In order to seamlessly integrate a human computation component (e.g., Amazon Mechanical Turk) within a larger production system, we need to have some basic understanding of how long it takes to complete a task posted for completion in a crowdsourcing platform. We present an analysis of the completion time of tasks posted on Amazon Mechanical Turk, based on a dataset containing 165,368 HIT groups, with a total of 6,701,406 HITs, from 9,436 requesters, posted over a period of 15 months. We model the completion time as a stochastic process and build a statistical method for predicting the expected time for task completion. We use a survival analysis model based on Cox proportional hazards regression. We present the preliminary results of our work, showing how time-independent variables of posted tasks (e.g., type of the task, price of the HIT, day posted, etc) affect completion time. We consider this a first step towards building a comprehensive optimization module that provides recommendations for pricing, posting time, in order to satisfy the constraints of the requester.
Estimating the Completion Time of Crowdsourced Tasks Using Survival Analysis Models
- Siamak Faridani
- Panagiotis Ipeirotis
- Jing Wang
- Venue: Proceedings of the Workshop on Crowdsourcing for Search and Data Mining (WSDM11-CSDM), 2011
- Feb 2011
- Status: Refereed
- Type: Workshop