have a higher error than all attentive, R@h = 

1. P@k denotes Precision@k. A separate evaluation is provided for the datasets where we 

had more attention checks. Union means we consider a sample as inattentive only when 

it failed in one of the attention checks. Intersection means we consider a sample as 

inattentive only when it fails in all attention checks. 

 

Conclusions 

In this study, we proposed and evaluated empirically the use of autoencoders as an unsupervised, 

general-purpose approach for detecting inattentive survey respondents, offering a scalable alternative to 

traditional attention checks and rule-based quality controls. By leveraging the model’s ability to 

reconstruct structured survey responses, we detect inattentiveness through deviations in reconstruction 

quality without requiring explicit participant intervention, predefined screening rules, or labeled training 

data. Across nine real-world survey datasets, our results demonstrate that autoencoders can reliably 

capture latent response patterns and distinguish inattentive respondents with notable performance gains 

over baseline predictors. We further assume that for different use cases, the methodology facilitates 

flexibility to adapt correspondingly. More specifically, if, for example, we care for strong deviations from 

the underlying patterns, we should train the autoencoders for a longer time without restricting them. As 

shown in our empirical findings, this would lead the model to capture a higher percentage of patterns, 

moving the reconstruction–detection trade-off toward the reconstruction direction. Our metrics also 

provide a use case dependency. If we know a priori that a specific number of participants were inattentive, 

then we can rely on the Recall at a cutoff of this known number to conclude on how accurate we could be if 

we were to exclude them. On the other hand, if we want to conclude on how accurate we could be by 

excluding the number of participants we want, without a priori knowledge, then Precision at this number 

is the ideal metric.   

Compared to prior related work, our contribution extends the literature on machine learning-based 

inattentiveness detection in important ways. Methodologically, we refine the standard autoencoder 

framework by tailoring the loss function to categorical survey structures and by experimenting with 

Percentile Loss (PL) as a strategy to improve inattentiveness detection in noisy settings. Empirically, we 

establish practical benchmarks through large-scale validation on nine diverse datasets, setting a 

foundation for future methodological comparisons. Alfons and Welz (2024), the closest work to ours, 

evaluated autoencoders in synthetic datasets to classify inattentive respondents, but their experiments 

were restricted to simulated random responding without validation against real-world survey structures. 

Moreover, their evaluation focused only on overall detection rates without investigating reconstruction 

performance, detection ranking quality, or optimization techniques.  

Our work examines the performance of autoencoders in diverse real-world datasets, adapting loss 

structures to survey formats, tuning hyperparameters via Bayesian optimization, evaluating both 

reconstruction fidelity and inattentiveness ranking performance with ground truth attention checks, and 

proposing percentile loss for further consideration on the “difficult” cases. Welz and Alfons (2023) 

proposed CODERS, which also uses autoencoders but for a different task: detecting the onset of 

inattentive responding within a survey. Their method focuses on when a participant becomes inattentive 

during answering, using item-level change-point detection. Their evaluation was limited to one real 

dataset and simulations. In contrast, our method detects who among the full sample is inattentive overall, 

operating at the respondent level rather than longitudinally within a survey. Theoretically, while CODERS 

advances the understanding of partial or fatigue-driven carelessness, our contribution lies in establishing 

autoencoders as a general-purpose framework for respondent-level inattentiveness detection. Practically, 

our validation spans nine diverse, real-world datasets that include both attentive and inattentive 

respondents, which is rare in this domain. Together, these distinctions demonstrate that our work 

complements rather than duplicates CODERS, offering researchers tools for different levels of granularity 

in managing survey data quality. 
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Despite these contributions, several limitations should be acknowledged. First, our method assumes that 

attentive respondents exhibit structured patterns that the autoencoder can learn. In datasets with 

extremely heterogeneous populations or poorly designed surveys (e.g., without coherent constructs), 

reconstruction learning may struggle. Second, our approach focuses on categorical and discretized 

numeric variables. In the future, we want to generalize our analysis for all kinds of data. This would 

include the text data that exists in multiple surveys and can be encoded in the autoencoder paradigm. 

Incorporating open-ended text responses into the model, perhaps through the use of embedding 

techniques, could allow the method to handle a broader range of survey formats. Third, while our 

experiments cover diverse domains, we primarily evaluated surveys with relatively structured formats; 

future work is needed to test generalizability to highly unstructured surveys or different 

cultures/languages. Fourth, the choice of threshold for flagging inattentiveness based on reconstruction 

error remains somewhat heuristic, and further research could investigate dynamic or adaptive 

thresholding strategies. Although the application of Percentile Loss (PL) improved detection in some 

datasets, it also reduced reconstruction fidelity, revealing a trade-off that demands deeper theoretical and 

empirical study. It can be further investigated to improve robustness against reconstruction overfitting in 

datasets with complex noise patterns. This can include either a fixed percentile or a learned 

hyperparameter based on some measures. We believe that there is a lot of room for improvement in this 

direction, since there is evidence for promising results on the “difficult” cases. Finally, our evaluation 

relies on the basic assumption that attention checks are consistent and correct across the various datasets. 

There could be many different reasons to violate this hypothesis. Future studies could explore other 

metadata signals, such as response times or answer variance, to evaluate this methodology or even further 

enhance inattentiveness detection via hybrid models. This limited our analysis since the number of 

studies that included attention checks and made their full, non-filtered data publicly available was 

severely scarce.  
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